Subversion Repositories HelenOS

Rev

Rev 3883 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2005 Martin Decky
  3.  * Copyright (c) 2006 Jakub Jermar
  4.  * All rights reserved.
  5.  *
  6.  * Redistribution and use in source and binary forms, with or without
  7.  * modification, are permitted provided that the following conditions
  8.  * are met:
  9.  *
  10.  * - Redistributions of source code must retain the above copyright
  11.  *   notice, this list of conditions and the following disclaimer.
  12.  * - Redistributions in binary form must reproduce the above copyright
  13.  *   notice, this list of conditions and the following disclaimer in the
  14.  *   documentation and/or other materials provided with the distribution.
  15.  * - The name of the author may not be used to endorse or promote products
  16.  *   derived from this software without specific prior written permission.
  17.  *
  18.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  19.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  20.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  21.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  22.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  23.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  24.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  25.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  27.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28.  */
  29.  
  30. #include "main.h"
  31. #include <printf.h>
  32. #include "asm.h"
  33. #include "_components.h"
  34. #include <balloc.h>
  35. #include <ofw.h>
  36. #include <ofw_tree.h>
  37. #include "ofwarch.h"
  38. #include <align.h>
  39. #include <macros.h>
  40. #include <string.h>
  41.  
  42. bootinfo_t bootinfo;
  43.  
  44. component_t components[COMPONENTS];
  45.  
  46. char *release = STRING(RELEASE);
  47.  
  48. #ifdef REVISION
  49.     char *revision = ", revision " STRING(REVISION);
  50. #else
  51.     char *revision = "";
  52. #endif
  53.  
  54. #ifdef TIMESTAMP
  55.     char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
  56. #else
  57.     char *timestamp = "";
  58. #endif
  59.  
  60. /** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
  61. uint8_t subarchitecture;
  62.  
  63. /**
  64.  * mask of the MID field inside the ICBUS_CONFIG register shifted by
  65.  * MID_SHIFT bits to the right
  66.  */
  67. uint16_t mid_mask;
  68.  
  69. /** Print version information. */
  70. static void version_print(void)
  71. {
  72.     printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
  73.         "Copyright (c) 2006 HelenOS project\n",
  74.         release, revision, timestamp);
  75. }
  76.  
  77. /* the lowest ID (read from the VER register) of some US3 CPU model */
  78. #define FIRST_US3_CPU   0x14
  79.  
  80. /* the greatest ID (read from the VER register) of some US3 CPU model */
  81. #define LAST_US3_CPU    0x19
  82.  
  83. /* UltraSPARC IIIi processor implementation code */
  84. #define US_IIIi_CODE    0x15
  85.  
  86. /**
  87.  * Sets the global variables "subarchitecture" and "mid_mask" to
  88.  * correct values.
  89.  */
  90. static void detect_subarchitecture(void)
  91. {
  92.     uint64_t v;
  93.     asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
  94.    
  95.     v = (v << 16) >> 48;
  96.     if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
  97.         subarchitecture = SUBARCH_US3;
  98.         if (v == US_IIIi_CODE)
  99.             mid_mask = (1 << 5) - 1;
  100.         else
  101.             mid_mask = (1 << 10) - 1;
  102.     } else if (v < FIRST_US3_CPU) {
  103.         subarchitecture = SUBARCH_US;
  104.         mid_mask = (1 << 5) - 1;
  105.     } else {
  106.         printf("\nThis CPU is not supported by HelenOS.");
  107.     }
  108. }
  109.  
  110. void bootstrap(void)
  111. {
  112.     void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
  113.     void *balloc_base;
  114.     unsigned int top = 0;
  115.     int i, j;
  116.  
  117.     version_print();
  118.    
  119.     detect_subarchitecture();
  120.     init_components(components);
  121.  
  122.     if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
  123.         printf("Error: unable to get start of physical memory.\n");
  124.         halt();
  125.     }
  126.  
  127.     if (!ofw_memmap(&bootinfo.memmap)) {
  128.         printf("Error: unable to get memory map, halting.\n");
  129.         halt();
  130.     }
  131.  
  132.     if (bootinfo.memmap.total == 0) {
  133.         printf("Error: no memory detected, halting.\n");
  134.         halt();
  135.     }
  136.  
  137.     /*
  138.      * SILO for some reason adds 0x400000 and subtracts
  139.      * bootinfo.physmem_start to/from silo_ramdisk_image.
  140.      * We just need plain physical address so we fix it up.
  141.      */
  142.     if (silo_ramdisk_image) {
  143.         silo_ramdisk_image += bootinfo.physmem_start;
  144.         silo_ramdisk_image -= 0x400000;
  145.         /* Install 1:1 mapping for the ramdisk. */
  146.         if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
  147.             (void *)((uintptr_t) silo_ramdisk_image),
  148.             silo_ramdisk_size, -1) != 0) {
  149.             printf("Failed to map ramdisk.\n");
  150.             halt();
  151.         }
  152.     }
  153.    
  154.     printf("\nSystem info\n");
  155.     printf(" memory: %dM starting at %P\n",
  156.         bootinfo.memmap.total >> 20, bootinfo.physmem_start);
  157.  
  158.     printf("\nMemory statistics\n");
  159.     printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
  160.     printf(" %P: boot info structure\n", &bootinfo);
  161.    
  162.     /*
  163.      * Figure out destination address for each component.
  164.      * In this phase, we don't copy the components yet because we want to
  165.      * to be careful not to overwrite anything, especially the components
  166.      * which haven't been copied yet.
  167.      */
  168.     bootinfo.taskmap.count = 0;
  169.     for (i = 0; i < COMPONENTS; i++) {
  170.         printf(" %P: %s image (size %d bytes)\n", components[i].start,
  171.             components[i].name, components[i].size);
  172.         top = ALIGN_UP(top, PAGE_SIZE);
  173.         if (i > 0) {
  174.             if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
  175.                 printf("Skipping superfluous components.\n");
  176.                 break;
  177.             }
  178.             bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
  179.                 base + top;
  180.             bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
  181.                 components[i].size;
  182.             strncpy(bootinfo.taskmap.tasks[
  183.                 bootinfo.taskmap.count].name, components[i].name,
  184.                 BOOTINFO_TASK_NAME_BUFLEN);
  185.             bootinfo.taskmap.count++;
  186.         }
  187.         top += components[i].size;
  188.     }
  189.  
  190.     j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
  191.  
  192.     if (silo_ramdisk_image) {
  193.         /* Treat the ramdisk as the last bootinfo task. */
  194.         if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
  195.             printf("Skipping ramdisk.\n");
  196.             goto skip_ramdisk;
  197.         }
  198.         top = ALIGN_UP(top, PAGE_SIZE);
  199.         bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
  200.             base + top;
  201.         bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
  202.             silo_ramdisk_size;
  203.         bootinfo.taskmap.count++;
  204.         printf("\nCopying ramdisk...");
  205.         /*
  206.          * Claim and map the whole ramdisk as it may exceed the area
  207.          * given to us by SILO.
  208.          */
  209.         (void) ofw_claim_phys(base + top, silo_ramdisk_size);
  210.         (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
  211.             silo_ramdisk_size, -1);
  212.         memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
  213.             silo_ramdisk_size);
  214.         printf("done.\n");
  215.         top += silo_ramdisk_size;
  216.     }
  217. skip_ramdisk:
  218.  
  219.     /*
  220.      * Now we can proceed to copy the components. We do it in reverse order
  221.      * so that we don't overwrite anything even if the components overlap
  222.      * with base.
  223.      */
  224.     printf("\nCopying bootinfo tasks\n");
  225.     for (i = COMPONENTS - 1; i > 0; i--, j--) {
  226.         printf(" %s...", components[i].name);
  227.  
  228.         /*
  229.          * At this point, we claim the physical memory that we are
  230.          * going to use. We should be safe in case of the virtual
  231.          * address space because the OpenFirmware, according to its
  232.          * SPARC binding, should restrict its use of virtual memory
  233.          * to addresses from [0xffd00000; 0xffefffff] and
  234.          * [0xfe000000; 0xfeffffff].
  235.          *
  236.          * XXX We don't map this piece of memory. We simply rely on
  237.          *     SILO to have it done for us already in this case.
  238.          */
  239.         (void) ofw_claim_phys(bootinfo.physmem_start +
  240.             bootinfo.taskmap.tasks[j].addr,
  241.             ALIGN_UP(components[i].size, PAGE_SIZE));
  242.            
  243.         memcpy((void *)bootinfo.taskmap.tasks[j].addr,
  244.             components[i].start, components[i].size);
  245.         printf("done.\n");
  246.     }
  247.  
  248.     printf("\nCopying kernel...");
  249.     (void) ofw_claim_phys(bootinfo.physmem_start + base,
  250.         ALIGN_UP(components[0].size, PAGE_SIZE));
  251.     memcpy(base, components[0].start, components[0].size);
  252.     printf("done.\n");
  253.  
  254.     /*
  255.      * Claim and map the physical memory for the boot allocator.
  256.      * Initialize the boot allocator.
  257.      */
  258.     balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
  259.     (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
  260.         BALLOC_MAX_SIZE);
  261.     (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
  262.         BALLOC_MAX_SIZE, -1);
  263.     balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
  264.  
  265.     printf("\nCanonizing OpenFirmware device tree...");
  266.     bootinfo.ofw_root = ofw_tree_build();
  267.     printf("done.\n");
  268.  
  269. #ifdef CONFIG_AP
  270.     printf("\nChecking for secondary processors...");
  271.     if (!ofw_cpu())
  272.         printf("Error: unable to get CPU properties\n");
  273.     printf("done.\n");
  274. #endif
  275.  
  276.     ofw_setup_palette();
  277.  
  278.     printf("\nBooting the kernel...\n");
  279.     jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
  280.         bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
  281.         sizeof(bootinfo));
  282. }
  283.