Subversion Repositories HelenOS-historic

Rev

Rev 1188 | Rev 1251 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

/*
 * Copyright (C) 2001-2004 Jakub Jermar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch/pm.h>
#include <config.h>
#include <arch/types.h>
#include <typedefs.h>
#include <arch/interrupt.h>
#include <arch/asm.h>
#include <arch/context.h>
#include <panic.h>
#include <arch/mm/page.h>
#include <mm/slab.h>
#include <memstr.h>
#include <arch/boot/boot.h>
#include <interrupt.h>

/*
 * Early ia32 configuration functions and data structures.
 */

/*
 * We have no use for segmentation so we set up flat mode. In this
 * mode, we use, for each privilege level, two segments spanning the
 * whole memory. One is for code and one is for data.
 *
 * One is for GS register which holds pointer to the TLS thread
 * structure in it's base.
 */
descriptor_t gdt[GDT_ITEMS] = {
    /* NULL descriptor */
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
    /* KTEXT descriptor */
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
    /* KDATA descriptor */
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
    /* UTEXT descriptor */
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
    /* UDATA descriptor */
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
    /* TSS descriptor - set up will be completed later */
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
    /* TLS descriptor */
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 }
};

static idescriptor_t idt[IDT_ITEMS];

static tss_t tss;

tss_t *tss_p = NULL;

/* gdtr is changed by kmp before next CPU is initialized */
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (__address) gdt };

void gdt_setbase(descriptor_t *d, __address base)
{
    d->base_0_15 = base & 0xffff;
    d->base_16_23 = ((base) >> 16) & 0xff;
    d->base_24_31 = ((base) >> 24) & 0xff;
}

void gdt_setlimit(descriptor_t *d, __u32 limit)
{
    d->limit_0_15 = limit & 0xffff;
    d->limit_16_19 = (limit >> 16) & 0xf;
}

void idt_setoffset(idescriptor_t *d, __address offset)
{
    /*
     * Offset is a linear address.
     */
    d->offset_0_15 = offset & 0xffff;
    d->offset_16_31 = offset >> 16;
}

void tss_initialize(tss_t *t)
{
    memsetb((__address) t, sizeof(struct tss), 0);
}

/*
 * This function takes care of proper setup of IDT and IDTR.
 */
void idt_init(void)
{
    idescriptor_t *d;
    int i;

    for (i = 0; i < IDT_ITEMS; i++) {
        d = &idt[i];

        d->unused = 0;
        d->selector = selector(KTEXT_DES);

        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */

        if (i == VECTOR_SYSCALL) {
            /*
             * The syscall interrupt gate must be calleable from userland.
             */
            d->access |= DPL_USER;
        }
        
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
        exc_register(i, "undef", (iroutine) null_interrupt);
    }
    exc_register(13, "gp_fault", (iroutine) gp_fault);
    exc_register( 7, "nm_fault", (iroutine) nm_fault);
    exc_register(12, "ss_fault", (iroutine) ss_fault);
    exc_register(19, "simd_fp", (iroutine) simd_fp_exception);
}


/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
static void clean_IOPL_NT_flags(void)
{
    __asm__ volatile (
        "pushfl\n"
        "pop %%eax\n"
        "and $0xffff8fff, %%eax\n"
        "push %%eax\n"
        "popfl\n"
        : : : "eax"
    );
}

/* Clean AM(18) flag in CR0 register */
static void clean_AM_flag(void)
{
    __asm__ volatile (
        "mov %%cr0, %%eax\n"
        "and $0xfffbffff, %%eax\n"
        "mov %%eax, %%cr0\n"
        : : : "eax"
    );
}

void pm_init(void)
{
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
    ptr_16_32_t idtr;

    /*
     * Update addresses in GDT and IDT to their virtual counterparts.
     */
    idtr.limit = sizeof(idt);
    idtr.base = (__address) idt;
    gdtr_load(&gdtr);
    idtr_load(&idtr);
    
    /*
     * Each CPU has its private GDT and TSS.
     * All CPUs share one IDT.
     */

    if (config.cpu_active == 1) {
        idt_init();
        /*
         * NOTE: bootstrap CPU has statically allocated TSS, because
         * the heap hasn't been initialized so far.
         */
        tss_p = &tss;
    }
    else {
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
        if (!tss_p)
            panic("could not allocate TSS\n");
    }

    tss_initialize(tss_p);
    
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
    gdt_p[TSS_DES].special = 1;
    gdt_p[TSS_DES].granularity = 1;
    
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(tss_t) - 1);

    /*
     * As of this moment, the current CPU has its own GDT pointing
     * to its own TSS. We just need to load the TR register.
     */
    tr_load(selector(TSS_DES));
    
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels */
    clean_AM_flag();          /* Disable alignment check */
}

void set_tls_desc(__address tls)
{
    ptr_16_32_t cpugdtr;
    descriptor_t *gdt_p;

    gdtr_store(&cpugdtr);
    gdt_p = (descriptor_t *) cpugdtr.base;
    gdt_setbase(&gdt_p[TLS_DES], tls);
    /* Reload gdt register to update GS in CPU */
    gdtr_load(&cpugdtr);
}