Rev 3743 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed
/*
* Copyright (c) 2005 Martin Decky
* Copyright (c) 2006 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "main.h"
#include <printf.h>
#include "asm.h"
#include "_components.h"
#include <balloc.h>
#include <ofw.h>
#include <ofw_tree.h>
#include "ofwarch.h"
#include <align.h>
#include <string.h>
bootinfo_t bootinfo;
component_t components[COMPONENTS];
char *release = RELEASE;
#ifdef REVISION
char *revision = ", revision " REVISION;
#else
char *revision = "";
#endif
#ifdef TIMESTAMP
char *timestamp = "\nBuilt on " TIMESTAMP;
#else
char *timestamp = "";
#endif
/** UltraSPARC subarchitecture - 1 for US, 3 for US3, 0 for other */
uint8_t subarchitecture = 0;
/**
* mask of the MID field inside the ICBUS_CONFIG register shifted by
* MID_SHIFT bits to the right
*/
uint16_t mid_mask;
/** Print version information. */
static void version_print(void)
{
printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
"Copyright (c) 2006 HelenOS project\n",
release, revision, timestamp);
}
/* the lowest ID (read from the VER register) of some US3 CPU model */
#define FIRST_US3_CPU 0x14
/* the greatest ID (read from the VER register) of some US3 CPU model */
#define LAST_US3_CPU 0x19
/* UltraSPARC IIIi processor implementation code */
#define US_IIIi_CODE 0x15
/* max. length of the "compatible" property of the root node */
#define COMPATIBLE_PROP_MAXLEN 64
/*
* HelenOS bootloader will use these constants to distinguish particular
* UltraSPARC architectures
*/
#define COMPATIBLE_SUN4U 10
#define COMPATIBLE_SUN4V 20
/** US architecture. COMPATIBLE_SUN4U for sun4v, COMPATIBLE_SUN4V for sun4u */
static uint8_t architecture;
/**
* Detects the UltraSPARC architecture (sun4u and sun4v currently supported)
* by inspecting the property called "compatible" in the OBP root node.
*/
static void detect_architecture(void)
{
phandle root = ofw_find_device("/");
char compatible[COMPATIBLE_PROP_MAXLEN];
if (ofw_get_property(root, "compatible", compatible,
COMPATIBLE_PROP_MAXLEN) <= 0) {
printf("Unable to determine architecture, default: sun4u.\n");
architecture = COMPATIBLE_SUN4U;
return;
}
if (strcmp(compatible, "sun4v") == 0) {
architecture = COMPATIBLE_SUN4V;
} else {
/*
* As not all sun4u machines have "sun4u" in their "compatible"
* OBP property (e.g. Serengeti's OBP "compatible" property is
* "SUNW,Serengeti"), we will by default fallback to sun4u if
* an unknown value of the "compatible" property is encountered.
*/
architecture = COMPATIBLE_SUN4U;
}
}
/**
* Detects the subarchitecture (US, US3) of the sun4u
* processor. Sets the global variables "subarchitecture" and "mid_mask" to
* correct values.
*/
static void detect_subarchitecture(void)
{
uint64_t v;
asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
v = (v << 16) >> 48;
if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
subarchitecture = SUBARCH_US3;
if (v == US_IIIi_CODE)
mid_mask = (1 << 5) - 1;
else
mid_mask = (1 << 10) - 1;
} else if (v < FIRST_US3_CPU) {
subarchitecture = SUBARCH_US;
mid_mask = (1 << 5) - 1;
} else {
printf("\nThis CPU is not supported by HelenOS.");
}
}
/**
* Performs sun4u-specific initialization. The components are expected
* to be already copied and boot allocator initialized.
*
* @param base kernel base virtual address
* @param top virtual address above which the boot allocator
* can make allocations
*/
static void bootstrap_sun4u(void *base, unsigned int top)
{
void *balloc_base;
/*
* Claim and map the physical memory for the boot allocator.
* Initialize the boot allocator.
*/
balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
(void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
BALLOC_MAX_SIZE);
(void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1);
balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
printf("\nCanonizing OpenFirmware device tree...");
bootinfo.ofw_root = ofw_tree_build();
printf("done.\n");
detect_subarchitecture();
#ifdef CONFIG_SMP
printf("\nChecking for secondary processors...");
if (!ofw_cpu())
printf("Error: unable to get CPU properties\n");
printf("done.\n");
#endif
setup_palette();
}
/**
* Performs sun4v-specific initialization. The components are expected
* to be already copied and boot allocator initialized.
*/
static void bootstrap_sun4v(void)
{
/*
* When SILO booted, the OBP had established a virtual to physical
* memory mapping. This mapping is not an identity (because the
* physical memory starts on non-zero address) - this is not
* surprising. But! The mapping even does not map virtual address
* 0 onto the starting address of the physical memory, but onto an
* address which is 0x400000 bytes higher. The reason is that the
* OBP had already used the memory just at the beginning of the
* physical memory, so that memory cannot be used by SILO (nor
* bootloader). As for now, we solve it by a nasty workaround:
* we pretend that the physical memory starts 0x400000 bytes further
* than it actually does (and hence pretend that the physical memory
* is 0x400000 bytes smaller). Of course, the value 0x400000 will most
* probably depend on the machine and OBP version (the workaround now
* works on Simics). A solution would be to inspect the "available"
* property of the "/memory" node to find out which parts of memory
* are used by OBP and redesign the algorithm of copying
* kernel/init tasks/ramdisk from the bootable image to memory
* (which we must do anyway because of issues with claiming the memory
* on Serengeti).
*/
bootinfo.physmem_start += 0x400000;
bootinfo.memmap.zones[0].start += 0x400000;
bootinfo.memmap.zones[0].size -= 0x400000;
}
void bootstrap(void)
{
void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
unsigned int top = 0;
int i, j;
detect_architecture();
init_components(components);
if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
printf("Error: unable to get start of physical memory.\n");
halt();
}
if (!ofw_memmap(&bootinfo.memmap)) {
printf("Error: unable to get memory map, halting.\n");
halt();
}
if (bootinfo.memmap.total == 0) {
printf("Error: no memory detected, halting.\n");
halt();
}
/*
* SILO for some reason adds 0x400000 and subtracts
* bootinfo.physmem_start to/from silo_ramdisk_image.
* We just need plain physical address so we fix it up.
*/
if (silo_ramdisk_image) {
silo_ramdisk_image += bootinfo.physmem_start;
silo_ramdisk_image -= 0x400000;
/* Install 1:1 mapping for the ramdisk. */
if (ofw_map((void *)((uintptr_t)silo_ramdisk_image),
(void *)((uintptr_t)silo_ramdisk_image),
silo_ramdisk_size, -1) != 0) {
printf("Failed to map ramdisk.\n");
halt();
}
}
printf("\nSystem info\n");
printf(" memory: %dM starting at %P\n",
bootinfo.memmap.total >> 20, bootinfo.physmem_start);
printf("\nMemory statistics\n");
printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
printf(" %P: boot info structure\n", &bootinfo);
/*
* Figure out destination address for each component.
* In this phase, we don't copy the components yet because we want to
* to be careful not to overwrite anything, especially the components
* which haven't been copied yet.
*/
bootinfo.taskmap.count = 0;
for (i = 0; i < COMPONENTS; i++) {
printf(" %P: %s image (size %d bytes)\n", components[i].start,
components[i].name, components[i].size);
top = ALIGN_UP(top, PAGE_SIZE);
if (i > 0) {
if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
printf("Skipping superfluous components.\n");
break;
}
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
base + top;
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
components[i].size;
bootinfo.taskmap.count++;
}
top += components[i].size;
}
j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
if (silo_ramdisk_image) {
/* Treat the ramdisk as the last bootinfo task. */
if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
printf("Skipping ramdisk.\n");
goto skip_ramdisk;
}
top = ALIGN_UP(top, PAGE_SIZE);
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
base + top;
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
silo_ramdisk_size;
bootinfo.taskmap.count++;
printf("\nCopying ramdisk...");
/*
* Claim and map the whole ramdisk as it may exceed the area
* given to us by SILO.
*/
(void) ofw_claim_phys(base + top, silo_ramdisk_size);
(void) ofw_map(base + top, base + top, silo_ramdisk_size, -1);
memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
silo_ramdisk_size);
printf("done.\n");
top += silo_ramdisk_size;
}
skip_ramdisk:
/*
* Now we can proceed to copy the components. We do it in reverse order
* so that we don't overwrite anything even if the components overlap
* with base.
*/
printf("\nCopying bootinfo tasks\n");
for (i = COMPONENTS - 1; i > 0; i--, j--) {
printf(" %s...", components[i].name);
/*
* At this point, we claim the physical memory that we are
* going to use. We should be safe in case of the virtual
* address space because the OpenFirmware, according to its
* SPARC binding, should restrict its use of virtual memory
* to addresses from [0xffd00000; 0xffefffff] and
* [0xfe000000; 0xfeffffff].
*
* XXX We don't map this piece of memory. We simply rely on
* SILO to have it done for us already in this case.
*/
(void) ofw_claim_phys(bootinfo.physmem_start +
bootinfo.taskmap.tasks[j].addr,
ALIGN_UP(components[i].size, PAGE_SIZE));
memcpy((void *)bootinfo.taskmap.tasks[j].addr,
components[i].start, components[i].size);
printf("done.\n");
}
printf("\nCopying kernel...");
(void) ofw_claim_phys(bootinfo.physmem_start + base,
ALIGN_UP(components[0].size, PAGE_SIZE));
memcpy(base, components[0].start, components[0].size);
printf("done.\n");
/* perform architecture-specific initialization */
if (architecture == COMPATIBLE_SUN4U) {
bootstrap_sun4u(base, top);
} else if (architecture == COMPATIBLE_SUN4V) {
bootstrap_sun4v();
} else {
printf("Unknown architecture.\n");
halt();
}
printf("\nBooting the kernel...\n");
jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
sizeof(bootinfo));
}