Subversion Repositories HelenOS

Rev

Rev 1787 | Rev 2089 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

/*
 * Copyright (c) 2006 Jakub Jermar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup genericadt
 * @{
 */

/**
 * @file
 * @brief   B+tree implementation.
 *
 * This file implements B+tree type and operations.
 *
 * The B+tree has the following properties:
 * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5)
 * @li values (i.e. pointers to values) are stored only in leaves
 * @li leaves are linked in a list
 *
 * Be carefull when using these trees. They need to allocate
 * and deallocate memory for their index nodes and as such
 * can sleep.
 */

#include <adt/btree.h>
#include <adt/list.h>
#include <mm/slab.h>
#include <debug.h>
#include <panic.h>
#include <typedefs.h>
#include <print.h>

static void btree_destroy_subtree(btree_node_t *root);
static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node);
static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node);
static void node_initialize(btree_node_t *node);
static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree);
static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key);
static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key);
static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median);
static btree_node_t *node_combine(btree_node_t *node);
static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
static bool try_rotation_from_left(btree_node_t *rnode);
static bool try_rotation_from_right(btree_node_t *lnode);

#define ROOT_NODE(n)        (!(n)->parent)
#define INDEX_NODE(n)       ((n)->subtree[0] != NULL)
#define LEAF_NODE(n)        ((n)->subtree[0] == NULL)

#define FILL_FACTOR     ((BTREE_M-1)/2)

#define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
#define MEDIAN_HIGH_INDEX(n)    ((n)->keys/2)
#define MEDIAN_LOW(n)       ((n)->key[MEDIAN_LOW_INDEX((n))]);
#define MEDIAN_HIGH(n)      ((n)->key[MEDIAN_HIGH_INDEX((n))]);

static slab_cache_t *btree_node_slab;

/** Initialize B-trees. */
void btree_init(void)
{
    btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
}

/** Create empty B-tree.
 *
 * @param t B-tree.
 */
void btree_create(btree_t *t)
{
    list_initialize(&t->leaf_head);
    t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
    node_initialize(t->root);
    list_append(&t->root->leaf_link, &t->leaf_head);
}

/** Destroy empty B-tree. */
void btree_destroy(btree_t *t)
{
    btree_destroy_subtree(t->root);
}

/** Insert key-value pair into B-tree.
 *
 * @param t B-tree.
 * @param key Key to be inserted.
 * @param value Value to be inserted.
 * @param leaf_node Leaf node where the insertion should begin.
 */ 
void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node)
{
    btree_node_t *lnode;
    
    ASSERT(value);
    
    lnode = leaf_node;
    if (!lnode) {
        if (btree_search(t, key, &lnode)) {
            panic("B-tree %p already contains key %d\n", t, key);
        }
    }
    
    _btree_insert(t, key, value, NULL, lnode);
}

/** Destroy subtree rooted in a node.
 *
 * @param root Root of the subtree.
 */
void btree_destroy_subtree(btree_node_t *root)
{
    int i;

    if (root->keys) {
        for (i = 0; i < root->keys + 1; i++) { 
            if (root->subtree[i])
                btree_destroy_subtree(root->subtree[i]);
        }
    }
    slab_free(btree_node_slab, root);
}

/** Recursively insert into B-tree.
 *
 * @param t B-tree.
 * @param key Key to be inserted.
 * @param value Value to be inserted.
 * @param rsubtree Right subtree of the inserted key.
 * @param node Start inserting into this node.
 */
void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node)
{
    if (node->keys < BTREE_MAX_KEYS) {
        /*
         * Node conatins enough space, the key can be stored immediately.
         */
        node_insert_key_and_rsubtree(node, key, value, rsubtree);
    } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
        /*
         * The key-value-rsubtree triplet has been inserted because
         * some keys could have been moved to the left sibling.
         */
    } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
        /*
         * The key-value-rsubtree triplet has been inserted because
         * some keys could have been moved to the right sibling.
         */
    } else {
        btree_node_t *rnode;
        btree_key_t median;
        
        /*
         * Node is full and both siblings (if both exist) are full too.
         * Split the node and insert the smallest key from the node containing
         * bigger keys (i.e. the new node) into its parent.
         */

        rnode = node_split(node, key, value, rsubtree, &median);

        if (LEAF_NODE(node)) {
            list_prepend(&rnode->leaf_link, &node->leaf_link);
        }
        
        if (ROOT_NODE(node)) {
            /*
             * We split the root node. Create new root.
             */
            t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
            node->parent = t->root;
            rnode->parent = t->root;
            node_initialize(t->root);
            
            /*
             * Left-hand side subtree will be the old root (i.e. node).
             * Right-hand side subtree will be rnode.
             */         
            t->root->subtree[0] = node;

            t->root->depth = node->depth + 1;
        }
        _btree_insert(t, median, NULL, rnode, node->parent);
    }   
        
}

/** Remove B-tree node.
 *
 * @param t B-tree.
 * @param key Key to be removed from the B-tree along with its associated value.
 * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
 */
void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
{
    btree_node_t *lnode;
    
    lnode = leaf_node;
    if (!lnode) {
        if (!btree_search(t, key, &lnode)) {
            panic("B-tree %p does not contain key %d\n", t, key);
        }
    }
    
    _btree_remove(t, key, lnode);
}

/** Recursively remove B-tree node.
 *
 * @param t B-tree.
 * @param key Key to be removed from the B-tree along with its associated value.
 * @param node Node where the key being removed resides.
 */
void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node)
{
    if (ROOT_NODE(node)) {
        if (node->keys == 1 && node->subtree[0]) {
            /*
             * Free the current root and set new root.
             */
            t->root = node->subtree[0];
            t->root->parent = NULL;
            slab_free(btree_node_slab, node);
        } else {
            /*
             * Remove the key from the root node.
             * Note that the right subtree is removed because when
             * combining two nodes, the left-side sibling is preserved
             * and the right-side sibling is freed.
             */
            node_remove_key_and_rsubtree(node, key);
        }
        return;
    }
    
    if (node->keys <= FILL_FACTOR) {
        /*
         * If the node is below the fill factor,
         * try to borrow keys from left or right sibling.
         */
        if (!try_rotation_from_left(node))
            try_rotation_from_right(node);
    }
    
    if (node->keys > FILL_FACTOR) {
        int i;

        /*
         * The key can be immediatelly removed.
         *
         * Note that the right subtree is removed because when
         * combining two nodes, the left-side sibling is preserved
         * and the right-side sibling is freed.
         */
        node_remove_key_and_rsubtree(node, key);
        for (i = 0; i < node->parent->keys; i++) {
            if (node->parent->key[i] == key)
                node->parent->key[i] = node->key[0];
        }
        
    } else {
        index_t idx;
        btree_node_t *rnode, *parent;

        /*
         * The node is below the fill factor as well as its left and right sibling.
         * Resort to combining the node with one of its siblings.
         * The node which is on the left is preserved and the node on the right is
         * freed.
         */
        parent = node->parent;
        node_remove_key_and_rsubtree(node, key);
        rnode = node_combine(node);
        if (LEAF_NODE(rnode))
            list_remove(&rnode->leaf_link);
        idx = find_key_by_subtree(parent, rnode, true);
        ASSERT((int) idx != -1);
        slab_free(btree_node_slab, rnode);
        _btree_remove(t, parent->key[idx], parent);
    }
}

/** Search key in a B-tree.
 *
 * @param t B-tree.
 * @param key Key to be searched.
 * @param leaf_node Address where to put pointer to visited leaf node.
 *
 * @return Pointer to value or NULL if there is no such key.
 */
void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
{
    btree_node_t *cur, *next;
    
    /*
     * Iteratively descend to the leaf that can contain the searched key.
     */
    for (cur = t->root; cur; cur = next) {

        /* Last iteration will set this with proper leaf node address. */
        *leaf_node = cur;
        
        /*
         * The key can be in the leftmost subtree.
         * Test it separately.
         */
        if (key < cur->key[0]) {
            next = cur->subtree[0];
            continue;
        } else {
            void *val;
            int i;
        
            /*
             * Now if the key is smaller than cur->key[i]
             * it can only mean that the value is in cur->subtree[i]
             * or it is not in the tree at all.
             */
            for (i = 1; i < cur->keys; i++) {
                if (key < cur->key[i]) {
                    next = cur->subtree[i];
                    val = cur->value[i - 1];

                    if (LEAF_NODE(cur))
                        return key == cur->key[i - 1] ? val : NULL;

                    goto descend;
                } 
            }
            
            /*
             * Last possibility is that the key is in the rightmost subtree.
             */
            next = cur->subtree[i];
            val = cur->value[i - 1];
            if (LEAF_NODE(cur))
                return key == cur->key[i - 1] ? val : NULL;
        }
        descend:
            ;
    }

    /*
     * The key was not found in the *leaf_node and is smaller than any of its keys.
     */
    return NULL;
}

/** Return pointer to B-tree leaf node's left neighbour.
 *
 * @param t B-tree.
 * @param node Node whose left neighbour will be returned.
 *
 * @return Left neighbour of the node or NULL if the node does not have the left neighbour.
 */
btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
{
    ASSERT(LEAF_NODE(node));
    if (node->leaf_link.prev != &t->leaf_head)
        return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
    else
        return NULL;
}

/** Return pointer to B-tree leaf node's right neighbour.
 *
 * @param t B-tree.
 * @param node Node whose right neighbour will be returned.
 *
 * @return Right neighbour of the node or NULL if the node does not have the right neighbour.
 */
btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
{
    ASSERT(LEAF_NODE(node));
    if (node->leaf_link.next != &t->leaf_head)
        return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
    else
        return NULL;
}

/** Initialize B-tree node.
 *
 * @param node B-tree node.
 */
void node_initialize(btree_node_t *node)
{
    int i;

    node->keys = 0;
    
    /* Clean also space for the extra key. */
    for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
        node->key[i] = 0;
        node->value[i] = NULL;
        node->subtree[i] = NULL;
    }
    node->subtree[i] = NULL;
    
    node->parent = NULL;
    
    link_initialize(&node->leaf_link);

    link_initialize(&node->bfs_link);
    node->depth = 0;
}

/** Insert key-value-lsubtree triplet into B-tree node.
 *
 * It is actually possible to have more keys than BTREE_MAX_KEYS.
 * This feature is used during insert by right rotation.
 *
 * @param node B-tree node into wich the new key is to be inserted.
 * @param key The key to be inserted.
 * @param value Pointer to value to be inserted.
 * @param lsubtree Pointer to the left subtree.
 */ 
void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree)
{
    int i;

    for (i = 0; i < node->keys; i++) {
        if (key < node->key[i]) {
            int j;
        
            for (j = node->keys; j > i; j--) {
                node->key[j] = node->key[j - 1];
                node->value[j] = node->value[j - 1];
                node->subtree[j + 1] = node->subtree[j];
            }
            node->subtree[j + 1] = node->subtree[j];
            break;  
        }
    }
    node->key[i] = key;
    node->value[i] = value;
    node->subtree[i] = lsubtree;
            
    node->keys++;
}

/** Insert key-value-rsubtree triplet into B-tree node.
 *
 * It is actually possible to have more keys than BTREE_MAX_KEYS.
 * This feature is used during splitting the node when the
 * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
 * also makes use of this feature.
 *
 * @param node B-tree node into wich the new key is to be inserted.
 * @param key The key to be inserted.
 * @param value Pointer to value to be inserted.
 * @param rsubtree Pointer to the right subtree.
 */ 
void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree)
{
    int i;

    for (i = 0; i < node->keys; i++) {
        if (key < node->key[i]) {
            int j;
        
            for (j = node->keys; j > i; j--) {
                node->key[j] = node->key[j - 1];
                node->value[j] = node->value[j - 1];
                node->subtree[j + 1] = node->subtree[j];
            }
            break;  
        }
    }
    node->key[i] = key;
    node->value[i] = value;
    node->subtree[i + 1] = rsubtree;
            
    node->keys++;
}

/** Remove key and its left subtree pointer from B-tree node.
 *
 * Remove the key and eliminate gaps in node->key array.
 * Note that the value pointer and the left subtree pointer
 * is removed from the node as well.
 *
 * @param node B-tree node.
 * @param key Key to be removed.
 */
void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key)
{
    int i, j;
    
    for (i = 0; i < node->keys; i++) {
        if (key == node->key[i]) {
            for (j = i + 1; j < node->keys; j++) {
                node->key[j - 1] = node->key[j];
                node->value[j - 1] = node->value[j];
                node->subtree[j - 1] = node->subtree[j];
            }
            node->subtree[j - 1] = node->subtree[j];
            node->keys--;
            return;
        }
    }
    panic("node %p does not contain key %d\n", node, key);
}

/** Remove key and its right subtree pointer from B-tree node.
 *
 * Remove the key and eliminate gaps in node->key array.
 * Note that the value pointer and the right subtree pointer
 * is removed from the node as well.
 *
 * @param node B-tree node.
 * @param key Key to be removed.
 */
void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key)
{
    int i, j;
    
    for (i = 0; i < node->keys; i++) {
        if (key == node->key[i]) {
            for (j = i + 1; j < node->keys; j++) {
                node->key[j - 1] = node->key[j];
                node->value[j - 1] = node->value[j];
                node->subtree[j] = node->subtree[j + 1];
            }
            node->keys--;
            return;
        }
    }
    panic("node %p does not contain key %d\n", node, key);
}

/** Split full B-tree node and insert new key-value-right-subtree triplet.
 *
 * This function will split a node and return a pointer to a newly created
 * node containing keys greater than or equal to the greater of medians
 * (or median) of the old keys and the newly added key. It will also write
 * the median key to a memory address supplied by the caller.
 *
 * If the node being split is an index node, the median will not be
 * included in the new node. If the node is a leaf node,
 * the median will be copied there.
 *
 * @param node B-tree node wich is going to be split.
 * @param key The key to be inserted.
 * @param value Pointer to the value to be inserted.
 * @param rsubtree Pointer to the right subtree of the key being added.
 * @param median Address in memory, where the median key will be stored.
 *
 * @return Newly created right sibling of node.
 */ 
btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median)
{
    btree_node_t *rnode;
    int i, j;

    ASSERT(median);
    ASSERT(node->keys == BTREE_MAX_KEYS);

    /*
     * Use the extra space to store the extra node.
     */
    node_insert_key_and_rsubtree(node, key, value, rsubtree);

    /*
     * Compute median of keys.
     */
    *median = MEDIAN_HIGH(node);
        
    /*
     * Allocate and initialize new right sibling.
     */
    rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0);
    node_initialize(rnode);
    rnode->parent = node->parent;
    rnode->depth = node->depth;
    
    /*
     * Copy big keys, values and subtree pointers to the new right sibling.
     * If this is an index node, do not copy the median.
     */
    i = (int) INDEX_NODE(node);
    for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
        rnode->key[j] = node->key[i];
        rnode->value[j] = node->value[i];
        rnode->subtree[j] = node->subtree[i];
        
        /*
         * Fix parent links in subtrees.
         */
        if (rnode->subtree[j])
            rnode->subtree[j]->parent = rnode;
            
    }
    rnode->subtree[j] = node->subtree[i];
    if (rnode->subtree[j])
        rnode->subtree[j]->parent = rnode;

    rnode->keys = j;    /* Set number of keys of the new node. */
    node->keys /= 2;    /* Shrink the old node. */
        
    return rnode;
}

/** Combine node with any of its siblings.
 *
 * The siblings are required to be below the fill factor.
 *
 * @param node Node to combine with one of its siblings.
 *
 * @return Pointer to the rightmost of the two nodes.
 */
btree_node_t *node_combine(btree_node_t *node)
{
    index_t idx;
    btree_node_t *rnode;
    int i;

    ASSERT(!ROOT_NODE(node));
    
    idx = find_key_by_subtree(node->parent, node, false);
    if (idx == node->parent->keys) {
        /*
         * Rightmost subtree of its parent, combine with the left sibling.
         */
        idx--;
        rnode = node;
        node = node->parent->subtree[idx];
    } else {
        rnode = node->parent->subtree[idx + 1];
    }

    /* Index nodes need to insert parent node key in between left and right node. */
    if (INDEX_NODE(node))
        node->key[node->keys++] = node->parent->key[idx];
    
    /* Copy the key-value-subtree triplets from the right node. */
    for (i = 0; i < rnode->keys; i++) {
        node->key[node->keys + i] = rnode->key[i];
        node->value[node->keys + i] = rnode->value[i];
        if (INDEX_NODE(node)) {
            node->subtree[node->keys + i] = rnode->subtree[i];
            rnode->subtree[i]->parent = node;
        }
    }
    if (INDEX_NODE(node)) {
        node->subtree[node->keys + i] = rnode->subtree[i];
        rnode->subtree[i]->parent = node;
    }

    node->keys += rnode->keys;

    return rnode;
}

/** Find key by its left or right subtree.
 *
 * @param node B-tree node.
 * @param subtree Left or right subtree of a key found in node.
 * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
 *
 * @return Index of the key associated with the subtree.
 */ 
index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
{
    int i;
    
    for (i = 0; i < node->keys + 1; i++) {
        if (subtree == node->subtree[i])
            return i - (int) (right != false);
    }
    panic("node %p does not contain subtree %p\n", node, subtree);
}

/** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
 *
 * The biggest key and its value and right subtree is rotated from the left node
 * to the right. If the node is an index node, than the parent node key belonging to
 * the left node takes part in the rotation.
 *
 * @param lnode Left sibling.
 * @param rnode Right sibling.
 * @param idx Index of the parent node key that is taking part in the rotation.
 */
void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
{
    btree_key_t key;

    key = lnode->key[lnode->keys - 1];
        
    if (LEAF_NODE(lnode)) {
        void *value;

        value = lnode->value[lnode->keys - 1];
        node_remove_key_and_rsubtree(lnode, key);
        node_insert_key_and_lsubtree(rnode, key, value, NULL);
        lnode->parent->key[idx] = key;
    } else {
        btree_node_t *rsubtree;

        rsubtree = lnode->subtree[lnode->keys];
        node_remove_key_and_rsubtree(lnode, key);
        node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
        lnode->parent->key[idx] = key;

        /* Fix parent link of the reconnected right subtree. */
        rsubtree->parent = rnode;
    }

}

/** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
 *
 * The smallest key and its value and left subtree is rotated from the right node
 * to the left. If the node is an index node, than the parent node key belonging to
 * the right node takes part in the rotation.
 *
 * @param lnode Left sibling.
 * @param rnode Right sibling.
 * @param idx Index of the parent node key that is taking part in the rotation.
 */
void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
{
    btree_key_t key;

    key = rnode->key[0];
        
    if (LEAF_NODE(rnode)) {
        void *value;

        value = rnode->value[0];
        node_remove_key_and_lsubtree(rnode, key);
        node_insert_key_and_rsubtree(lnode, key, value, NULL);
        rnode->parent->key[idx] = rnode->key[0];
    } else {
        btree_node_t *lsubtree;

        lsubtree = rnode->subtree[0];
        node_remove_key_and_lsubtree(rnode, key);
        node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
        rnode->parent->key[idx] = key;

        /* Fix parent link of the reconnected left subtree. */
        lsubtree->parent = lnode;
    }

}

/** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
 *
 * Left sibling of the node (if it exists) is checked for free space.
 * If there is free space, the key is inserted and the smallest key of
 * the node is moved there. The index node which is the parent of both
 * nodes is fixed.
 *
 * @param node B-tree node.
 * @param inskey Key to be inserted.
 * @param insvalue Value to be inserted.
 * @param rsubtree Right subtree of inskey.
 *
 * @return True if the rotation was performed, false otherwise.
 */
bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
{
    index_t idx;
    btree_node_t *lnode;

    /*
     * If this is root node, the rotation can not be done.
     */
    if (ROOT_NODE(node))
        return false;
    
    idx = find_key_by_subtree(node->parent, node, true);
    if ((int) idx == -1) {
        /*
         * If this node is the leftmost subtree of its parent,
         * the rotation can not be done.
         */
        return false;
    }
        
    lnode = node->parent->subtree[idx];
    if (lnode->keys < BTREE_MAX_KEYS) {
        /*
         * The rotaion can be done. The left sibling has free space.
         */
        node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
        rotate_from_right(lnode, node, idx);
        return true;
    }

    return false;
}

/** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
 *
 * Right sibling of the node (if it exists) is checked for free space.
 * If there is free space, the key is inserted and the biggest key of
 * the node is moved there. The index node which is the parent of both
 * nodes is fixed.
 *
 * @param node B-tree node.
 * @param inskey Key to be inserted.
 * @param insvalue Value to be inserted.
 * @param rsubtree Right subtree of inskey.
 *
 * @return True if the rotation was performed, false otherwise.
 */
bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
{
    index_t idx;
    btree_node_t *rnode;

    /*
     * If this is root node, the rotation can not be done.
     */
    if (ROOT_NODE(node))
        return false;
    
    idx = find_key_by_subtree(node->parent, node, false);
    if (idx == node->parent->keys) {
        /*
         * If this node is the rightmost subtree of its parent,
         * the rotation can not be done.
         */
        return false;
    }
        
    rnode = node->parent->subtree[idx + 1];
    if (rnode->keys < BTREE_MAX_KEYS) {
        /*
         * The rotaion can be done. The right sibling has free space.
         */
        node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
        rotate_from_left(node, rnode, idx);
        return true;
    }

    return false;
}

/** Rotate in a key from the left sibling or from the index node, if this operation can be done.
 *
 * @param rnode Node into which to add key from its left sibling or from the index node.
 *
 * @return True if the rotation was performed, false otherwise.
 */
bool try_rotation_from_left(btree_node_t *rnode)
{
    index_t idx;
    btree_node_t *lnode;

    /*
     * If this is root node, the rotation can not be done.
     */
    if (ROOT_NODE(rnode))
        return false;
    
    idx = find_key_by_subtree(rnode->parent, rnode, true);
    if ((int) idx == -1) {
        /*
         * If this node is the leftmost subtree of its parent,
         * the rotation can not be done.
         */
        return false;
    }
        
    lnode = rnode->parent->subtree[idx];
    if (lnode->keys > FILL_FACTOR) {
        rotate_from_left(lnode, rnode, idx);
        return true;
    }
    
    return false;
}

/** Rotate in a key from the right sibling or from the index node, if this operation can be done.
 *
 * @param lnode Node into which to add key from its right sibling or from the index node.
 *
 * @return True if the rotation was performed, false otherwise.
 */
bool try_rotation_from_right(btree_node_t *lnode)
{
    index_t idx;
    btree_node_t *rnode;

    /*
     * If this is root node, the rotation can not be done.
     */
    if (ROOT_NODE(lnode))
        return false;
    
    idx = find_key_by_subtree(lnode->parent, lnode, false);
    if (idx == lnode->parent->keys) {
        /*
         * If this node is the rightmost subtree of its parent,
         * the rotation can not be done.
         */
        return false;
    }
        
    rnode = lnode->parent->subtree[idx + 1];
    if (rnode->keys > FILL_FACTOR) {
        rotate_from_right(lnode, rnode, idx);
        return true;
    }   

    return false;
}

/** Print B-tree.
 *
 * @param t Print out B-tree.
 */
void btree_print(btree_t *t)
{
    int i, depth = t->root->depth;
    link_t head, *cur;

    printf("Printing B-tree:\n");
    list_initialize(&head);
    list_append(&t->root->bfs_link, &head);

    /*
     * Use BFS search to print out the tree.
     * Levels are distinguished from one another by node->depth.
     */ 
    while (!list_empty(&head)) {
        link_t *hlp;
        btree_node_t *node;
        
        hlp = head.next;
        ASSERT(hlp != &head);
        node = list_get_instance(hlp, btree_node_t, bfs_link);
        list_remove(hlp);
        
        ASSERT(node);
        
        if (node->depth != depth) {
            printf("\n");
            depth = node->depth;
        }

        printf("(");
        for (i = 0; i < node->keys; i++) {
            printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
            if (node->depth && node->subtree[i]) {
                list_append(&node->subtree[i]->bfs_link, &head);
            }
        }
        if (node->depth && node->subtree[i]) {
            list_append(&node->subtree[i]->bfs_link, &head);
        }
        printf(")");
    }
    printf("\n");
    
    printf("Printing list of leaves:\n");
    for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
        btree_node_t *node;
        
        node = list_get_instance(cur, btree_node_t, leaf_link);
        
        ASSERT(node);

        printf("(");
        for (i = 0; i < node->keys; i++)
            printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
        printf(")");
    }
    printf("\n");
}

/** @}
 */