Subversion Repositories HelenOS

Rev

Rev 2450 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2001-2004 Jakub Jermar
  3.  * Copyright (C) 2007 Vojtech Mencl
  4.  * All rights reserved.
  5.  *
  6.  * Redistribution and use in source and binary forms, with or without
  7.  * modification, are permitted provided that the following conditions
  8.  * are met:
  9.  *
  10.  * - Redistributions of source code must retain the above copyright
  11.  *   notice, this list of conditions and the following disclaimer.
  12.  * - Redistributions in binary form must reproduce the above copyright
  13.  *   notice, this list of conditions and the following disclaimer in the
  14.  *   documentation and/or other materials provided with the distribution.
  15.  * - The name of the author may not be used to endorse or promote products
  16.  *   derived from this software without specific prior written permission.
  17.  *
  18.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  19.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  20.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  21.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  22.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  23.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  24.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  25.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  27.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28.  */
  29.  
  30. /** @addtogroup time
  31.  * @{
  32.  */
  33.  
  34. /**
  35.  * @file
  36.  * @brief   High-level clock interrupt handler.
  37.  *
  38.  * This file contains the clock() function which is the source
  39.  * of preemption. It is also responsible for executing expired
  40.  * timeouts.
  41.  */
  42.  
  43. #include <time/clock.h>
  44. #include <time/timeout.h>
  45. #include <config.h>
  46. #include <synch/spinlock.h>
  47. #include <synch/waitq.h>
  48. #include <func.h>
  49. #include <proc/scheduler.h>
  50. #include <cpu.h>
  51. #include <arch.h>
  52. #include <adt/list.h>
  53. #include <atomic.h>
  54. #include <proc/thread.h>
  55. #include <sysinfo/sysinfo.h>
  56. #include <arch/barrier.h>
  57. #include <mm/frame.h>
  58. #include <ddi/ddi.h>
  59.  
  60.  
  61. /* Pointer to variable with uptime */
  62. uptime_t *uptime;
  63.  
  64. /** Physical memory area of the real time clock */
  65. static parea_t clock_parea;
  66.  
  67. /* Variable holding fragment of second, so that we would update
  68.  * seconds correctly
  69.  */
  70. static unative_t secfrag = 0;
  71.  
  72. /** Initialize realtime clock counter
  73.  *
  74.  * The applications (and sometimes kernel) need to access accurate
  75.  * information about realtime data. We allocate 1 page with these
  76.  * data and update it periodically.
  77.  */
  78. void clock_counter_init(void)
  79. {
  80.     void *faddr;
  81.  
  82.     faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
  83.     if (!faddr)
  84.         panic("Cannot allocate page for clock");
  85.    
  86.     uptime = (uptime_t *) PA2KA(faddr);
  87.    
  88.     uptime->seconds1 = 0;
  89.     uptime->seconds2 = 0;
  90.     uptime->useconds = 0;
  91.  
  92.     clock_parea.pbase = (uintptr_t) faddr;
  93.     clock_parea.vbase = (uintptr_t) uptime;
  94.     clock_parea.frames = 1;
  95.     clock_parea.cacheable = true;
  96.     ddi_parea_register(&clock_parea);
  97.  
  98.     /*
  99.      * Prepare information for the userspace so that it can successfully
  100.      * physmem_map() the clock_parea.
  101.      */
  102.     sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
  103.     sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
  104. }
  105.  
  106.  
  107. /** Update public counters
  108.  *
  109.  * Update it only on first processor
  110.  * TODO: Do we really need so many write barriers?
  111.  */
  112. static void clock_update_counters(void)
  113. {
  114.     if (CPU->id == 0) {
  115.         secfrag += 1000000 / HZ;
  116.         if (secfrag >= 1000000) {
  117.             secfrag -= 1000000;
  118.             uptime->seconds1++;
  119.             write_barrier();
  120.             uptime->useconds = secfrag;
  121.             write_barrier();
  122.             uptime->seconds2 = uptime->seconds1;
  123.         } else
  124.             uptime->useconds += 1000000 / HZ;
  125.     }
  126. }
  127.  
  128. #if defined CONFIG_TIMEOUT_AVL_TREE
  129.  
  130. /** Clock routine
  131.  *
  132.  * Clock routine executed from clock interrupt handler
  133.  * (assuming interrupts_disable()'d). Runs expired timeouts
  134.  * and preemptive scheduling.
  135.  *
  136.  */
  137. void clock(void)
  138. {
  139.     timeout_t *h;
  140.     timeout_handler_t f;
  141.     void *arg;
  142.     count_t missed_clock_ticks = CPU->missed_clock_ticks;
  143.     uint64_t i = CPU->timeout_active_tree.base;
  144.     uint64_t last_clock_tick = i + missed_clock_ticks;
  145.     avltree_node_t *expnode;
  146.  
  147.     /*
  148.      * To avoid lock ordering problems,
  149.      * run all expired timeouts as you visit them.
  150.      */
  151.    
  152.     for (; i <= last_clock_tick; i++) {
  153.         clock_update_counters();
  154.         spinlock_lock(&CPU->timeoutlock);
  155.    
  156.         /*
  157.          * Check whether first timeout (with the smallest key in the tree) time out. If so perform
  158.          * callback function and try next timeout (more timeouts can have same timeout).
  159.          */
  160.         while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) {
  161.             h = avltree_get_instance(expnode,timeout_t,node);
  162.             spinlock_lock(&h->lock);
  163.             if (expnode->key != i) {
  164.                 /*
  165.                  * Base is increased every for cycle.
  166.                  */
  167.                 (CPU->timeout_active_tree.base)++;
  168.                 spinlock_unlock(&h->lock);
  169.                 break;
  170.             }
  171.            
  172.             /*
  173.              * Delete minimal key from the tree and repair tree structure in
  174.              * logarithmic time.
  175.              */
  176.             avltree_delete_min(&CPU->timeout_active_tree);
  177.  
  178.             f = h->handler;
  179.             arg = h->arg;
  180.             timeout_reinitialize(h);
  181.             spinlock_unlock(&h->lock); 
  182.             spinlock_unlock(&CPU->timeoutlock);
  183.  
  184.             f(arg);
  185.  
  186.             spinlock_lock(&CPU->timeoutlock);
  187.         }
  188.         spinlock_unlock(&CPU->timeoutlock);
  189.     }
  190.  
  191.     CPU->missed_clock_ticks = 0;
  192.  
  193.     /*
  194.      * Do CPU usage accounting and find out whether to preempt THREAD.
  195.      */
  196.     if (THREAD) {
  197.         uint64_t ticks;
  198.        
  199.         spinlock_lock(&CPU->lock);
  200.         CPU->needs_relink += 1 + missed_clock_ticks;
  201.         spinlock_unlock(&CPU->lock);   
  202.    
  203.         spinlock_lock(&THREAD->lock);
  204.         if ((ticks = THREAD->ticks)) {
  205.             if (ticks >= 1 + missed_clock_ticks)
  206.                 THREAD->ticks -= 1 + missed_clock_ticks;
  207.             else
  208.                 THREAD->ticks = 0;
  209.         }
  210.         spinlock_unlock(&THREAD->lock);
  211.        
  212.         if (!ticks && !PREEMPTION_DISABLED) {
  213.             scheduler();
  214.         }
  215.     }
  216. }
  217.  
  218. #elif defined CONFIG_TIMEOUT_FAVL_TREE
  219.  
  220. /** Clock routine
  221.  *
  222.  * Clock routine executed from clock interrupt handler
  223.  * (assuming interrupts_disable()'d). Runs expired timeouts
  224.  * and preemptive scheduling.
  225.  *
  226.  */
  227. void clock(void)
  228. {
  229.     timeout_t *h;
  230.     timeout_handler_t f;
  231.     void *arg;
  232.     count_t missed_clock_ticks = CPU->missed_clock_ticks;
  233.     uint64_t i = CPU->timeout_active_tree.base;
  234.     uint64_t last_clock_tick = i + missed_clock_ticks;
  235.     favltree_node_t *expnode;
  236.  
  237.     /*
  238.      * To avoid lock ordering problems,
  239.      * run all expired timeouts as you visit them.
  240.      */
  241.    
  242.     for (; i <= last_clock_tick; i++) {
  243.         clock_update_counters();
  244.         spinlock_lock(&CPU->timeoutlock);
  245.    
  246.         /*
  247.          * Check whether first timeout (with the smallest key in the tree) time out. If so perform
  248.          * callback function and try next timeout (more timeouts can have same timeout).
  249.          * Function favltree_find_min works in contant time.
  250.          */
  251.         while ((expnode = favltree_find_min(&CPU->timeout_active_tree)) != NULL) {
  252.             h = favltree_get_instance(expnode,timeout_t,node);
  253.             spinlock_lock(&h->lock);
  254.             if (expnode->key != i) {
  255.                 /*
  256.                  * Base is increased every for cycle.
  257.                  */
  258.                 (CPU->timeout_active_tree.base)++;
  259.                 spinlock_unlock(&h->lock);
  260.                 break;
  261.             }
  262.            
  263.             /*
  264.              * Delete minimal key from the tree and repair tree structure in
  265.              * logarithmic time.
  266.              */
  267.             favltree_delete_min(&CPU->timeout_active_tree);
  268.  
  269.             f = h->handler;
  270.             arg = h->arg;
  271.             timeout_reinitialize(h);
  272.             spinlock_unlock(&h->lock); 
  273.             spinlock_unlock(&CPU->timeoutlock);
  274.  
  275.             f(arg);
  276.  
  277.             spinlock_lock(&CPU->timeoutlock);
  278.         }
  279.         spinlock_unlock(&CPU->timeoutlock);
  280.     }
  281.  
  282.     CPU->missed_clock_ticks = 0;
  283.  
  284.     /*
  285.      * Do CPU usage accounting and find out whether to preempt THREAD.
  286.      */
  287.     if (THREAD) {
  288.         uint64_t ticks;
  289.        
  290.         spinlock_lock(&CPU->lock);
  291.         CPU->needs_relink += 1 + missed_clock_ticks;
  292.         spinlock_unlock(&CPU->lock);   
  293.    
  294.         spinlock_lock(&THREAD->lock);
  295.         if ((ticks = THREAD->ticks)) {
  296.             if (ticks >= 1 + missed_clock_ticks)
  297.                 THREAD->ticks -= 1 + missed_clock_ticks;
  298.             else
  299.                 THREAD->ticks = 0;
  300.         }
  301.         spinlock_unlock(&THREAD->lock);
  302.        
  303.         if (!ticks && !PREEMPTION_DISABLED) {
  304.             scheduler();
  305.         }
  306.     }
  307. }
  308.  
  309. #elif defined CONFIG_TIMEOUT_EXTAVL_TREE
  310.  
  311. /** Clock routine
  312.  *
  313.  * Clock routine executed from clock interrupt handler
  314.  * (assuming interrupts_disable()'d). Runs expired timeouts
  315.  * and preemptive scheduling.
  316.  *
  317.  */
  318. void clock(void)
  319. {
  320.     timeout_t *h;
  321.     timeout_handler_t f;
  322.     void *arg;
  323.     count_t missed_clock_ticks = CPU->missed_clock_ticks;
  324.     uint64_t i = CPU->timeout_active_tree.base;
  325.     uint64_t last_clock_tick = i + missed_clock_ticks;
  326.     extavltree_node_t *expnode;
  327.     //ipl_t ipl;
  328.  
  329.     /*
  330.      * To avoid lock ordering problems,
  331.      * run all expired timeouts as you visit them.
  332.      */
  333.  
  334.     for (; i <= last_clock_tick; i++) {
  335.         clock_update_counters();
  336.         spinlock_lock(&CPU->timeoutlock);
  337.        
  338.         /*
  339.          * Check whether first timeout in list time out. If so perform callback function and try
  340.          * next timeout (more timeouts can have same timeout).
  341.          */
  342.         while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
  343.             h = extavltree_get_instance(expnode,timeout_t,node);
  344.             spinlock_lock(&h->lock);
  345.             if (expnode->key != i) {
  346.                 /*
  347.                  * Base is increased every for cycle.
  348.                  */
  349.                 (CPU->timeout_active_tree.base)++;
  350.                 spinlock_unlock(&h->lock);
  351.                 break;
  352.             }
  353.            
  354.             /*
  355.              * Delete first node in the list and repair tree structure in
  356.              * constant time.
  357.              */
  358.             extavltree_delete_min(&CPU->timeout_active_tree);
  359.  
  360.             f = h->handler;
  361.             arg = h->arg;
  362.             timeout_reinitialize(h);
  363.             spinlock_unlock(&h->lock); 
  364.             spinlock_unlock(&CPU->timeoutlock);
  365.  
  366.             f(arg);
  367.  
  368.             spinlock_lock(&CPU->timeoutlock);
  369.         }
  370.         spinlock_unlock(&CPU->timeoutlock);
  371.     }
  372.  
  373.     CPU->missed_clock_ticks = 0;
  374.  
  375.     /*
  376.      * Do CPU usage accounting and find out whether to preempt THREAD.
  377.      */
  378.     if (THREAD) {
  379.         uint64_t ticks;
  380.        
  381.         spinlock_lock(&CPU->lock);
  382.         CPU->needs_relink += 1 + missed_clock_ticks;
  383.         spinlock_unlock(&CPU->lock);   
  384.    
  385.         spinlock_lock(&THREAD->lock);
  386.         if ((ticks = THREAD->ticks)) {
  387.             if (ticks >= 1 + missed_clock_ticks)
  388.                 THREAD->ticks -= 1 + missed_clock_ticks;
  389.             else
  390.                 THREAD->ticks = 0;
  391.         }
  392.         spinlock_unlock(&THREAD->lock);
  393.        
  394.         if (!ticks && !PREEMPTION_DISABLED) {
  395.             scheduler();
  396.         }
  397.     }
  398. }
  399.  
  400. #elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE
  401.  
  402. /** Clock routine
  403.  *
  404.  * Clock routine executed from clock interrupt handler
  405.  * (assuming interrupts_disable()'d). Runs expired timeouts
  406.  * and preemptive scheduling.
  407.  *
  408.  */
  409. void clock(void)
  410. {
  411.     extavlreltree_node_t *expnode;
  412.     timeout_t *h;
  413.     timeout_handler_t f;
  414.     void *arg;
  415.     count_t missed_clock_ticks = CPU->missed_clock_ticks;
  416.     int i;
  417.  
  418.     /*
  419.      * To avoid lock ordering problems,
  420.      * run all expired timeouts as you visit them.
  421.      */
  422.     for (i = 0; i <= missed_clock_ticks; i++) {
  423.         clock_update_counters();
  424.         spinlock_lock(&CPU->timeoutlock);
  425.  
  426.         /*
  427.          * Check whether first timeout in list time out. If so perform callback function and try
  428.          * next timeout (more timeouts can have same timeout).
  429.          */
  430.         while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
  431.             h = extavlreltree_get_instance(expnode,timeout_t,node);
  432.             spinlock_lock(&h->lock);
  433.             if (expnode->key != 0) {
  434.                 expnode->key--;
  435.                 spinlock_unlock(&h->lock);
  436.                 break;
  437.             }
  438.            
  439.             /*
  440.              * Delete first node in the list and repair tree structure in
  441.              * constant time. Be careful of expnode's key, it must be 0!
  442.              */
  443.             extavlreltree_delete_min(&CPU->timeout_active_tree);
  444.            
  445.             f = h->handler;
  446.             arg = h->arg;
  447.             timeout_reinitialize(h);
  448.             spinlock_unlock(&h->lock); 
  449.             spinlock_unlock(&CPU->timeoutlock);
  450.  
  451.             f(arg);
  452.  
  453.             spinlock_lock(&CPU->timeoutlock);
  454.         }
  455.         spinlock_unlock(&CPU->timeoutlock);
  456.     }
  457.     CPU->missed_clock_ticks = 0;
  458.  
  459.     /*
  460.      * Do CPU usage accounting and find out whether to preempt THREAD.
  461.      */
  462.  
  463.     if (THREAD) {
  464.         uint64_t ticks;
  465.        
  466.         spinlock_lock(&CPU->lock);
  467.         CPU->needs_relink += 1 + missed_clock_ticks;
  468.         spinlock_unlock(&CPU->lock);   
  469.    
  470.         spinlock_lock(&THREAD->lock);
  471.         if ((ticks = THREAD->ticks)) {
  472.             if (ticks >= 1 + missed_clock_ticks)
  473.                 THREAD->ticks -= 1 + missed_clock_ticks;
  474.             else
  475.                 THREAD->ticks = 0;
  476.         }
  477.         spinlock_unlock(&THREAD->lock);
  478.        
  479.         if (!ticks && !PREEMPTION_DISABLED) {
  480.             scheduler();
  481.         }
  482.     }
  483. }
  484.  
  485.  
  486.  
  487. #else
  488.  
  489.  
  490. /** Clock routine
  491.  *
  492.  * Clock routine executed from clock interrupt handler
  493.  * (assuming interrupts_disable()'d). Runs expired timeouts
  494.  * and preemptive scheduling.
  495.  *
  496.  */
  497. void clock(void)
  498. {
  499.     link_t *l;
  500.     timeout_t *h;
  501.     timeout_handler_t f;
  502.     void *arg;
  503.     count_t missed_clock_ticks = CPU->missed_clock_ticks;
  504.     int i;
  505.  
  506.     /*
  507.      * To avoid lock ordering problems,
  508.      * run all expired timeouts as you visit them.
  509.      */
  510.     for (i = 0; i <= missed_clock_ticks; i++) {
  511.         clock_update_counters();
  512.         spinlock_lock(&CPU->timeoutlock);
  513.         while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
  514.             h = list_get_instance(l, timeout_t, link);
  515.             spinlock_lock(&h->lock);
  516.             if (h->ticks-- != 0) {
  517.                 spinlock_unlock(&h->lock);
  518.                 break;
  519.             }
  520.             list_remove(l);
  521.             f = h->handler;
  522.             arg = h->arg;
  523.             timeout_reinitialize(h);
  524.             spinlock_unlock(&h->lock); 
  525.             spinlock_unlock(&CPU->timeoutlock);
  526.  
  527.             f(arg);
  528.  
  529.             spinlock_lock(&CPU->timeoutlock);
  530.         }
  531.         spinlock_unlock(&CPU->timeoutlock);
  532.     }
  533.     CPU->missed_clock_ticks = 0;
  534.  
  535.     /*
  536.      * Do CPU usage accounting and find out whether to preempt THREAD.
  537.      */
  538.  
  539.     if (THREAD) {
  540.         uint64_t ticks;
  541.        
  542.         spinlock_lock(&CPU->lock);
  543.         CPU->needs_relink += 1 + missed_clock_ticks;
  544.         spinlock_unlock(&CPU->lock);   
  545.    
  546.         spinlock_lock(&THREAD->lock);
  547.         if ((ticks = THREAD->ticks)) {
  548.             if (ticks >= 1 + missed_clock_ticks)
  549.                 THREAD->ticks -= 1 + missed_clock_ticks;
  550.             else
  551.                 THREAD->ticks = 0;
  552.         }
  553.         spinlock_unlock(&THREAD->lock);
  554.        
  555.         if (!ticks && !PREEMPTION_DISABLED) {
  556.             scheduler();
  557.         }
  558.     }
  559. }
  560.  
  561. #endif
  562. /** @}
  563.  */
  564.