/*
* Copyright (C) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup softfloat
* @{
*/
/** @file
*/
#include<sftypes.h>
#include<add.h>
#include<comparison.h>
/** Add two Float32 numbers with same signs
*/
float32 addFloat32(float32 a, float32 b)
{
int expdiff;
uint32_t exp1, exp2,frac1, frac2;
expdiff
= a.
parts.
exp - b.
parts.
exp;
if (expdiff < 0) {
if (isFloat32NaN(b)) {
/* TODO: fix SigNaN */
if (isFloat32SigNaN(b)) {
};
return b;
};
if (b.
parts.
exp == FLOAT32_MAX_EXPONENT
) {
return b;
}
frac1 = b.parts.fraction;
frac2 = a.parts.fraction;
expdiff *= -1;
} else {
if ((isFloat32NaN(a)) || (isFloat32NaN(b))) {
/* TODO: fix SigNaN */
if (isFloat32SigNaN(a) || isFloat32SigNaN(b)) {
};
return (isFloat32NaN(a)?a:b);
};
if (a.
parts.
exp == FLOAT32_MAX_EXPONENT
) {
return a;
}
frac1 = a.parts.fraction;
frac2 = b.parts.fraction;
};
if (exp1 == 0) {
/* both are denormalized */
frac1 += frac2;
if (frac1 & FLOAT32_HIDDEN_BIT_MASK ) {
/* result is not denormalized */
};
a.parts.fraction = frac1;
return a;
};
frac1 |= FLOAT32_HIDDEN_BIT_MASK; /* add hidden bit */
if (exp2 == 0) {
/* second operand is denormalized */
--expdiff;
} else {
/* add hidden bit to second operand */
frac2 |= FLOAT32_HIDDEN_BIT_MASK;
};
/* create some space for rounding */
frac1 <<= 6;
frac2 <<= 6;
if (expdiff < (FLOAT32_FRACTION_SIZE + 2) ) {
frac2 >>= expdiff;
frac1 += frac2;
} else {
a.parts.fraction = (frac1 >> 6) & (~(FLOAT32_HIDDEN_BIT_MASK));
return a;
}
if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7) ) {
++exp1;
frac1 >>= 1;
};
/* rounding - if first bit after fraction is set then round up */
frac1 += (0x1 << 5);
if (frac1 & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
/* rounding overflow */
++exp1;
frac1 >>= 1;
};
if ((exp1 == FLOAT32_MAX_EXPONENT ) || (exp2 > exp1)) {
/* overflow - set infinity as result */
a.
parts.
exp = FLOAT32_MAX_EXPONENT
;
a.parts.fraction = 0;
return a;
}
/*Clear hidden bit and shift */
a.parts.fraction = ((frac1 >> 6) & (~FLOAT32_HIDDEN_BIT_MASK)) ;
return a;
}
/** Add two Float64 numbers with same signs
*/
float64 addFloat64(float64 a, float64 b)
{
int expdiff;
uint32_t exp1, exp2;
uint64_t frac1, frac2;
expdiff
= ((int )a.
parts.
exp) - b.
parts.
exp;
if (expdiff < 0) {
if (isFloat64NaN(b)) {
/* TODO: fix SigNaN */
if (isFloat64SigNaN(b)) {
};
return b;
};
/* b is infinity and a not */
if (b.
parts.
exp == FLOAT64_MAX_EXPONENT
) {
return b;
}
frac1 = b.parts.fraction;
frac2 = a.parts.fraction;
expdiff *= -1;
} else {
if (isFloat64NaN(a)) {
/* TODO: fix SigNaN */
if (isFloat64SigNaN(a) || isFloat64SigNaN(b)) {
};
return a;
};
/* a is infinity and b not */
if (a.
parts.
exp == FLOAT64_MAX_EXPONENT
) {
return a;
}
frac1 = a.parts.fraction;
frac2 = b.parts.fraction;
};
if (exp1 == 0) {
/* both are denormalized */
frac1 += frac2;
if (frac1 & FLOAT64_HIDDEN_BIT_MASK) {
/* result is not denormalized */
};
a.parts.fraction = frac1;
return a;
};
/* add hidden bit - frac1 is sure not denormalized */
frac1 |= FLOAT64_HIDDEN_BIT_MASK;
/* second operand ... */
if (exp2 == 0) {
/* ... is denormalized */
--expdiff;
} else {
/* is not denormalized */
frac2 |= FLOAT64_HIDDEN_BIT_MASK;
};
/* create some space for rounding */
frac1 <<= 6;
frac2 <<= 6;
if (expdiff < (FLOAT64_FRACTION_SIZE + 2) ) {
frac2 >>= expdiff;
frac1 += frac2;
} else {
a.parts.fraction = (frac1 >> 6) & (~(FLOAT64_HIDDEN_BIT_MASK));
return a;
}
if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7) ) {
++exp1;
frac1 >>= 1;
};
/* rounding - if first bit after fraction is set then round up */
frac1 += (0x1 << 5);
if (frac1 & (FLOAT64_HIDDEN_BIT_MASK << 7)) {
/* rounding overflow */
++exp1;
frac1 >>= 1;
};
if ((exp1 == FLOAT64_MAX_EXPONENT ) || (exp2 > exp1)) {
/* overflow - set infinity as result */
a.
parts.
exp = FLOAT64_MAX_EXPONENT
;
a.parts.fraction = 0;
return a;
}
/*Clear hidden bit and shift */
a.parts.fraction = ( (frac1 >> 6 ) & (~FLOAT64_HIDDEN_BIT_MASK));
return a;
}
/** @}
*/