/*
* Copyright (C) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include<sftypes.h>
#include<mul.h>
#include<comparison.h>
/** Multiply two 32 bit float numbers
*
*/
float32 mulFloat32(float32 a, float32 b)
{
float32 result;
__u64 frac1, frac2;
result.parts.sign = a.parts.sign ^ b.parts.sign;
if (isFloat32NaN(a) || isFloat32NaN(b) ) {
/* TODO: fix SigNaNs */
if (isFloat32SigNaN(a)) {
result.parts.fraction = a.parts.fraction;
result.
parts.
exp = a.
parts.
exp;
return result;
};
if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
result.parts.fraction = b.parts.fraction;
result.
parts.
exp = b.
parts.
exp;
return result;
};
/* set NaN as result */
result.binary = FLOAT32_NAN;
return result;
};
if (isFloat32Infinity(a)) {
if (isFloat32Zero(b)) {
/* FIXME: zero * infinity */
result.binary = FLOAT32_NAN;
return result;
}
result.parts.fraction = a.parts.fraction;
result.
parts.
exp = a.
parts.
exp;
return result;
}
if (isFloat32Infinity(b)) {
if (isFloat32Zero(a)) {
/* FIXME: zero * infinity */
result.binary = FLOAT32_NAN;
return result;
}
result.parts.fraction = b.parts.fraction;
result.
parts.
exp = b.
parts.
exp;
return result;
}
/* exp is signed so we can easy detect underflow */
if (exp >= FLOAT32_MAX_EXPONENT
) {
/* FIXME: overflow */
/* set infinity as result */
result.binary = FLOAT32_INF;
result.parts.sign = a.parts.sign ^ b.parts.sign;
return result;
};
/* FIXME: underflow */
/* return signed zero */
result.parts.fraction = 0x0;
return result;
};
frac1 = a.parts.fraction;
frac1 |= FLOAT32_HIDDEN_BIT_MASK;
} else {
};
frac2 = b.parts.fraction;
frac2 |= FLOAT32_HIDDEN_BIT_MASK;
} else {
};
frac1 <<= 1; /* one bit space for rounding */
frac1 = frac1 * frac2;
/* round and return */
while ((exp < FLOAT32_MAX_EXPONENT
) && (frac1
>= ( 1 << (FLOAT32_FRACTION_SIZE
+ 2)))) {
/* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left)*/
frac1 >>= 1;
};
/* rounding */
/* ++frac1; FIXME: not works - without it is ok */
frac1 >>= 1; /* shift off rounding space */
if ((exp < FLOAT32_MAX_EXPONENT
) && (frac1
>= (1 << (FLOAT32_FRACTION_SIZE
+ 1)))) {
frac1 >>= 1;
};
if (exp >= FLOAT32_MAX_EXPONENT
) {
/* TODO: fix overflow */
/* return infinity*/
result.
parts.
exp = FLOAT32_MAX_EXPONENT
;
result.parts.fraction = 0x0;
return result;
}
exp -= FLOAT32_FRACTION_SIZE
;
if (exp <= FLOAT32_FRACTION_SIZE
) {
/* denormalized number */
frac1 >>= 1; /* denormalize */
while ((frac1
> 0) && (exp < 0)) {
frac1 >>= 1;
};
if (frac1 == 0) {
/* FIXME : underflow */
result.parts.fraction = 0;
return result;
};
};
result.parts.fraction = frac1 & ( (1 << FLOAT32_FRACTION_SIZE) - 1);
return result;
}
/** Multiply two 64 bit float numbers
*
*/
float64 mulFloat64(float64 a, float64 b)
{
float64 result;
__u64 frac1, frac2;
result.parts.sign = a.parts.sign ^ b.parts.sign;
if (isFloat64NaN(a) || isFloat64NaN(b) ) {
/* TODO: fix SigNaNs */
if (isFloat64SigNaN(a)) {
result.parts.fraction = a.parts.fraction;
result.
parts.
exp = a.
parts.
exp;
return result;
};
if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
result.parts.fraction = b.parts.fraction;
result.
parts.
exp = b.
parts.
exp;
return result;
};
/* set NaN as result */
result.binary = FLOAT64_NAN;
return result;
};
if (isFloat64Infinity(a)) {
if (isFloat64Zero(b)) {
/* FIXME: zero * infinity */
result.binary = FLOAT64_NAN;
return result;
}
result.parts.fraction = a.parts.fraction;
result.
parts.
exp = a.
parts.
exp;
return result;
}
if (isFloat64Infinity(b)) {
if (isFloat64Zero(a)) {
/* FIXME: zero * infinity */
result.binary = FLOAT64_NAN;
return result;
}
result.parts.fraction = b.parts.fraction;
result.
parts.
exp = b.
parts.
exp;
return result;
}
/* exp is signed so we can easy detect underflow */
if (exp >= FLOAT64_MAX_EXPONENT
) {
/* FIXME: overflow */
/* set infinity as result */
result.binary = FLOAT64_INF;
result.parts.sign = a.parts.sign ^ b.parts.sign;
return result;
};
/* FIXME: underflow */
/* return signed zero */
result.parts.fraction = 0x0;
return result;
};
frac1 = a.parts.fraction;
frac1 |= FLOAT64_HIDDEN_BIT_MASK;
} else {
};
frac2 = b.parts.fraction;
frac2 |= FLOAT64_HIDDEN_BIT_MASK;
} else {
};
frac1 <<= 1; /* one bit space for rounding */
mul64integers(frac1, frac2, &frac1, &frac2);
/* round and return */
/* FIXME: ugly soulution is to shift whole frac2 >> as in 32bit version
* Here is is more slower because we have to shift two numbers with carry
* Better is find first nonzero bit and make only one shift
* Third version is to shift both numbers a bit to right and result will be then
* placed in higher part of result. Then lower part will be good only for rounding.
*/
while ((exp < FLOAT64_MAX_EXPONENT
) && (frac2
> 0 )) {
frac1 >>= 1;
frac1 &= ((frac2 & 0x1) << 63);
frac2 >>= 1;
}
while ((exp < FLOAT64_MAX_EXPONENT
) && (frac1
>= ( (__u64
)1 << (FLOAT64_FRACTION_SIZE
+ 2)))) {
frac1 >>= 1;
};
/* rounding */
/* ++frac1; FIXME: not works - without it is ok */
frac1 >>= 1; /* shift off rounding space */
if ((exp < FLOAT64_MAX_EXPONENT
) && (frac1
>= ((__u64
)1 << (FLOAT64_FRACTION_SIZE
+ 1)))) {
frac1 >>= 1;
};
if (exp >= FLOAT64_MAX_EXPONENT
) {
/* TODO: fix overflow */
/* return infinity*/
result.
parts.
exp = FLOAT64_MAX_EXPONENT
;
result.parts.fraction = 0x0;
return result;
}
exp -= FLOAT64_FRACTION_SIZE
;
if (exp <= FLOAT64_FRACTION_SIZE
) {
/* denormalized number */
frac1 >>= 1; /* denormalize */
while ((frac1
> 0) && (exp < 0)) {
frac1 >>= 1;
};
if (frac1 == 0) {
/* FIXME : underflow */
result.parts.fraction = 0;
return result;
};
};
result.parts.fraction = frac1 & ( ((__u64)1 << FLOAT64_FRACTION_SIZE) - 1);
return result;
}
/** Multiply two 64 bit numbers and return result in two parts
* @param a first operand
* @param b second operand
* @param lo lower part from result
* @param hi higher part of result
*/
void mul64integers(__u64 a,__u64 b, __u64 *lo, __u64 *hi)
{
__u64 low, high, middle1, middle2;
__u32 alow, blow;
alow = a & 0xFFFFFFFF;
blow = b & 0xFFFFFFFF;
a >>= 32;
b >>= 32;
low = ((__u64)alow) * blow;
middle1 = a * blow;
middle2 = alow * b;
high = a * b;
middle1 += middle2;
high += (((__u64)(middle1 < middle2)) << 32) + (middle1 >> 32);
middle1 <<= 32;
low += middle1;
high += (low < middle1);
*lo = low;
*hi = high;
return;
}