Subversion Repositories HelenOS-historic

Rev

Rev 771 | Rev 773 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2006 Ondrej Palkovsky
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /*
  30.  * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
  31.  * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
  32.  *
  33.  * with the following exceptions:
  34.  *   - empty SLABS are deallocated immediately
  35.  *     (in Linux they are kept in linked list, in Solaris ???)
  36.  *   - empty magazines are deallocated when not needed
  37.  *     (in Solaris they are held in linked list in slab cache)
  38.  *
  39.  *   Following features are not currently supported but would be easy to do:
  40.  *   - cache coloring
  41.  *   - dynamic magazine growing (different magazine sizes are already
  42.  *     supported, but we would need to adjust allocating strategy)
  43.  *
  44.  * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
  45.  * good SMP scaling.
  46.  *
  47.  * When a new object is being allocated, it is first checked, if it is
  48.  * available in CPU-bound magazine. If it is not found there, it is
  49.  * allocated from CPU-shared SLAB - if partial full is found, it is used,
  50.  * otherwise a new one is allocated.
  51.  *
  52.  * When an object is being deallocated, it is put to CPU-bound magazine.
  53.  * If there is no such magazine, new one is allocated (if it fails,
  54.  * the object is deallocated into SLAB). If the magazine is full, it is
  55.  * put into cpu-shared list of magazines and new one is allocated.
  56.  *
  57.  * The CPU-bound magazine is actually a pair of magazine to avoid
  58.  * thrashing when somebody is allocating/deallocating 1 item at the magazine
  59.  * size boundary. LIFO order is enforced, which should avoid fragmentation
  60.  * as much as possible.
  61.  *  
  62.  * Every cache contains list of full slabs and list of partialy full slabs.
  63.  * Empty SLABS are immediately freed (thrashing will be avoided because
  64.  * of magazines).
  65.  *
  66.  * The SLAB information structure is kept inside the data area, if possible.
  67.  * The cache can be marked that it should not use magazines. This is used
  68.  * only for SLAB related caches to avoid deadlocks and infinite recursion
  69.  * (the SLAB allocator uses itself for allocating all it's control structures).
  70.  *
  71.  * The SLAB allocator allocates lot of space and does not free it. When
  72.  * frame allocator fails to allocate the frame, it calls slab_reclaim().
  73.  * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
  74.  * releases slabs from cpu-shared magazine-list, until at least 1 slab
  75.  * is deallocated in each cache (this algorithm should probably change).
  76.  * The brutal reclaim removes all cached objects, even from CPU-bound
  77.  * magazines.
  78.  *
  79.  *
  80.  */
  81.  
  82.  
  83. #include <synch/spinlock.h>
  84. #include <mm/slab.h>
  85. #include <list.h>
  86. #include <memstr.h>
  87. #include <align.h>
  88. #include <mm/heap.h>
  89. #include <mm/frame.h>
  90. #include <config.h>
  91. #include <print.h>
  92. #include <arch.h>
  93. #include <panic.h>
  94. #include <debug.h>
  95. #include <bitops.h>
  96.  
  97. SPINLOCK_INITIALIZE(slab_cache_lock);
  98. static LIST_INITIALIZE(slab_cache_list);
  99.  
  100. /** Magazine cache */
  101. static slab_cache_t mag_cache;
  102. /** Cache for cache descriptors */
  103. static slab_cache_t slab_cache_cache;
  104.  
  105. /** Cache for external slab descriptors
  106.  * This time we want per-cpu cache, so do not make it static
  107.  * - using SLAB for internal SLAB structures will not deadlock,
  108.  *   as all slab structures are 'small' - control structures of
  109.  *   their caches do not require further allocation
  110.  */
  111. static slab_cache_t *slab_extern_cache;
  112. /** Caches for malloc */
  113. static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
  114. char *malloc_names[] =  {
  115.     "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
  116.     "malloc-256","malloc-512","malloc-1K","malloc-2K",
  117.     "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
  118.     "malloc-64K","malloc-128K"
  119. };
  120.  
  121. /** Slab descriptor */
  122. typedef struct {
  123.     slab_cache_t *cache; /**< Pointer to parent cache */
  124.     link_t link;       /* List of full/partial slabs */
  125.     void *start;       /**< Start address of first available item */
  126.     count_t available; /**< Count of available items in this slab */
  127.     index_t nextavail; /**< The index of next available item */
  128. }slab_t;
  129.  
  130. /**************************************/
  131. /* SLAB allocation functions          */
  132.  
  133. /**
  134.  * Allocate frames for slab space and initialize
  135.  *
  136.  */
  137. static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
  138. {
  139.     void *data;
  140.     slab_t *slab;
  141.     size_t fsize;
  142.     int i;
  143.     zone_t *zone = NULL;
  144.     int status;
  145.     frame_t *frame;
  146.  
  147.     data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
  148.     if (status != FRAME_OK) {
  149.         return NULL;
  150.     }
  151.     if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
  152.         slab = slab_alloc(slab_extern_cache, flags);
  153.         if (!slab) {
  154.             frame_free((__address)data);
  155.             return NULL;
  156.         }
  157.     } else {
  158.         fsize = (PAGE_SIZE << cache->order);
  159.         slab = data + fsize - sizeof(*slab);
  160.     }
  161.        
  162.     /* Fill in slab structures */
  163.     /* TODO: some better way of accessing the frame */
  164.     for (i=0; i < (1 << cache->order); i++) {
  165.         frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
  166.         frame->parent = slab;
  167.     }
  168.  
  169.     slab->start = data;
  170.     slab->available = cache->objects;
  171.     slab->nextavail = 0;
  172.     slab->cache = cache;
  173.  
  174.     for (i=0; i<cache->objects;i++)
  175.         *((int *) (slab->start + i*cache->size)) = i+1;
  176.  
  177.     atomic_inc(&cache->allocated_slabs);
  178.     return slab;
  179. }
  180.  
  181. /**
  182.  * Deallocate space associated with SLAB
  183.  *
  184.  * @return number of freed frames
  185.  */
  186. static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
  187. {
  188.     frame_free((__address)slab->start);
  189.     if (! (cache->flags & SLAB_CACHE_SLINSIDE))
  190.         slab_free(slab_extern_cache, slab);
  191.  
  192.     atomic_dec(&cache->allocated_slabs);
  193.    
  194.     return 1 << cache->order;
  195. }
  196.  
  197. /** Map object to slab structure */
  198. static slab_t * obj2slab(void *obj)
  199. {
  200.     frame_t *frame;
  201.  
  202.     frame = frame_addr2frame((__address)obj);
  203.     return (slab_t *)frame->parent;
  204. }
  205.  
  206. /**************************************/
  207. /* SLAB functions */
  208.  
  209.  
  210. /**
  211.  * Return object to slab and call a destructor
  212.  *
  213.  * Assume the cache->lock is held;
  214.  *
  215.  * @param slab If the caller knows directly slab of the object, otherwise NULL
  216.  *
  217.  * @return Number of freed pages
  218.  */
  219. static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
  220.                 slab_t *slab)
  221. {
  222.     count_t frames = 0;
  223.  
  224.     if (!slab)
  225.         slab = obj2slab(obj);
  226.  
  227.     ASSERT(slab->cache == cache);
  228.  
  229.     *((int *)obj) = slab->nextavail;
  230.     slab->nextavail = (obj - slab->start)/cache->size;
  231.     slab->available++;
  232.  
  233.     /* Move it to correct list */
  234.     if (slab->available == 1) {
  235.         /* It was in full, move to partial */
  236.         list_remove(&slab->link);
  237.         list_prepend(&slab->link, &cache->partial_slabs);
  238.     }
  239.     if (slab->available == cache->objects) {
  240.         /* Free associated memory */
  241.         list_remove(&slab->link);
  242.         /* Avoid deadlock */
  243.         spinlock_unlock(&cache->lock);
  244.         frames = slab_space_free(cache, slab);
  245.         spinlock_lock(&cache->lock);
  246.     }
  247.  
  248.     return frames;
  249. }
  250.  
  251. /**
  252.  * Take new object from slab or create new if needed
  253.  *
  254.  * Assume cache->lock is held.
  255.  *
  256.  * @return Object address or null
  257.  */
  258. static void * slab_obj_create(slab_cache_t *cache, int flags)
  259. {
  260.     slab_t *slab;
  261.     void *obj;
  262.  
  263.     if (list_empty(&cache->partial_slabs)) {
  264.         /* Allow recursion and reclaiming
  265.          * - this should work, as the SLAB control structures
  266.          *   are small and do not need to allocte with anything
  267.          *   other ten frame_alloc when they are allocating,
  268.          *   that's why we should get recursion at most 1-level deep
  269.          */
  270.         spinlock_unlock(&cache->lock);
  271.         slab = slab_space_alloc(cache, flags);
  272.         spinlock_lock(&cache->lock);
  273.         if (!slab) {
  274.             return NULL;
  275.         }
  276.     } else {
  277.         slab = list_get_instance(cache->partial_slabs.next,
  278.                      slab_t,
  279.                      link);
  280.         list_remove(&slab->link);
  281.     }
  282.     obj = slab->start + slab->nextavail * cache->size;
  283.     slab->nextavail = *((int *)obj);
  284.     slab->available--;
  285.     if (! slab->available)
  286.         list_prepend(&slab->link, &cache->full_slabs);
  287.     else
  288.         list_prepend(&slab->link, &cache->partial_slabs);
  289.     return obj;
  290. }
  291.  
  292. /**************************************/
  293. /* CPU-Cache slab functions */
  294.  
  295. /**
  296.  * Free all objects in magazine and free memory associated with magazine
  297.  *
  298.  * Assume mag_cache[cpu].lock is locked
  299.  *
  300.  * @return Number of freed pages
  301.  */
  302. static count_t magazine_destroy(slab_cache_t *cache,
  303.                 slab_magazine_t *mag)
  304. {
  305.     int i;
  306.     count_t frames = 0;
  307.  
  308.     for (i=0;i < mag->busy; i++) {
  309.         frames += slab_obj_destroy(cache, mag->objs[i], NULL);
  310.         atomic_dec(&cache->cached_objs);
  311.     }
  312.    
  313.     slab_free(&mag_cache, mag);
  314.  
  315.     return frames;
  316. }
  317.  
  318. /**
  319.  * Find full magazine, set it as current and return it
  320.  *
  321.  * Assume cpu_magazine lock is held
  322.  */
  323. static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
  324. {
  325.     slab_magazine_t *cmag, *lastmag, *newmag;
  326.  
  327.     cmag = cache->mag_cache[CPU->id].current;
  328.     lastmag = cache->mag_cache[CPU->id].last;
  329.     if (cmag) { /* First try local CPU magazines */
  330.         if (cmag->busy)
  331.             return cmag;
  332.  
  333.         if (lastmag && lastmag->busy) {
  334.             cache->mag_cache[CPU->id].current = lastmag;
  335.             cache->mag_cache[CPU->id].last = cmag;
  336.             return lastmag;
  337.         }
  338.     }
  339.     /* Local magazines are empty, import one from magazine list */
  340.     spinlock_lock(&cache->lock);
  341.     if (list_empty(&cache->magazines)) {
  342.         spinlock_unlock(&cache->lock);
  343.         return NULL;
  344.     }
  345.     newmag = list_get_instance(cache->magazines.next,
  346.                    slab_magazine_t,
  347.                    link);
  348.     list_remove(&newmag->link);
  349.     spinlock_unlock(&cache->lock);
  350.  
  351.     if (lastmag)
  352.         slab_free(&mag_cache, lastmag);
  353.     cache->mag_cache[CPU->id].last = cmag;
  354.     cache->mag_cache[CPU->id].current = newmag;
  355.     return newmag;
  356. }
  357.  
  358. /**
  359.  * Try to find object in CPU-cache magazines
  360.  *
  361.  * @return Pointer to object or NULL if not available
  362.  */
  363. static void * magazine_obj_get(slab_cache_t *cache)
  364. {
  365.     slab_magazine_t *mag;
  366.     void *obj;
  367.  
  368.     if (!CPU)
  369.         return NULL;
  370.  
  371.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  372.  
  373.     mag = get_full_current_mag(cache);
  374.     if (!mag) {
  375.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  376.         return NULL;
  377.     }
  378.     obj = mag->objs[--mag->busy];
  379.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  380.     atomic_dec(&cache->cached_objs);
  381.    
  382.     return obj;
  383. }
  384.  
  385. /**
  386.  * Assure that the current magazine is empty, return pointer to it, or NULL if
  387.  * no empty magazine is available and cannot be allocated
  388.  *
  389.  * We have 2 magazines bound to processor.
  390.  * First try the current.
  391.  *  If full, try the last.
  392.  *   If full, put to magazines list.
  393.  *   allocate new, exchange last & current
  394.  *
  395.  */
  396. static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
  397. {
  398.     slab_magazine_t *cmag,*lastmag,*newmag;
  399.  
  400.     cmag = cache->mag_cache[CPU->id].current;
  401.     lastmag = cache->mag_cache[CPU->id].last;
  402.  
  403.     if (cmag) {
  404.         if (cmag->busy < cmag->size)
  405.             return cmag;
  406.         if (lastmag && lastmag->busy < lastmag->size) {
  407.             cache->mag_cache[CPU->id].last = cmag;
  408.             cache->mag_cache[CPU->id].current = lastmag;
  409.             return lastmag;
  410.         }
  411.     }
  412.     /* current | last are full | nonexistent, allocate new */
  413.     /* We do not want to sleep just because of caching */
  414.     /* Especially we do not want reclaiming to start, as
  415.      * this would deadlock */
  416.     newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
  417.     if (!newmag)
  418.         return NULL;
  419.     newmag->size = SLAB_MAG_SIZE;
  420.     newmag->busy = 0;
  421.  
  422.     /* Flush last to magazine list */
  423.     if (lastmag)
  424.         list_prepend(&lastmag->link, &cache->magazines);
  425.     /* Move current as last, save new as current */
  426.     cache->mag_cache[CPU->id].last = cmag; 
  427.     cache->mag_cache[CPU->id].current = newmag;
  428.  
  429.     return newmag;
  430. }
  431.  
  432. /**
  433.  * Put object into CPU-cache magazine
  434.  *
  435.  * @return 0 - success, -1 - could not get memory
  436.  */
  437. static int magazine_obj_put(slab_cache_t *cache, void *obj)
  438. {
  439.     slab_magazine_t *mag;
  440.  
  441.     if (!CPU)
  442.         return -1;
  443.  
  444.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  445.  
  446.     mag = make_empty_current_mag(cache);
  447.     if (!mag) {
  448.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  449.         return -1;
  450.     }
  451.    
  452.     mag->objs[mag->busy++] = obj;
  453.  
  454.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  455.     atomic_inc(&cache->cached_objs);
  456.     return 0;
  457. }
  458.  
  459.  
  460. /**************************************/
  461. /* SLAB CACHE functions */
  462.  
  463. /** Return number of objects that fit in certain cache size */
  464. static int comp_objects(slab_cache_t *cache)
  465. {
  466.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  467.         return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
  468.     else
  469.         return (PAGE_SIZE << cache->order) / cache->size;
  470. }
  471.  
  472. /** Return wasted space in slab */
  473. static int badness(slab_cache_t *cache)
  474. {
  475.     int objects;
  476.     int ssize;
  477.  
  478.     objects = comp_objects(cache);
  479.     ssize = PAGE_SIZE << cache->order;
  480.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  481.         ssize -= sizeof(slab_t);
  482.     return ssize - objects*cache->size;
  483. }
  484.  
  485. /** Initialize allocated memory as a slab cache */
  486. static void
  487. _slab_cache_create(slab_cache_t *cache,
  488.            char *name,
  489.            size_t size,
  490.            size_t align,
  491.            int (*constructor)(void *obj, int kmflag),
  492.            void (*destructor)(void *obj),
  493.            int flags)
  494. {
  495.     int i;
  496.     int pages;
  497.  
  498.     memsetb((__address)cache, sizeof(*cache), 0);
  499.     cache->name = name;
  500.  
  501.     if (align < sizeof(__native))
  502.         align = sizeof(__native);
  503.     size = ALIGN_UP(size, align);
  504.        
  505.     cache->size = size;
  506.  
  507.     cache->constructor = constructor;
  508.     cache->destructor = destructor;
  509.     cache->flags = flags;
  510.  
  511.     list_initialize(&cache->full_slabs);
  512.     list_initialize(&cache->partial_slabs);
  513.     list_initialize(&cache->magazines);
  514.     spinlock_initialize(&cache->lock, "cachelock");
  515.     if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
  516.         for (i=0; i< config.cpu_count; i++) {
  517.             memsetb((__address)&cache->mag_cache[i],
  518.                 sizeof(cache->mag_cache[i]), 0);
  519.             spinlock_initialize(&cache->mag_cache[i].lock,
  520.                         "cpucachelock");
  521.         }
  522.     }
  523.  
  524.     /* Compute slab sizes, object counts in slabs etc. */
  525.     if (cache->size < SLAB_INSIDE_SIZE)
  526.         cache->flags |= SLAB_CACHE_SLINSIDE;
  527.  
  528.     /* Minimum slab order */
  529.     pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
  530.     cache->order = fnzb(pages);
  531.  
  532.     while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
  533.         cache->order += 1;
  534.     }
  535.     cache->objects = comp_objects(cache);
  536.     /* If info fits in, put it inside */
  537.     if (badness(cache) > sizeof(slab_t))
  538.         cache->flags |= SLAB_CACHE_SLINSIDE;
  539.  
  540.     spinlock_lock(&slab_cache_lock);
  541.  
  542.     list_append(&cache->link, &slab_cache_list);
  543.  
  544.     spinlock_unlock(&slab_cache_lock);
  545. }
  546.  
  547. /** Create slab cache  */
  548. slab_cache_t * slab_cache_create(char *name,
  549.                  size_t size,
  550.                  size_t align,
  551.                  int (*constructor)(void *obj, int kmflag),
  552.                  void (*destructor)(void *obj),
  553.                  int flags)
  554. {
  555.     slab_cache_t *cache;
  556.  
  557.     cache = slab_alloc(&slab_cache_cache, 0);
  558.     _slab_cache_create(cache, name, size, align, constructor, destructor,
  559.                flags);
  560.     return cache;
  561. }
  562.  
  563. /**
  564.  * Reclaim space occupied by objects that are already free
  565.  *
  566.  * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
  567.  * @return Number of freed pages
  568.  */
  569. static count_t _slab_reclaim(slab_cache_t *cache, int flags)
  570. {
  571.     int i;
  572.     slab_magazine_t *mag;
  573.     link_t *cur;
  574.     count_t frames = 0;
  575.    
  576.     if (cache->flags & SLAB_CACHE_NOMAGAZINE)
  577.         return 0; /* Nothing to do */
  578.    
  579.     /* First lock all cpu caches, then the complete cache lock */
  580.     if (flags & SLAB_RECLAIM_ALL) {
  581.         for (i=0; i < config.cpu_count; i++)
  582.             spinlock_lock(&cache->mag_cache[i].lock);
  583.     }
  584.     spinlock_lock(&cache->lock);
  585.    
  586.     if (flags & SLAB_RECLAIM_ALL) {
  587.         /* Aggressive memfree */
  588.         /* Destroy CPU magazines */
  589.         for (i=0; i<config.cpu_count; i++) {
  590.             mag = cache->mag_cache[i].current;
  591.             if (mag)
  592.                 frames += magazine_destroy(cache, mag);
  593.             cache->mag_cache[i].current = NULL;
  594.            
  595.             mag = cache->mag_cache[i].last;
  596.             if (mag)
  597.                 frames += magazine_destroy(cache, mag);
  598.             cache->mag_cache[i].last = NULL;
  599.         }
  600.     }
  601.     /* Destroy full magazines */
  602.     cur=cache->magazines.prev;
  603.  
  604.     while (cur != &cache->magazines) {
  605.         mag = list_get_instance(cur, slab_magazine_t, link);
  606.        
  607.         cur = cur->prev;
  608.         list_remove(&mag->link);
  609.         frames += magazine_destroy(cache,mag);
  610.         /* If we do not do full reclaim, break
  611.          * as soon as something is freed */
  612.         if (!(flags & SLAB_RECLAIM_ALL) && frames)
  613.             break;
  614.     }
  615.    
  616.     spinlock_unlock(&cache->lock);
  617.     if (flags & SLAB_RECLAIM_ALL) {
  618.         for (i=0; i < config.cpu_count; i++)
  619.             spinlock_unlock(&cache->mag_cache[i].lock);
  620.     }
  621.    
  622.     return frames;
  623. }
  624.  
  625. /** Check that there are no slabs and remove cache from system  */
  626. void slab_cache_destroy(slab_cache_t *cache)
  627. {
  628.     /* Do not lock anything, we assume the software is correct and
  629.      * does not touch the cache when it decides to destroy it */
  630.    
  631.     /* Destroy all magazines */
  632.     _slab_reclaim(cache, SLAB_RECLAIM_ALL);
  633.  
  634.     /* All slabs must be empty */
  635.     if (!list_empty(&cache->full_slabs) \
  636.         || !list_empty(&cache->partial_slabs))
  637.         panic("Destroying cache that is not empty.");
  638.  
  639.     spinlock_lock(&slab_cache_lock);
  640.     list_remove(&cache->link);
  641.     spinlock_unlock(&slab_cache_lock);
  642.  
  643.     slab_free(&slab_cache_cache, cache);
  644. }
  645.  
  646. /** Allocate new object from cache - if no flags given, always returns
  647.     memory */
  648. void * slab_alloc(slab_cache_t *cache, int flags)
  649. {
  650.     ipl_t ipl;
  651.     void *result = NULL;
  652.  
  653.     /* Disable interrupts to avoid deadlocks with interrupt handlers */
  654.     ipl = interrupts_disable();
  655.  
  656.     if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
  657.         result = magazine_obj_get(cache);
  658.  
  659.     if (!result) {
  660.         spinlock_lock(&cache->lock);
  661.         result = slab_obj_create(cache, flags);
  662.         spinlock_unlock(&cache->lock);
  663.     }
  664.  
  665.     interrupts_restore(ipl);
  666.  
  667.     if (result)
  668.         atomic_inc(&cache->allocated_objs);
  669.  
  670.     return result;
  671. }
  672.  
  673. /** Return object to cache, use slab if known  */
  674. static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
  675. {
  676.     ipl_t ipl;
  677.  
  678.     ipl = interrupts_disable();
  679.  
  680.     if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
  681.         || magazine_obj_put(cache, obj)) {
  682.         spinlock_lock(&cache->lock);
  683.         slab_obj_destroy(cache, obj, slab);
  684.         spinlock_unlock(&cache->lock);
  685.     }
  686.     interrupts_restore(ipl);
  687.     atomic_dec(&cache->allocated_objs);
  688. }
  689.  
  690. /** Return slab object to cache */
  691. void slab_free(slab_cache_t *cache, void *obj)
  692. {
  693.     _slab_free(cache,obj,NULL);
  694. }
  695.  
  696. /* Go through all caches and reclaim what is possible */
  697. count_t slab_reclaim(int flags)
  698. {
  699.     slab_cache_t *cache;
  700.     link_t *cur;
  701.     count_t frames = 0;
  702.  
  703.     spinlock_lock(&slab_cache_lock);
  704.  
  705.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  706.         cache = list_get_instance(cur, slab_cache_t, link);
  707.         frames += _slab_reclaim(cache, flags);
  708.     }
  709.  
  710.     spinlock_unlock(&slab_cache_lock);
  711.  
  712.     return frames;
  713. }
  714.  
  715.  
  716. /* Print list of slabs */
  717. void slab_print_list(void)
  718. {
  719.     slab_cache_t *cache;
  720.     link_t *cur;
  721.  
  722.     spinlock_lock(&slab_cache_lock);
  723.     printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
  724.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  725.         cache = list_get_instance(cur, slab_cache_t, link);
  726.         printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
  727.                (1 << cache->order), cache->objects,
  728.                atomic_get(&cache->allocated_slabs),
  729.                atomic_get(&cache->cached_objs),
  730.                atomic_get(&cache->allocated_objs),
  731.                cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
  732.     }
  733.     spinlock_unlock(&slab_cache_lock);
  734. }
  735.  
  736. void slab_cache_init(void)
  737. {
  738.     int i, size;
  739.  
  740.     /* Initialize magazine cache */
  741.     _slab_cache_create(&mag_cache,
  742.                "slab_magazine",
  743.                sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
  744.                sizeof(__address),
  745.                NULL, NULL,
  746.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  747.     /* Initialize slab_cache cache */
  748.     _slab_cache_create(&slab_cache_cache,
  749.                "slab_cache",
  750.                sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
  751.                sizeof(__address),
  752.                NULL, NULL,
  753.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  754.     /* Initialize external slab cache */
  755.     slab_extern_cache = slab_cache_create("slab_extern",
  756.                           sizeof(slab_t),
  757.                           0, NULL, NULL,
  758.                           SLAB_CACHE_SLINSIDE);
  759.  
  760.     /* Initialize structures for malloc */
  761.     for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
  762.          i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
  763.          i++, size <<= 1) {
  764.         malloc_caches[i] = slab_cache_create(malloc_names[i],
  765.                              size, 0,
  766.                              NULL,NULL,0);
  767.     }
  768. }
  769.  
  770. /**************************************/
  771. /* kalloc/kfree functions             */
  772. void * kalloc(unsigned int size, int flags)
  773. {
  774.     int idx;
  775.  
  776.     ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
  777.    
  778.     if (size < (1 << SLAB_MIN_MALLOC_W))
  779.         size = (1 << SLAB_MIN_MALLOC_W);
  780.  
  781.     idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
  782.  
  783.     return slab_alloc(malloc_caches[idx], flags);
  784. }
  785.  
  786.  
  787. void kfree(void *obj)
  788. {
  789.     slab_t *slab = obj2slab(obj);
  790.    
  791.     _slab_free(slab->cache, obj, slab);
  792. }
  793.