Subversion Repositories HelenOS-historic

Rev

Rev 1134 | Rev 1142 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2006 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /*
  30.  * This B-tree has the following properties:
  31.  * - it is a ballanced 2-3-4 tree (i.e. BTREE_M = 4)
  32.  * - values (i.e. pointers to values) are stored only in leaves
  33.  * - leaves are linked in a list
  34.  * - technically, it is a B+-tree (because of the previous properties)
  35.  *
  36.  * Be carefull when using these trees. They need to allocate
  37.  * and deallocate memory for their index nodes and as such
  38.  * can sleep.
  39.  */
  40.  
  41. #include <adt/btree.h>
  42. #include <adt/list.h>
  43. #include <mm/slab.h>
  44. #include <debug.h>
  45. #include <panic.h>
  46. #include <typedefs.h>
  47. #include <print.h>
  48.  
  49. static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
  50. static void node_initialize(btree_node_t *node);
  51. static void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
  52. static void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
  53. static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
  54. static void node_remove_key_left(btree_node_t *node, __native key);
  55. static void node_remove_key_right(btree_node_t *node, __native key);
  56. static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
  57. static bool try_insert_by_left_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
  58. static bool try_insert_by_right_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
  59.  
  60. #define ROOT_NODE(n)        (!(n)->parent)
  61. #define INDEX_NODE(n)       ((n)->subtree[0] != NULL)
  62. #define LEAF_NODE(n)        ((n)->subtree[0] == NULL)
  63.  
  64. #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
  65. #define MEDIAN_HIGH_INDEX(n)    ((n)->keys/2)
  66. #define MEDIAN_LOW(n)       ((n)->key[MEDIAN_LOW_INDEX((n))]);
  67. #define MEDIAN_HIGH(n)      ((n)->key[MEDIAN_HIGH_INDEX((n))]);
  68.  
  69. /** Create empty B-tree.
  70.  *
  71.  * @param t B-tree.
  72.  */
  73. void btree_create(btree_t *t)
  74. {
  75.     list_initialize(&t->leaf_head);
  76.     t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
  77.     node_initialize(t->root);
  78.     list_append(&t->root->leaf_link, &t->leaf_head);
  79. }
  80.  
  81. /** Destroy empty B-tree. */
  82. void btree_destroy(btree_t *t)
  83. {
  84.     ASSERT(!t->root->keys);
  85.     free(t->root);
  86. }
  87.  
  88. /** Insert key-value pair into B-tree.
  89.  *
  90.  * @param t B-tree.
  91.  * @param key Key to be inserted.
  92.  * @param value Value to be inserted.
  93.  * @param leaf_node Leaf node where the insertion should begin.
  94.  */
  95. void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
  96. {
  97.     btree_node_t *lnode;
  98.    
  99.     ASSERT(value);
  100.    
  101.     lnode = leaf_node;
  102.     if (!lnode) {
  103.         if (btree_search(t, key, &lnode)) {
  104.             panic("B-tree %P already contains key %d\n", t, key);
  105.         }
  106.     }
  107.    
  108.     _btree_insert(t, key, value, NULL, lnode);
  109. }
  110.  
  111. /** Recursively insert into B-tree.
  112.  *
  113.  * @param t B-tree.
  114.  * @param key Key to be inserted.
  115.  * @param value Value to be inserted.
  116.  * @param rsubtree Right subtree of the inserted key.
  117.  * @param node Start inserting into this node.
  118.  */
  119. void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
  120. {
  121.     if (node->keys < BTREE_MAX_KEYS) {
  122.         /*
  123.          * Node conatins enough space, the key can be stored immediately.
  124.          */
  125.         node_insert_key_right(node, key, value, rsubtree);
  126.     } else if (try_insert_by_left_rotation(node, key, value, rsubtree)) {
  127.         /*
  128.          * The key-value-rsubtree triplet has been inserted because
  129.          * some keys could have been moved to the left sibling.
  130.          */
  131.     } else if (try_insert_by_right_rotation(node, key, value, rsubtree)) {
  132.         /*
  133.          * The key-value-rsubtree triplet has been inserted because
  134.          * some keys could have been moved to the right sibling.
  135.          */
  136.     } else {
  137.         btree_node_t *rnode;
  138.         __native median;
  139.        
  140.         /*
  141.          * Node is full and both siblings (if both exist) are full too.
  142.          * Split the node and insert the smallest key from the node containing
  143.          * bigger keys (i.e. the new node) into its parent.
  144.          */
  145.  
  146.         rnode = node_split(node, key, value, rsubtree, &median);
  147.  
  148.         if (LEAF_NODE(node)) {
  149.             list_append(&rnode->leaf_link, &node->leaf_link);
  150.         }
  151.        
  152.         if (ROOT_NODE(node)) {
  153.             /*
  154.              * We split the root node. Create new root.
  155.              */
  156.             t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
  157.             node->parent = t->root;
  158.             rnode->parent = t->root;
  159.             node_initialize(t->root);
  160.            
  161.             /*
  162.              * Left-hand side subtree will be the old root (i.e. node).
  163.              * Right-hand side subtree will be rnode.
  164.              */        
  165.             t->root->subtree[0] = node;
  166.  
  167.             t->root->depth = node->depth + 1;
  168.         }
  169.         _btree_insert(t, median, NULL, rnode, node->parent);
  170.     }  
  171.        
  172. }
  173.  
  174. /* TODO */
  175. void btree_remove(btree_t *t, __native key)
  176. {
  177. }
  178.  
  179. /** Search key in a B-tree.
  180.  *
  181.  * @param t B-tree.
  182.  * @param key Key to be searched.
  183.  * @param leaf_node Address where to put pointer to visited leaf node.
  184.  *
  185.  * @return Pointer to value or NULL if there is no such key.
  186.  */
  187. void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
  188. {
  189.     btree_node_t *cur, *next;
  190.    
  191.     /*
  192.      * Iteratively descend to the leaf that can contain the searched key.
  193.      */
  194.     for (cur = t->root; cur; cur = next) {
  195.  
  196.         /* Last iteration will set this with proper leaf node address. */
  197.         *leaf_node = cur;
  198.        
  199.         /*
  200.          * The key can be in the leftmost subtree.
  201.          * Test it separately.
  202.          */
  203.         if (key < cur->key[0]) {
  204.             next = cur->subtree[0];
  205.             continue;
  206.         } else {
  207.             void *val;
  208.             int i;
  209.        
  210.             /*
  211.              * Now if the key is smaller than cur->key[i]
  212.              * it can only mean that the value is in cur->subtree[i]
  213.              * or it is not in the tree at all.
  214.              */
  215.             for (i = 1; i < cur->keys; i++) {
  216.                 if (key < cur->key[i]) {
  217.                     next = cur->subtree[i];
  218.                     val = cur->value[i - 1];
  219.  
  220.                     if (LEAF_NODE(cur))
  221.                         return key == cur->key[i - 1] ? val : NULL;
  222.  
  223.                     goto descend;
  224.                 }
  225.             }
  226.            
  227.             /*
  228.              * Last possibility is that the key is in the rightmost subtree.
  229.              */
  230.             next = cur->subtree[i];
  231.             val = cur->value[i - 1];
  232.             if (LEAF_NODE(cur))
  233.                 return key == cur->key[i - 1] ? val : NULL;
  234.         }
  235.         descend:
  236.             ;
  237.     }
  238.  
  239.     /*
  240.      * The key was not found in the *leaf_node and is smaller than any of its keys.
  241.      */
  242.     return NULL;
  243. }
  244.  
  245. /** Get pointer to value with the smallest key within the node.
  246.  *
  247.  * Can be only used on leaf-level nodes.
  248.  *
  249.  * @param node B-tree node.
  250.  *
  251.  * @return Pointer to value assiciated with the smallest key.
  252.  */
  253. void *btree_node_min(btree_node_t *node)
  254. {
  255.     ASSERT(LEAF_NODE(node));
  256.     ASSERT(node->keys);
  257.     return node->value[0];
  258. }
  259.  
  260. /** Get pointer to value with the biggest key within the node.
  261.  *
  262.  * Can be only used on leaf-level nodes.
  263.  *
  264.  * @param node B-tree node.
  265.  *
  266.  * @return Pointer to value assiciated with the biggest key.
  267.  */
  268. void *btree_node_max(btree_node_t *node)
  269. {
  270.     ASSERT(LEAF_NODE(node));
  271.     ASSERT(node->keys);
  272.     return node->value[node->keys - 1];
  273. }
  274.  
  275. /** Initialize B-tree node.
  276.  *
  277.  * @param node B-tree node.
  278.  */
  279. void node_initialize(btree_node_t *node)
  280. {
  281.     int i;
  282.  
  283.     node->keys = 0;
  284.    
  285.     /* Clean also space for the extra key. */
  286.     for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
  287.         node->key[i] = 0;
  288.         node->value[i] = NULL;
  289.         node->subtree[i] = NULL;
  290.     }
  291.     node->subtree[i] = NULL;
  292.    
  293.     node->parent = NULL;
  294.    
  295.     link_initialize(&node->leaf_link);
  296.  
  297.     link_initialize(&node->bfs_link);
  298.     node->depth = 0;
  299. }
  300.  
  301. /** Insert key-value-lsubtree triplet into B-tree node.
  302.  *
  303.  * It is actually possible to have more keys than BTREE_MAX_KEYS.
  304.  * This feature is used during insert by right rotation.
  305.  *
  306.  * @param node B-tree node into wich the new key is to be inserted.
  307.  * @param key The key to be inserted.
  308.  * @param value Pointer to value to be inserted.
  309.  * @param lsubtree Pointer to the left subtree.
  310.  */
  311. void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree)
  312. {
  313.     int i;
  314.  
  315.     for (i = 0; i < node->keys; i++) {
  316.         if (key < node->key[i]) {
  317.             int j;
  318.        
  319.             for (j = node->keys; j > i; j--) {
  320.                 node->key[j] = node->key[j - 1];
  321.                 node->value[j] = node->value[j - 1];
  322.                 node->subtree[j + 1] = node->subtree[j];
  323.             }
  324.             node->subtree[j + 1] = node->subtree[j];
  325.             break; 
  326.         }
  327.     }
  328.     node->key[i] = key;
  329.     node->value[i] = value;
  330.     node->subtree[i] = lsubtree;
  331.            
  332.     node->keys++;
  333. }
  334.  
  335.  
  336. /** Insert key-value-rsubtree triplet into B-tree node.
  337.  *
  338.  * It is actually possible to have more keys than BTREE_MAX_KEYS.
  339.  * This feature is used during splitting the node when the
  340.  * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
  341.  * also makes use of this feature.
  342.  *
  343.  * @param node B-tree node into wich the new key is to be inserted.
  344.  * @param key The key to be inserted.
  345.  * @param value Pointer to value to be inserted.
  346.  * @param rsubtree Pointer to the right subtree.
  347.  */
  348. void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
  349. {
  350.     int i;
  351.  
  352.     for (i = 0; i < node->keys; i++) {
  353.         if (key < node->key[i]) {
  354.             int j;
  355.        
  356.             for (j = node->keys; j > i; j--) {
  357.                 node->key[j] = node->key[j - 1];
  358.                 node->value[j] = node->value[j - 1];
  359.                 node->subtree[j + 1] = node->subtree[j];
  360.             }
  361.             break; 
  362.         }
  363.     }
  364.     node->key[i] = key;
  365.     node->value[i] = value;
  366.     node->subtree[i + 1] = rsubtree;
  367.            
  368.     node->keys++;
  369. }
  370.  
  371. /** Split full B-tree node and insert new key-value-right-subtree triplet.
  372.  *
  373.  * This function will split a node and return pointer to a newly created
  374.  * node containing keys greater than or equal to the greater of medians
  375.  * (or median) of the old keys and the newly added key. It will also write
  376.  * the median key to a memory address supplied by the caller.
  377.  *
  378.  * If the node being split is an index node, the median will not be
  379.  * included in the new node. If the node is a leaf node,
  380.  * the median will be copied there.
  381.  *
  382.  * @param node B-tree node wich is going to be split.
  383.  * @param key The key to be inserted.
  384.  * @param value Pointer to the value to be inserted.
  385.  * @param rsubtree Pointer to the right subtree of the key being added.
  386.  * @param median Address in memory, where the median key will be stored.
  387.  *
  388.  * @return Newly created right sibling of node.
  389.  */
  390. btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
  391. {
  392.     btree_node_t *rnode;
  393.     int i, j;
  394.  
  395.     ASSERT(median);
  396.     ASSERT(node->keys == BTREE_MAX_KEYS);
  397.  
  398.     /*
  399.      * Use the extra space to store the extra node.
  400.      */
  401.     node_insert_key_right(node, key, value, rsubtree);
  402.  
  403.     /*
  404.      * Compute median of keys.
  405.      */
  406.     *median = MEDIAN_HIGH(node);
  407.        
  408.     /*
  409.      * Allocate and initialize new right sibling.
  410.      */
  411.     rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
  412.     node_initialize(rnode);
  413.     rnode->parent = node->parent;
  414.     rnode->depth = node->depth;
  415.    
  416.     /*
  417.      * Copy big keys, values and subtree pointers to the new right sibling.
  418.      * If this is an index node, do not copy the median.
  419.      */
  420.     i = (int) INDEX_NODE(node);
  421.     for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
  422.         rnode->key[j] = node->key[i];
  423.         rnode->value[j] = node->value[i];
  424.         rnode->subtree[j] = node->subtree[i];
  425.        
  426.         /*
  427.          * Fix parent links in subtrees.
  428.          */
  429.         if (rnode->subtree[j])
  430.             rnode->subtree[j]->parent = rnode;
  431.            
  432.     }
  433.     rnode->subtree[j] = node->subtree[i];
  434.     if (rnode->subtree[j])
  435.         rnode->subtree[j]->parent = rnode;
  436.  
  437.     rnode->keys = j;    /* Set number of keys of the new node. */
  438.     node->keys /= 2;    /* Shrink the old node. */
  439.        
  440.     return rnode;
  441. }
  442.  
  443. /** Remove key and its left subtree pointer from B-tree node.
  444.  *
  445.  * Remove the key and eliminate gaps in node->key array.
  446.  * Note that the value pointer and the left subtree pointer
  447.  * is removed from the node as well.
  448.  *
  449.  * @param node B-tree node.
  450.  * @param key Key to be removed.
  451.  */
  452. void node_remove_key_left(btree_node_t *node, __native key)
  453. {
  454.     int i, j;
  455.    
  456.     for (i = 0; i < node->keys; i++) {
  457.         if (key == node->key[i]) {
  458.             for (j = i + 1; j < node->keys; j++) {
  459.                 node->key[j - 1] = node->key[j];
  460.                 node->value[j - 1] = node->value[j];
  461.                 node->subtree[j - 1] = node->subtree[j];
  462.             }
  463.             node->subtree[j - 1] = node->subtree[j];
  464.             node->keys--;
  465.             return;
  466.         }
  467.     }
  468.     panic("node %P does not contain key %d\n", node, key);
  469. }
  470.  
  471. /** Remove key and its right subtree pointer from B-tree node.
  472.  *
  473.  * Remove the key and eliminate gaps in node->key array.
  474.  * Note that the value pointer and the right subtree pointer
  475.  * is removed from the node as well.
  476.  *
  477.  * @param node B-tree node.
  478.  * @param key Key to be removed.
  479.  */
  480. void node_remove_key_right(btree_node_t *node, __native key)
  481. {
  482.     int i, j;
  483.    
  484.     for (i = 0; i < node->keys; i++) {
  485.         if (key == node->key[i]) {
  486.             for (j = i + 1; j < node->keys; j++) {
  487.                 node->key[j - 1] = node->key[j];
  488.                 node->value[j - 1] = node->value[j];
  489.                 node->subtree[j] = node->subtree[j + 1];
  490.             }
  491.             node->keys--;
  492.             return;
  493.         }
  494.     }
  495.     panic("node %P does not contain key %d\n", node, key);
  496. }
  497.  
  498. /** Find key by its left or right subtree.
  499.  *
  500.  * @param node B-tree node.
  501.  * @param subtree Left or right subtree of a key found in node.
  502.  * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
  503.  *
  504.  * @return Index of the key associated with the subtree.
  505.  */
  506. index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
  507. {
  508.     int i;
  509.    
  510.     for (i = 0; i < node->keys + 1; i++) {
  511.         if (subtree == node->subtree[i])
  512.             return i - (int) (right != false);
  513.     }
  514.     panic("node %P does not contain subtree %P\n", node, subtree);
  515. }
  516.  
  517. /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
  518.  *
  519.  * Left sibling of the node (if it exists) is checked for free space.
  520.  * If there is free space, the key is inserted and the smallest key of
  521.  * the node is moved there. The index node which is the parent of both
  522.  * nodes is fixed.
  523.  *
  524.  * @param node B-tree node.
  525.  * @param inskey Key to be inserted.
  526.  * @param insvalue Value to be inserted.
  527.  * @param rsubtree Right subtree of inskey.
  528.  *
  529.  * @return True if the rotation was performed, false otherwise.
  530.  */
  531. bool try_insert_by_left_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
  532. {
  533.     index_t idx;
  534.     btree_node_t *lnode;
  535.  
  536.     /*
  537.      * If this is root node, the rotation can not be done.
  538.      */
  539.     if (ROOT_NODE(node))
  540.         return false;
  541.    
  542.     idx = find_key_by_subtree(node->parent, node, true);
  543.     if ((int) idx == -1) {
  544.         /*
  545.          * If this node is the leftmost subtree of its parent,
  546.          * the rotation can not be done.
  547.          */
  548.         return false;
  549.     }
  550.        
  551.     lnode = node->parent->subtree[idx];
  552.  
  553.     if (lnode->keys < BTREE_MAX_KEYS) {
  554.         __native key;
  555.  
  556.         /*
  557.          * The rotaion can be done. The left sibling has free space.
  558.          */
  559.  
  560.         node_insert_key_right(node, inskey, insvalue, rsubtree);
  561.         key = node->key[0];
  562.        
  563.         if (LEAF_NODE(node)) {
  564.             void *value;
  565.  
  566.             value = node->value[0];
  567.             node_remove_key_left(node, key);
  568.             node_insert_key_right(lnode, key, value, NULL);
  569.             node->parent->key[idx] = node->key[0];
  570.         } else {
  571.             btree_node_t *lsubtree;
  572.  
  573.             lsubtree = node->subtree[0];
  574.             node_remove_key_left(node, key);
  575.             node_insert_key_right(lnode, node->parent->key[idx], NULL, lsubtree);
  576.             node->parent->key[idx] = key;
  577.  
  578.             /* Fix parent link of the reconnected left subtree. */
  579.             lsubtree->parent = lnode;
  580.         }
  581.         return true;
  582.     }
  583.  
  584.     return false;
  585. }
  586.  
  587. /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
  588.  *
  589.  * Right sibling of the node (if it exists) is checked for free space.
  590.  * If there is free space, the key is inserted and the biggest key of
  591.  * the node is moved there. The index node which is the parent of both
  592.  * nodes is fixed.
  593.  *
  594.  * @param node B-tree node.
  595.  * @param inskey Key to be inserted.
  596.  * @param insvalue Value to be inserted.
  597.  * @param rsubtree Right subtree of inskey.
  598.  *
  599.  * @return True if the rotation was performed, false otherwise.
  600.  */
  601. bool try_insert_by_right_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
  602. {
  603.     index_t idx;
  604.     btree_node_t *rnode;
  605.  
  606.     /*
  607.      * If this is root node, the rotation can not be done.
  608.      */
  609.     if (ROOT_NODE(node))
  610.         return false;
  611.    
  612.     idx = find_key_by_subtree(node->parent, node, false);
  613.     if (idx == node->parent->keys) {
  614.         /*
  615.          * If this node is the rightmost subtree of its parent,
  616.          * the rotation can not be done.
  617.          */
  618.         return false;
  619.     }
  620.        
  621.     rnode = node->parent->subtree[idx + 1];
  622.  
  623.     if (rnode->keys < BTREE_MAX_KEYS) {
  624.         __native key;
  625.  
  626.         /*
  627.          * The rotaion can be done. The right sibling has free space.
  628.          */
  629.  
  630.         node_insert_key_right(node, inskey, insvalue, rsubtree);
  631.         key = node->key[node->keys - 1];
  632.        
  633.         if (LEAF_NODE(node)) {
  634.             void *value;
  635.  
  636.             value = node->value[node->keys - 1];
  637.             node_remove_key_right(node, key);
  638.             node_insert_key_left(rnode, key, value, NULL);
  639.             node->parent->key[idx] = key;
  640.         } else {
  641.             btree_node_t *rsubt;
  642.  
  643.             rsubt = node->subtree[node->keys];
  644.             node_remove_key_right(node, key);
  645.             node_insert_key_left(rnode, node->parent->key[idx], NULL, rsubt);
  646.             node->parent->key[idx] = key;
  647.  
  648.             /* Fix parent link of the reconnected right subtree. */
  649.             rsubt->parent = rnode;
  650.         }
  651.         return true;
  652.     }
  653.  
  654.     return false;
  655. }
  656.  
  657. /** Print B-tree.
  658.  *
  659.  * @param t Print out B-tree.
  660.  */
  661. void btree_print(btree_t *t)
  662. {
  663.     int i, depth = t->root->depth;
  664.     link_t head;
  665.    
  666.     list_initialize(&head);
  667.     list_append(&t->root->bfs_link, &head);
  668.  
  669.     /*
  670.      * Use BFS search to print out the tree.
  671.      * Levels are distinguished from one another by node->depth.
  672.      */
  673.     while (!list_empty(&head)) {
  674.         link_t *hlp;
  675.         btree_node_t *node;
  676.        
  677.         hlp = head.next;
  678.         ASSERT(hlp != &head);
  679.         node = list_get_instance(hlp, btree_node_t, bfs_link);
  680.         list_remove(hlp);
  681.        
  682.         ASSERT(node);
  683.        
  684.         if (node->depth != depth) {
  685.             printf("\n");
  686.             depth = node->depth;
  687.         }
  688.  
  689.         printf("(");
  690.         for (i = 0; i < node->keys; i++) {
  691.             printf("%d,", node->key[i]);
  692.             if (node->depth && node->subtree[i]) {
  693.                 list_append(&node->subtree[i]->bfs_link, &head);
  694.             }
  695.         }
  696.         if (node->depth && node->subtree[i]) {
  697.             list_append(&node->subtree[i]->bfs_link, &head);
  698.         }
  699.         printf(")");
  700.     }
  701.     printf("\n");
  702. }
  703.