Subversion Repositories HelenOS-doc

Rev

Rev 15 | Rev 26 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Address spaces</title>
  12.  
  13.       <para></para>
  14.     </section>
  15.  
  16.     <section>
  17.       <title>Virtual address translation</title>
  18.  
  19.       <para></para>
  20.     </section>
  21.   </section>
  22.  
  23.   <section>
  24.     <title>Physical memory management</title>
  25.  
  26.     <section id="buddy_allocator">
  27.       <title>Buddy allocator</title>
  28.  
  29.       <section>
  30.         <title>Overview</title>
  31.  
  32.         <para>In buddy allocator, memory is broken down into power-of-two
  33.         sized naturally aligned blocks. These blocks are organized in an array
  34.         of lists in which list with index i contains all unallocated blocks of
  35.         the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
  36.         index i is called the order of block. Should there be two adjacent
  37.         equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
  38.         buddies), the buddy allocator would coalesce them and put the
  39.         resulting block in list <mathphrase>i + 1</mathphrase>, provided that
  40.         the resulting block would be naturally aligned. Similarily, when the
  41.         allocator is asked to allocate a block of size
  42.         <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  43.         to satisfy the request from list with index i. If the request cannot
  44.         be satisfied (i.e. the list i is empty), the buddy allocator will try
  45.         to allocate and split larger block from list with index i + 1. Both of
  46.         these algorithms are recursive. The recursion ends either when there
  47.         are no blocks to coalesce in the former case or when there are no
  48.         blocks that can be split in the latter case.</para>
  49.  
  50.         <graphic fileref="images/buddy_alloc.eps" format="EPS" />
  51.  
  52.         <para>This approach greatly reduces external fragmentation of memory
  53.         and helps in allocating bigger continuous blocks of memory aligned to
  54.         their size. On the other hand, the buddy allocator suffers increased
  55.         internal fragmentation of memory and is not suitable for general
  56.         kernel allocations. This purpose is better addressed by the <link
  57.         linkend="slab">slab allocator</link>.</para>
  58.       </section>
  59.  
  60.       <section>
  61.         <title>Implementation</title>
  62.  
  63.         <para>The buddy allocator is, in fact, an abstract framework wich can
  64.         be easily specialized to serve one particular task. It knows nothing
  65.         about the nature of memory it helps to allocate. In order to beat the
  66.         lack of this knowledge, the buddy allocator exports an interface that
  67.         each of its clients is required to implement. When supplied an
  68.         implementation of this interface, the buddy allocator can use
  69.         specialized external functions to find buddy for a block, split and
  70.         coalesce blocks, manipulate block order and mark blocks busy or
  71.         available. For precize documentation of this interface, refer to <link
  72.         linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
  73.  
  74.         <formalpara>
  75.           <title>Data organization</title>
  76.  
  77.           <para>Each entity allocable by the buddy allocator is required to
  78.           contain space for storing block order number and a link variable
  79.           used to interconnect blocks within the same order.</para>
  80.  
  81.           <para>Whatever entities are allocated by the buddy allocator, the
  82.           first entity within a block is used to represent the entire block.
  83.           The first entity keeps the order of the whole block. Other entities
  84.           within the block are assigned the magic value
  85.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  86.           for effective identification of buddies in one-dimensional array
  87.       because the entity that represents a potential buddy cannot be associated
  88.       with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it is associated
  89.           with <constant>BUDDY_INNER_BLOCK</constant> then it is not a
  90.           buddy).</para>
  91.         </formalpara>
  92.       </section>
  93.     </section>
  94.  
  95.     <section id="zones_and_frames">
  96.       <title>Zones and frames</title>
  97.  
  98.       <para>Physical memory is divided into zones. Each zone represents
  99.       continuous area of physical memory frames. Allocation of frames is
  100.       handled by the <link linkend="frame_allocator">frame allocator</link>
  101.       associated with the zone. Zone also contains information about free and
  102.       occupied frames and its base addresss in the memory. Some of the
  103.       architectures (mips32, ppc32) have only one zone, that covers whole
  104.       physical memory. Other architectures (ia32) have multiple zones.</para>
  105.     </section>
  106.  
  107.     <section id="frame_allocator">
  108.       <title>Frame allocator</title>
  109.  
  110.       <section>
  111.         <title>Overview</title>
  112.  
  113.         <para>Physical memory allocation inside one <link
  114.         linkend="zones_and_frames">memory zone</link> is being handled by an
  115.         instance of <link linkend="buddy_allocator">buddy allocator</link>
  116.         tailored to allocate blocks of physical memory frames.</para>
  117.  
  118.         <graphic fileref="images/mm1.png" />
  119.       </section>
  120.  
  121.       <section>
  122.         <title>Implementation</title>
  123.  
  124.         <formalpara>
  125.           <title>Data organization</title>
  126.  
  127.           <para>Buddy allocator always uses first frame to represent frame
  128.           block. This frame contains <varname>buddy_order</varname> variable
  129.           to provide information about the block size it actually represents (
  130.           <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  131.           frames block). Other frames in block have this value set to magic
  132.           <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  133.           buddy <varname>max_order</varname> value.</para>
  134.  
  135.           <para>Each <varname>frame_t</varname> also contains pointer member
  136.           to hold frame structure in the linked list inside one order.</para>
  137.         </formalpara>
  138.  
  139.         <formalpara>
  140.           <title>Allocation algorithm</title>
  141.  
  142.           <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  143.           frames block allocation request, allocator checks if there are any
  144.           blocks available at the order list <varname>i</varname>. If yes,
  145.           removes block from order list and returns its address. If no,
  146.           recursively allocates
  147.           <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  148.           block, splits it into two
  149.           <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  150.           Then adds one of the blocks to the <varname>i</varname> order list
  151.           and returns address of another.</para>
  152.         </formalpara>
  153.  
  154.         <formalpara>
  155.           <title>Deallocation algorithm</title>
  156.  
  157.           <para>Check if block has so called buddy (another free
  158.           <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  159.           that can be linked with freed block into the
  160.           <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  161.           Technically, buddy is a odd/even block for even/odd block
  162.           respectively. Plus we can put an extra requirement, that resulting
  163.           block must be aligned to its size. This requirement guarantees
  164.           natural block alignment for the blocks coming out the allocation
  165.           system.</para>
  166.  
  167.           <para>Using direct pointer arithmetics,
  168.           <varname>frame_t::ref_count</varname> and
  169.           <varname>frame_t::buddy_order</varname> variables, finding buddy is
  170.           done at constant time.</para>
  171.         </formalpara>
  172.       </section>
  173.     </section>
  174.  
  175.     <section id="slab">
  176.       <title>Slab allocator</title>
  177.  
  178.       <para>Kernel memory allocation is handled by slab.</para>
  179.     </section>
  180.  
  181.     <section>
  182.       <title>Memory sharing</title>
  183.  
  184.       <para>Not implemented yet(?)</para>
  185.     </section>
  186.   </section>
  187. </chapter>