/*
* The PCI Library -- User Access
*
* Copyright (c) 1997--2003 Martin Mares <mj@ucw.cz>
*
* May 8, 2006 - Modified and ported to HelenOS by Jakub Jermar.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "internal.h"
static struct pci_methods *pci_methods[PCI_ACCESS_MAX] = {
&pm_intel_conf1,
&pm_intel_conf2,
};
struct pci_access *pci_alloc(void)
{
struct pci_access
*a
= malloc(sizeof(struct pci_access
));
int i;
if (!a)
return NULL;
bzero(a, sizeof(*a));
for (i = 0; i < PCI_ACCESS_MAX; i++)
if (pci_methods[i] && pci_methods[i]->config)
pci_methods[i]->config(a);
return a;
}
void *pci_malloc(struct pci_access *a, int size)
{
if (!x)
a->error("Out of memory (allocation of %d bytes failed)", size);
return x;
}
void pci_mfree(void *x)
{
if (x)
}
static void pci_generic_error(char *msg, ...)
{
va_list args;
}
static void pci_generic_warn(char *msg, ...)
{
va_list args;
}
static void pci_generic_debug(char *msg, ...)
{
va_list args;
}
static void pci_null_debug(char *msg UNUSED, ...)
{
}
void pci_init(struct pci_access *a)
{
if (!a->error)
a->error = pci_generic_error;
if (!a->warning)
a->warning = pci_generic_warn;
if (!a->debug)
a->debug = pci_generic_debug;
if (!a->debugging)
a->debug = pci_null_debug;
if (a->method) {
if (a->method >= PCI_ACCESS_MAX || !pci_methods[a->method])
a->error("This access method is not supported.");
a->methods = pci_methods[a->method];
} else {
unsigned int i;
for (i = 0; i < PCI_ACCESS_MAX; i++)
if (pci_methods[i]) {
a->debug("Trying method %d...", i);
if (pci_methods[i]->detect(a)) {
a->debug("...OK\n");
a->methods = pci_methods[i];
a->method = i;
break;
}
a->debug("...No.\n");
}
if (!a->methods)
a->error("Cannot find any working access method.");
}
a->debug("Decided to use %s\n", a->methods->name);
a->methods->init(a);
}
void pci_cleanup(struct pci_access *a)
{
struct pci_dev *d, *e;
for (d = a->devices; d; d = e) {
e = d->next;
pci_free_dev(d);
}
if (a->methods)
a->methods->cleanup(a);
pci_free_name_list(a);
pci_mfree(a);
}
void pci_scan_bus(struct pci_access *a)
{
a->methods->scan(a);
}
struct pci_dev *pci_alloc_dev(struct pci_access *a)
{
struct pci_dev *d = pci_malloc(a, sizeof(struct pci_dev));
bzero(d, sizeof(*d));
d->access = a;
d->methods = a->methods;
d->hdrtype = -1;
if (d->methods->init_dev)
d->methods->init_dev(d);
return d;
}
int pci_link_dev(struct pci_access *a, struct pci_dev *d)
{
d->next = a->devices;
a->devices = d;
return 1;
}
struct pci_dev *pci_get_dev(struct pci_access *a, int domain, int bus,
int dev, int func)
{
struct pci_dev *d = pci_alloc_dev(a);
d->domain = domain;
d->bus = bus;
d->dev = dev;
d->func = func;
return d;
}
void pci_free_dev(struct pci_dev *d)
{
if (d->methods->cleanup_dev)
d->methods->cleanup_dev(d);
pci_mfree(d);
}
static inline void
pci_read_data(struct pci_dev *d, void *buf, int pos, int len)
{
if (pos & (len - 1))
d->access->error("Unaligned read: pos=%02x, len=%d", pos,
len);
if (pos + len <= d->cache_len)
memcpy(buf
, d
->cache
+ pos
, len
);
else if (!d->methods->read(d, pos, buf, len))
}
byte pci_read_byte(struct pci_dev *d, int pos)
{
byte buf;
pci_read_data(d, &buf, pos, 1);
return buf;
}
word pci_read_word(struct pci_dev * d, int pos)
{
word buf;
pci_read_data(d, &buf, pos, 2);
return le16_to_cpu(buf);
}
u32 pci_read_long(struct pci_dev * d, int pos)
{
u32 buf;
pci_read_data(d, &buf, pos, 4);
return le32_to_cpu(buf);
}
int pci_read_block(struct pci_dev *d, int pos, byte * buf, int len)
{
return d->methods->read(d, pos, buf, len);
}
static inline int
pci_write_data(struct pci_dev *d, void *buf, int pos, int len)
{
if (pos & (len - 1))
d->access->error("Unaligned write: pos=%02x,len=%d", pos, len);
if (pos + len <= d->cache_len)
memcpy(d
->cache
+ pos
, buf
, len
);
return d->methods->write(d, pos, buf, len);
}
int pci_write_byte(struct pci_dev *d, int pos, byte data)
{
return pci_write_data(d, &data, pos, 1);
}
int pci_write_word(struct pci_dev *d, int pos, word data)
{
word buf = cpu_to_le16(data);
return pci_write_data(d, &buf, pos, 2);
}
int pci_write_long(struct pci_dev *d, int pos, u32 data)
{
u32 buf = cpu_to_le32(data);
return pci_write_data(d, &buf, pos, 4);
}
int pci_write_block(struct pci_dev *d, int pos, byte * buf, int len)
{
if (pos < d->cache_len) {
int l = (pos + len >= d->cache_len) ? (d->cache_len - pos) : len;
memcpy(d
->cache
+ pos
, buf
, l
);
}
return d->methods->write(d, pos, buf, len);
}
int pci_fill_info(struct pci_dev *d, int flags)
{
if (flags & PCI_FILL_RESCAN) {
flags &= ~PCI_FILL_RESCAN;
d->known_fields = 0;
}
if (flags & ~d->known_fields)
d->known_fields |= d->methods->fill_info(d, flags & ~d->known_fields);
return d->known_fields;
}
void pci_setup_cache(struct pci_dev *d, byte * cache, int len)
{
d->cache = cache;
d->cache_len = len;
}