/*
* Copyright (C) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include<softfloat.h>
#include<sftypes.h>
#include<add.h>
#include<sub.h>
#include<mul.h>
#include<div.h>
#include<conversion.h>
#include<comparison.h>
#include<other.h>
#include<arch.h>
#include<types.h>
#include<functions.h>
/* Arithmetic functions */
float __addsf3(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if (fa.parts.sign != fb.parts.sign) {
if (fa.parts.sign) {
fa.parts.sign = 0;
return subFloat32(fb, fa).f;
};
fb.parts.sign = 0;
return subFloat32(fa, fb).f;
}
return addFloat32(fa, fb).f;
}
double __adddf3(double a, double b)
{
float64 da, db;
da.d = a;
db.d = b;
if (da.parts.sign != db.parts.sign) {
if (da.parts.sign) {
da.parts.sign = 0;
return subFloat64(db, da).d;
};
db.parts.sign = 0;
return subFloat64(da, db).d;
}
return addFloat64(da, db).d;
}
float __subsf3(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if (fa.parts.sign != fb.parts.sign) {
fb.parts.sign = !fb.parts.sign;
return addFloat32(fa, fb).f;
}
return subFloat32(fa, fb).f;
}
double __subdf3(double a, double b)
{
float64 da, db;
da.d = a;
db.d = b;
if (da.parts.sign != db.parts.sign) {
db.parts.sign = !db.parts.sign;
return addFloat64(da, db).d;
}
return subFloat64(da, db).d;
}
float __mulsf3(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
return mulFloat32(fa, fb).f;
}
double __muldf3(double a, double b)
{
float64 da, db;
da.d = a;
db.d = b;
return mulFloat64(da, db).d;
}
float __divsf3(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
return divFloat32(fa, fb).f;
}
double __divdf3(double a, double b)
{
float64 da, db;
da.d = a;
db.d = b;
return divFloat64(da, db).d;
}
float __negsf2(float a)
{
float32 fa;
fa.f = a;
fa.parts.sign = !fa.parts.sign;
return fa.f;
}
double __negdf2(double a)
{
float64 fa;
fa.d = a;
fa.parts.sign = !fa.parts.sign;
return fa.d;
}
/* Conversion functions */
double __extendsfdf2(float a)
{
float32 fa;
fa.f = a;
return convertFloat32ToFloat64(fa).d;
}
float __truncdfsf2(double a)
{
float64 da;
da.d = a;
return convertFloat64ToFloat32(da).f;
}
int __fixsfsi(float a)
{
float32 fa;
fa.f = a;
return float32_to_int(fa);
}
int __fixdfsi(double a)
{
float64 da;
da.d = a;
return float64_to_int(da);
}
long __fixsfdi(float a)
{
float32 fa;
fa.f = a;
return float32_to_long(fa);
}
long __fixdfdi(double a)
{
float64 da;
da.d = a;
return float64_to_long(da);
}
long long __fixsfti(float a)
{
float32 fa;
fa.f = a;
return float32_to_longlong(fa);
}
long long __fixdfti(double a)
{
float64 da;
da.d = a;
return float64_to_longlong(da);
}
unsigned int __fixunssfsi(float a)
{
float32 fa;
fa.f = a;
return float32_to_uint(fa);
}
unsigned int __fixunsdfsi(double a)
{
float64 da;
da.d = a;
return float64_to_uint(da);
}
unsigned long __fixunssfdi(float a)
{
float32 fa;
fa.f = a;
return float32_to_ulong(fa);
}
unsigned long __fixunsdfdi(double a)
{
float64 da;
da.d = a;
return float64_to_ulong(da);
}
unsigned long long __fixunssfti(float a)
{
float32 fa;
fa.f = a;
return float32_to_ulonglong(fa);
}
unsigned long long __fixunsdfti(double a)
{
float64 da;
da.d = a;
return float64_to_ulonglong(da);
}
float __floatsisf(int i)
{
float32 fa;
fa = int_to_float32(i);
return fa.f;
}
double __floatsidf(int i)
{
float64 da;
da = int_to_float64(i);
return da.d;
}
float __floatdisf(long i)
{
float32 fa;
fa = long_to_float32(i);
return fa.f;
}
double __floatdidf(long i)
{
float64 da;
da = long_to_float64(i);
return da.d;
}
float __floattisf(long long i)
{
float32 fa;
fa = longlong_to_float32(i);
return fa.f;
}
double __floattidf(long long i)
{
float64 da;
da = longlong_to_float64(i);
return da.d;
}
float __floatunsisf(unsigned int i)
{
float32 fa;
fa = uint_to_float32(i);
return fa.f;
}
double __floatunsidf(unsigned int i)
{
float64 da;
da = uint_to_float64(i);
return da.d;
}
float __floatundisf(unsigned long i)
{
float32 fa;
fa = ulong_to_float32(i);
return fa.f;
}
double __floatundidf(unsigned long i)
{
float64 da;
da = ulong_to_float64(i);
return da.d;
}
float __floatuntisf(unsigned long long i)
{
float32 fa;
fa = ulonglong_to_float32(i);
return fa.f;
}
double __floatuntidf(unsigned long long i)
{
float64 da;
da = ulonglong_to_float64(i);
return da.d;
}
/* Comparison functions */
/* Comparison functions */
/* a<b .. -1
* a=b .. 0
* a>b .. 1
* */
int __cmpsf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) ) {
return 1; /* no special constant for unordered - maybe signaled? */
};
if (isFloat32eq(fa, fb)) {
return 0;
};
if (isFloat32lt(fa, fb)) {
return -1;
};
return 1;
}
int __unordsf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
return ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) );
}
/**
* @return zero, if neither argument is a NaN and are equal
* */
int __eqsf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) ) {
/* TODO: sigNaNs*/
return 1;
};
return isFloat32eq(fa, fb) - 1;
}
/* strange behavior, but it was in gcc documentation */
int __nesf2(float a, float b)
{
return __eqsf2(a, b);
}
/* return value >= 0 if a>=b and neither is NaN */
int __gesf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) ) {
/* TODO: sigNaNs*/
return -1;
};
if (isFloat32eq(fa, fb)) {
return 0;
};
if (isFloat32gt(fa, fb)) {
return 1;
};
return -1;
}
/** Return negative value, if a<b and neither is NaN*/
int __ltsf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) ) {
/* TODO: sigNaNs*/
return 1;
};
if (isFloat32lt(fa, fb)) {
return -1;
};
return 0;
}
/* return value <= 0 if a<=b and neither is NaN */
int __lesf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) ) {
/* TODO: sigNaNs*/
return 1;
};
if (isFloat32eq(fa, fb)) {
return 0;
};
if (isFloat32lt(fa, fb)) {
return -1;
};
return 1;
}
/** Return positive value, if a>b and neither is NaN*/
int __gtsf2(float a, float b)
{
float32 fa, fb;
fa.f = a;
fb.f = b;
if ( (isFloat32NaN(fa)) || (isFloat32NaN(fb)) ) {
/* TODO: sigNaNs*/
return -1;
};
if (isFloat32gt(fa, fb)) {
return 1;
};
return 0;
}
/* Other functions */
float __powisf2(float a, int b)
{
/* TODO: */
}
float __mulsc3(float a, float b, float c, float d)
{
/* TODO: */
}
float __divsc3(float a, float b, float c, float d)
{
/* TODO: */
}