Subversion Repositories HelenOS

Rev

Rev 3743 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2005 Martin Decky
  3.  * Copyright (c) 2006 Jakub Jermar
  4.  * All rights reserved.
  5.  *
  6.  * Redistribution and use in source and binary forms, with or without
  7.  * modification, are permitted provided that the following conditions
  8.  * are met:
  9.  *
  10.  * - Redistributions of source code must retain the above copyright
  11.  *   notice, this list of conditions and the following disclaimer.
  12.  * - Redistributions in binary form must reproduce the above copyright
  13.  *   notice, this list of conditions and the following disclaimer in the
  14.  *   documentation and/or other materials provided with the distribution.
  15.  * - The name of the author may not be used to endorse or promote products
  16.  *   derived from this software without specific prior written permission.
  17.  *
  18.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  19.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  20.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  21.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  22.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  23.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  24.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  25.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  27.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28.  */
  29.  
  30. #include "main.h"
  31. #include <printf.h>
  32. #include "asm.h"
  33. #include "_components.h"
  34. #include <balloc.h>
  35. #include <ofw.h>
  36. #include <ofw_tree.h>
  37. #include "ofwarch.h"
  38. #include <align.h>
  39. #include <string.h>
  40.  
  41. bootinfo_t bootinfo;
  42.  
  43. component_t components[COMPONENTS];
  44.  
  45. char *release = RELEASE;
  46.  
  47. #ifdef REVISION
  48.     char *revision = ", revision " REVISION;
  49. #else
  50.     char *revision = "";
  51. #endif
  52.  
  53. #ifdef TIMESTAMP
  54.     char *timestamp = "\nBuilt on " TIMESTAMP;
  55. #else
  56.     char *timestamp = "";
  57. #endif
  58.  
  59. /** UltraSPARC subarchitecture - 1 for US, 3 for US3, 0 for other */
  60. uint8_t subarchitecture = 0;
  61.  
  62. /**
  63.  * mask of the MID field inside the ICBUS_CONFIG register shifted by
  64.  * MID_SHIFT bits to the right
  65.  */
  66. uint16_t mid_mask;
  67.  
  68. /** Print version information. */
  69. static void version_print(void)
  70. {
  71.     printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
  72.         "Copyright (c) 2006 HelenOS project\n",
  73.         release, revision, timestamp);
  74. }
  75.  
  76. /* the lowest ID (read from the VER register) of some US3 CPU model */
  77. #define FIRST_US3_CPU   0x14
  78.  
  79. /* the greatest ID (read from the VER register) of some US3 CPU model */
  80. #define LAST_US3_CPU    0x19
  81.  
  82. /* UltraSPARC IIIi processor implementation code */
  83. #define US_IIIi_CODE    0x15
  84.  
  85. /* max. length of the "compatible" property of the root node */
  86. #define COMPATIBLE_PROP_MAXLEN  64
  87.  
  88. /*
  89.  * HelenOS bootloader will use these constants to distinguish particular
  90.  * UltraSPARC architectures
  91.  */
  92. #define COMPATIBLE_SUN4U    10
  93. #define COMPATIBLE_SUN4V    20
  94.  
  95. /** US architecture. COMPATIBLE_SUN4U for sun4v, COMPATIBLE_SUN4V for sun4u */
  96. static uint8_t architecture;
  97.  
  98. /**
  99.  * Detects the UltraSPARC architecture (sun4u and sun4v currently supported)
  100.  * by inspecting the property called "compatible" in the OBP root node.
  101.  */
  102. static void detect_architecture(void)
  103. {
  104.     phandle root = ofw_find_device("/");
  105.     char compatible[COMPATIBLE_PROP_MAXLEN];
  106.  
  107.     if (ofw_get_property(root, "compatible", compatible,
  108.             COMPATIBLE_PROP_MAXLEN) <= 0) {
  109.         printf("Unable to determine architecture, default: sun4u.\n");
  110.         architecture = COMPATIBLE_SUN4U;
  111.         return;
  112.     }
  113.  
  114.     if (strcmp(compatible, "sun4v") == 0) {
  115.         architecture = COMPATIBLE_SUN4V;
  116.     } else {
  117.         /*
  118.          * As not all sun4u machines have "sun4u" in their "compatible"
  119.          * OBP property (e.g. Serengeti's OBP "compatible" property is
  120.          * "SUNW,Serengeti"), we will by default fallback to sun4u if
  121.          * an unknown value of the "compatible" property is encountered.
  122.          */
  123.         architecture = COMPATIBLE_SUN4U;
  124.     }
  125. }
  126.  
  127. /**
  128.  * Detects the subarchitecture (US, US3) of the sun4u
  129.  * processor. Sets the global variables "subarchitecture" and "mid_mask" to
  130.  * correct values.
  131.  */
  132. static void detect_subarchitecture(void)
  133. {
  134.     uint64_t v;
  135.     asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
  136.    
  137.     v = (v << 16) >> 48;
  138.     if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
  139.         subarchitecture = SUBARCH_US3;
  140.         if (v == US_IIIi_CODE)
  141.             mid_mask = (1 << 5) - 1;
  142.         else
  143.             mid_mask = (1 << 10) - 1;
  144.     } else if (v < FIRST_US3_CPU) {
  145.         subarchitecture = SUBARCH_US;
  146.         mid_mask = (1 << 5) - 1;
  147.     } else {
  148.         printf("\nThis CPU is not supported by HelenOS.");
  149.     }
  150. }
  151.  
  152. /**
  153.  * Performs sun4u-specific initialization. The components are expected
  154.  * to be already copied and boot allocator initialized.
  155.  *
  156.  * @param base  kernel base virtual address
  157.  * @param top   virtual address above which the boot allocator
  158.  *      can make allocations
  159.  */
  160. static void bootstrap_sun4u(void *base, unsigned int top)
  161. {
  162.     void *balloc_base;
  163.  
  164.     /*
  165.      * Claim and map the physical memory for the boot allocator.
  166.      * Initialize the boot allocator.
  167.      */
  168.     balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
  169.     (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
  170.         BALLOC_MAX_SIZE);
  171.     (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1);
  172.     balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
  173.  
  174.     printf("\nCanonizing OpenFirmware device tree...");
  175.     bootinfo.ofw_root = ofw_tree_build();
  176.     printf("done.\n");
  177.  
  178.     detect_subarchitecture();
  179.  
  180. #ifdef CONFIG_SMP
  181.     printf("\nChecking for secondary processors...");
  182.     if (!ofw_cpu())
  183.         printf("Error: unable to get CPU properties\n");
  184.     printf("done.\n");
  185. #endif
  186.  
  187.     setup_palette();
  188. }
  189.  
  190. /**
  191.  * Performs sun4v-specific initialization. The components are expected
  192.  * to be already copied and boot allocator initialized.
  193.  */
  194. static void bootstrap_sun4v(void)
  195. {
  196.     /*
  197.      * When SILO booted, the OBP had established a virtual to physical
  198.      * memory mapping. This mapping is not an identity (because the
  199.      * physical memory starts on non-zero address) - this is not
  200.      * surprising. But! The mapping even does not map virtual address
  201.      * 0 onto the starting address of the physical memory, but onto an
  202.      * address which is 0x400000 bytes higher. The reason is that the
  203.      * OBP had already used the memory just at the beginning of the
  204.      * physical memory, so that memory cannot be used by SILO (nor
  205.      * bootloader). As for now, we solve it by a nasty workaround:
  206.      * we pretend that the physical memory starts 0x400000 bytes further
  207.      * than it actually does (and hence pretend that the physical memory
  208.      * is 0x400000 bytes smaller). Of course, the value 0x400000 will most
  209.      * probably depend on the machine and OBP version (the workaround now
  210.      * works on Simics). A solution would be to inspect the "available"
  211.      * property of the "/memory" node to find out which parts of memory
  212.      * are used by OBP and redesign the algorithm of copying
  213.      * kernel/init tasks/ramdisk from the bootable image to memory
  214.      * (which we must do anyway because of issues with claiming the memory
  215.      * on Serengeti).
  216.      */
  217.     bootinfo.physmem_start += 0x400000;
  218.     bootinfo.memmap.zones[0].start += 0x400000;
  219.     bootinfo.memmap.zones[0].size -= 0x400000;
  220. }
  221.  
  222. void bootstrap(void)
  223. {
  224.     void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
  225.     unsigned int top = 0;
  226.     int i, j;
  227.  
  228.     detect_architecture();
  229.     init_components(components);
  230.  
  231.     if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
  232.         printf("Error: unable to get start of physical memory.\n");
  233.         halt();
  234.     }
  235.  
  236.     if (!ofw_memmap(&bootinfo.memmap)) {
  237.         printf("Error: unable to get memory map, halting.\n");
  238.         halt();
  239.     }
  240.  
  241.     if (bootinfo.memmap.total == 0) {
  242.         printf("Error: no memory detected, halting.\n");
  243.         halt();
  244.     }
  245.  
  246.     /*
  247.      * SILO for some reason adds 0x400000 and subtracts
  248.      * bootinfo.physmem_start to/from silo_ramdisk_image.
  249.      * We just need plain physical address so we fix it up.
  250.      */
  251.     if (silo_ramdisk_image) {
  252.         silo_ramdisk_image += bootinfo.physmem_start;
  253.         silo_ramdisk_image -= 0x400000;
  254.         /* Install 1:1 mapping for the ramdisk. */
  255.         if (ofw_map((void *)((uintptr_t)silo_ramdisk_image),
  256.             (void *)((uintptr_t)silo_ramdisk_image),
  257.             silo_ramdisk_size, -1) != 0) {
  258.             printf("Failed to map ramdisk.\n");
  259.             halt();
  260.         }
  261.     }
  262.    
  263.     printf("\nSystem info\n");
  264.     printf(" memory: %dM starting at %P\n",
  265.         bootinfo.memmap.total >> 20, bootinfo.physmem_start);
  266.  
  267.     printf("\nMemory statistics\n");
  268.     printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
  269.     printf(" %P: boot info structure\n", &bootinfo);
  270.    
  271.     /*
  272.      * Figure out destination address for each component.
  273.      * In this phase, we don't copy the components yet because we want to
  274.      * to be careful not to overwrite anything, especially the components
  275.      * which haven't been copied yet.
  276.      */
  277.     bootinfo.taskmap.count = 0;
  278.     for (i = 0; i < COMPONENTS; i++) {
  279.         printf(" %P: %s image (size %d bytes)\n", components[i].start,
  280.             components[i].name, components[i].size);
  281.         top = ALIGN_UP(top, PAGE_SIZE);
  282.         if (i > 0) {
  283.             if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
  284.                 printf("Skipping superfluous components.\n");
  285.                 break;
  286.             }
  287.             bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
  288.                 base + top;
  289.             bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
  290.                 components[i].size;
  291.             bootinfo.taskmap.count++;
  292.         }
  293.         top += components[i].size;
  294.     }
  295.  
  296.     j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
  297.  
  298.     if (silo_ramdisk_image) {
  299.         /* Treat the ramdisk as the last bootinfo task. */
  300.         if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
  301.             printf("Skipping ramdisk.\n");
  302.             goto skip_ramdisk;
  303.         }
  304.         top = ALIGN_UP(top, PAGE_SIZE);
  305.         bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
  306.             base + top;
  307.         bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
  308.             silo_ramdisk_size;
  309.         bootinfo.taskmap.count++;
  310.         printf("\nCopying ramdisk...");
  311.         /*
  312.          * Claim and map the whole ramdisk as it may exceed the area
  313.          * given to us by SILO.
  314.          */
  315.         (void) ofw_claim_phys(base + top, silo_ramdisk_size);
  316.         (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1);
  317.         memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
  318.             silo_ramdisk_size);
  319.         printf("done.\n");
  320.         top += silo_ramdisk_size;
  321.     }
  322. skip_ramdisk:
  323.  
  324.     /*
  325.      * Now we can proceed to copy the components. We do it in reverse order
  326.      * so that we don't overwrite anything even if the components overlap
  327.      * with base.
  328.      */
  329.     printf("\nCopying bootinfo tasks\n");
  330.     for (i = COMPONENTS - 1; i > 0; i--, j--) {
  331.         printf(" %s...", components[i].name);
  332.  
  333.         /*
  334.          * At this point, we claim the physical memory that we are
  335.          * going to use. We should be safe in case of the virtual
  336.          * address space because the OpenFirmware, according to its
  337.          * SPARC binding, should restrict its use of virtual memory
  338.          * to addresses from [0xffd00000; 0xffefffff] and
  339.          * [0xfe000000; 0xfeffffff].
  340.          *
  341.          * XXX We don't map this piece of memory. We simply rely on
  342.          *     SILO to have it done for us already in this case.
  343.          */
  344.         (void) ofw_claim_phys(bootinfo.physmem_start +
  345.             bootinfo.taskmap.tasks[j].addr,
  346.             ALIGN_UP(components[i].size, PAGE_SIZE));
  347.            
  348.         memcpy((void *)bootinfo.taskmap.tasks[j].addr,
  349.             components[i].start, components[i].size);
  350.         printf("done.\n");
  351.     }
  352.  
  353.     printf("\nCopying kernel...");
  354.     (void) ofw_claim_phys(bootinfo.physmem_start + base,
  355.         ALIGN_UP(components[0].size, PAGE_SIZE));
  356.     memcpy(base, components[0].start, components[0].size);
  357.     printf("done.\n");
  358.  
  359.     /* perform architecture-specific initialization */
  360.     if (architecture == COMPATIBLE_SUN4U) {
  361.         bootstrap_sun4u(base, top);
  362.     } else if (architecture == COMPATIBLE_SUN4V) {
  363.         bootstrap_sun4v();
  364.     } else {
  365.         printf("Unknown architecture.\n");
  366.         halt();
  367.     }
  368.  
  369.     printf("\nBooting the kernel...\n");
  370.     jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
  371.         bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
  372.         sizeof(bootinfo));
  373. }
  374.  
  375.