Subversion Repositories HelenOS

Rev

Rev 4505 | Rev 4582 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2009 Lukas Mejdrech
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup eth
  30.  *  @{
  31.  */
  32.  
  33. /** @file
  34.  *  Ethernet module implementation.
  35.  *  @see eth.h
  36.  */
  37.  
  38. #include <async.h>
  39. #include <malloc.h>
  40. #include <mem.h>
  41. #include <stdio.h>
  42.  
  43. #include <ipc/ipc.h>
  44. #include <ipc/services.h>
  45.  
  46. #include "../../err.h"
  47. #include "../../messages.h"
  48. #include "../../modules.h"
  49.  
  50. #include "../../include/byteorder.h"
  51. #include "../../include/crc.h"
  52. #include "../../include/ethernet_lsap.h"
  53. #include "../../include/ethernet_protocols.h"
  54. #include "../../include/protocol_map.h"
  55. #include "../../include/device.h"
  56. #include "../../include/netif_interface.h"
  57. #include "../../include/net_interface.h"
  58. #include "../../include/nil_interface.h"
  59. #include "../../include/il_interface.h"
  60.  
  61. #include "../../structures/measured_strings.h"
  62. #include "../../structures/packet/packet_client.h"
  63.  
  64. #include "../nil_module.h"
  65.  
  66. #include "eth.h"
  67. #include "eth_header.h"
  68.  
  69. /** Reserved packet prefix length.
  70.  */
  71. #define ETH_PREFIX      ( sizeof( eth_header_t ) + sizeof( eth_header_lsap_t ) + sizeof( eth_header_snap_t ))
  72.  
  73. /** Reserved packet suffix length.
  74.  */
  75. #define ETH_SUFFIX      sizeof( eth_fcs_t )
  76.  
  77. /** Maximum packet content length.
  78.  */
  79. #define ETH_MAX_CONTENT 1500
  80.  
  81. /** Minimum packet content length.
  82.  */
  83. #define ETH_MIN_CONTENT 46u
  84.  
  85. /** Maximum tagged packet content length.
  86.  */
  87. #define ETH_MAX_TAGGED_CONTENT( flags ) ( ETH_MAX_CONTENT - (( IS_8023_2_LSAP( flags ) || IS_8023_2_SNAP( flags )) ? sizeof( eth_header_lsap_t ) : 0 ) - ( IS_8023_2_SNAP( flags ) ? sizeof( eth_header_snap_t ) : 0 ))
  88.  
  89. /** Minimum tagged packet content length.
  90.  */
  91. #define ETH_MIN_TAGGED_CONTENT( flags ) ( ETH_MIN_CONTENT - (( IS_8023_2_LSAP( flags ) || IS_8023_2_SNAP( flags )) ? sizeof( eth_header_lsap_t ) : 0 ) - ( IS_8023_2_SNAP( flags ) ? sizeof( eth_header_snap_t ) : 0 ))
  92.  
  93. /** Dummy flag shift value.
  94.  */
  95. #define ETH_DUMMY_SHIFT 0
  96.  
  97. /** Mode flag shift value.
  98.  */
  99. #define ETH_MODE_SHIFT  1
  100.  
  101. /** Dummy device flag.
  102.  *  Preamble and FCS are mandatory part of the packets.
  103.  */
  104. #define ETH_DUMMY               ( 1 << ETH_DUMMY_SHIFT )
  105.  
  106. /** Returns the dummy flag.
  107.  *  @see ETH_DUMMY
  108.  */
  109. #define IS_DUMMY( flags )       (( flags ) & ETH_DUMMY )
  110.  
  111. /** Device mode flags.
  112.  *  @see ETH_DIX
  113.  *  @see ETH_8023_2_LSAP
  114.  *  @see ETH_8023_2_SNAP
  115.  */
  116. #define ETH_MODE_MASK           ( 3 << ETH_MODE_SHIFT )
  117.  
  118. /** DIX Ethernet mode flag.
  119.  */
  120. #define ETH_DIX                 ( 1 << ETH_MODE_SHIFT )
  121.  
  122. /** Returns whether the DIX Ethernet mode flag is set.
  123.  *  @param flags The ethernet flags. Input parameter.
  124.  *  @see ETH_DIX
  125.  */
  126. #define IS_DIX( flags )         ((( flags ) & ETH_MODE_MASK ) == ETH_DIX )
  127.  
  128. /** 802.3 + 802.2 + LSAP mode flag.
  129.  */
  130. #define ETH_8023_2_LSAP         ( 2 << ETH_MODE_SHIFT )
  131.  
  132. /** Returns whether the 802.3 + 802.2 + LSAP mode flag is set.
  133.  *  @param flags The ethernet flags. Input parameter.
  134.  *  @see ETH_8023_2_LSAP
  135.  */
  136. #define IS_8023_2_LSAP( flags ) ((( flags ) & ETH_MODE_MASK ) == ETH_8023_2_LSAP )
  137.  
  138. /** 802.3 + 802.2 + LSAP + SNAP mode flag.
  139.  */
  140. #define ETH_8023_2_SNAP         ( 3 << ETH_MODE_SHIFT )
  141.  
  142. /** Returns whether the 802.3 + 802.2 + LSAP + SNAP mode flag is set.
  143.  *  @param flags The ethernet flags. Input parameter.
  144.  *  @see ETH_8023_2_SNAP
  145.  */
  146. #define IS_8023_2_SNAP( flags ) ((( flags ) & ETH_MODE_MASK ) == ETH_8023_2_SNAP )
  147.  
  148. /** Type definition of the ethernet address type.
  149.  *  @see eth_addr_type
  150.  */
  151. typedef enum eth_addr_type  eth_addr_type_t;
  152.  
  153. /** Type definition of the ethernet address type pointer.
  154.  *  @see eth_addr_type
  155.  */
  156. typedef eth_addr_type_t *   eth_addr_type_ref;
  157.  
  158. /** Ethernet address type.
  159.  */
  160. enum eth_addr_type{
  161.     /** Local address.
  162.      */
  163.     ETH_LOCAL_ADDR,
  164.     /** Broadcast address.
  165.      */
  166.     ETH_BROADCAST_ADDR
  167. };
  168.  
  169. /** Ethernet module global data.
  170.  */
  171. eth_globals_t   eth_globals;
  172.  
  173. /** Processes IPC messages from the registered device driver modules in an infinite loop.
  174.  *  @param iid The message identifier. Input parameter.
  175.  *  @param icall The message parameters. Input/output parameter.
  176.  */
  177. void    eth_receiver( ipc_callid_t iid, ipc_call_t * icall );
  178.  
  179. /** Registers new device or updates the MTU of an existing one.
  180.  *  Determines the device local hardware address.
  181.  *  @param device_id The new device identifier. Input parameter.
  182.  *  @param service The device driver service. Input parameter.
  183.  *  @param mtu The device maximum transmission unit. Input parameter.
  184.  *  @returns EOK on success.
  185.  *  @returns EEXIST if the device with the different service exists.
  186.  *  @returns ENOMEM if there is not enough memory left.
  187.  *  @returns Other error codes as defined for the net_get_device_conf_req() function.
  188.  *  @returns Other error codes as defined for the netif_bind_service() function.
  189.  *  @returns Other error codes as defined for the netif_get_addr() function.
  190.  */
  191. int eth_device_message( device_id_t device_id, services_t service, size_t mtu );
  192.  
  193. /** Registers receiving module service.
  194.  *  Passes received packets for this service.
  195.  *  @param service The module service. Input parameter.
  196.  *  @param phone The service phone. Input parameter.
  197.  *  @returns EOK on success.
  198.  *  @returns ENOENT if the service is not known.
  199.  *  @returns ENOMEM if there is not enough memory left.
  200.  */
  201. int nil_register_message( services_t service, int phone );
  202.  
  203. /** Returns the device packet dimensions for sending.
  204.  *  @param device_id The device identifier. Input parameter.
  205.  *  @param addr_len The minimum reserved address length. Output parameter.
  206.  *  @param prefix The minimum reserved prefix size. Output parameter.
  207.  *  @param content The maximum content size. Output parameter.
  208.  *  @param suffix The minimum reserved suffix size. Output parameter.
  209.  *  @returns EOK on success.
  210.  *  @returns EBADMEM if either one of the parameters is NULL.
  211.  *  @returns ENOENT if there is no such device.
  212.  */
  213. int eth_packet_space_message( device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix );
  214.  
  215. /** Returns the device hardware address.
  216.  *  @param device_id The device identifier. Input parameter.
  217.  *  @param type Type of the desired address. Input parameter
  218.  *  @param address The device hardware address. Output parameter.
  219.  *  @returns EOK on success.
  220.  *  @returns EBADMEM if the address parameter is NULL.
  221.  *  @returns ENOENT if there no such device.
  222.  */
  223. int eth_addr_message( device_id_t device_id, eth_addr_type_t type, measured_string_ref * address );
  224.  
  225. /** Sends the packet queue.
  226.  *  Sends only packet successfully processed by the eth_prepare_packet() function.
  227.  *  @param device_id The device identifier. Input parameter.
  228.  *  @param packet The packet queue. Input parameter.
  229.  *  @param sender The sending module service. Input parameter.
  230.  *  @returns EOK on success.
  231.  *  @returns ENOENT if there no such device.
  232.  *  @returns EINVAL if the service parameter is not known.
  233.  */
  234. int eth_send_message( device_id_t device_id, packet_t packet, services_t sender );
  235.  
  236. /** Processes the received packet and chooses the target registered module.
  237.  *  @param flags The device flags. Input parameter.
  238.  *  @param packet The packet. Input parameter.
  239.  *  @returns The target registered module.
  240.  *  @returns NULL if the packet is not long enough.
  241.  *  @returns NULL if the packet is too long.
  242.  *  @returns NULL if the raw ethernet protocol is used.
  243.  *  @returns NULL if the dummy device FCS checksum is invalid.
  244.  *  @returns NULL if the packet address length is not big enough.
  245.  */
  246. eth_proto_ref   eth_process_packet( int flags, packet_t packet );
  247.  
  248. /** Prepares the packet for sending.
  249.  *  @param flags The device flags. Input parameter.
  250.  *  @param packet The packet. Input parameter.
  251.  *  @param src_addr The source hardware address. Input parameter.
  252.  *  @param ethertype The ethernet protocol type. Input parameter.
  253.  *  @param mtu The device maximum transmission unit. Input parameter.
  254.  *  @returns EOK on success.
  255.  *  @returns EINVAL if the packet addresses length is not long enough.
  256.  *  @returns EINVAL if the packet is bigger than the device MTU.
  257.  *  @returns ENOMEM if there is not enough memory in the packet.
  258.  */
  259. int eth_prepare_packet( int flags, packet_t packet, uint8_t * src_addr, int ethertype, size_t mtu );
  260.  
  261. DEVICE_MAP_IMPLEMENT( eth_devices, eth_device_t )
  262.  
  263. INT_MAP_IMPLEMENT( eth_protos, eth_proto_t )
  264.  
  265. int nil_device_state_msg( int nil_phone, device_id_t device_id, int state ){
  266.     int             index;
  267.     eth_proto_ref   proto;
  268.  
  269.     //TODO clear device if off?
  270.     rwlock_read_lock( & eth_globals.protos_lock );
  271.     for( index = eth_protos_count( & eth_globals.protos ) - 1; index >= 0; -- index ){
  272.         proto = eth_protos_get_index( & eth_globals.protos, index );
  273.         if( proto && proto->phone ) il_device_state_msg( proto->phone, device_id, state, proto->service );
  274.     }
  275.     rwlock_read_unlock( & eth_globals.protos_lock );
  276.     return EOK;
  277. }
  278.  
  279. int nil_initialize( int net_phone ){
  280.     ERROR_DECLARE;
  281.  
  282.     rwlock_initialize( & eth_globals.devices_lock );
  283.     rwlock_initialize( & eth_globals.protos_lock );
  284.     rwlock_write_lock( & eth_globals.devices_lock );
  285.     rwlock_write_lock( & eth_globals.protos_lock );
  286.     eth_globals.net_phone = net_phone;
  287.     eth_globals.broadcast_addr = measured_string_create_bulk( "\xFF\xFF\xFF\xFF\xFF\xFF", CONVERT_SIZE( uint8_t, char, ETH_ADDR ));
  288.     if( ! eth_globals.broadcast_addr ) return ENOMEM;
  289.     ERROR_PROPAGATE( eth_devices_initialize( & eth_globals.devices ));
  290.     if( ERROR_OCCURRED( eth_protos_initialize( & eth_globals.protos ))){
  291.         eth_devices_destroy( & eth_globals.devices );
  292.         return ERROR_CODE;
  293.     }
  294.     rwlock_write_unlock( & eth_globals.protos_lock );
  295.     rwlock_write_unlock( & eth_globals.devices_lock );
  296.     return EOK;
  297. }
  298.  
  299. int eth_device_message( device_id_t device_id, services_t service, size_t mtu ){
  300.     ERROR_DECLARE;
  301.  
  302.     eth_device_ref  device;
  303.     int             index;
  304.     measured_string_t   names[ 2 ] = {{ "ETH_MODE", 8 }, { "ETH_DUMMY", 9 }};
  305.     measured_string_ref configuration;
  306.     size_t              count = sizeof( names ) / sizeof( measured_string_t );
  307.     char *              data;
  308.  
  309.     rwlock_write_lock( & eth_globals.devices_lock );
  310.     // an existing device?
  311.     device = eth_devices_find( & eth_globals.devices, device_id );
  312.     if( device ){
  313.         if( device->service != service ){
  314.             printf( "Device %d already exists\n", device->device_id );
  315.             rwlock_write_unlock( & eth_globals.devices_lock );
  316.             return EEXIST;
  317.         }else{
  318.             // update mtu
  319.             device->mtu = mtu;
  320.             printf( "Device %d already exists:\tMTU\t= %d\n", device->device_id, device->mtu );
  321.         }
  322.     }else{
  323.         // create a new device
  324.         device = ( eth_device_ref ) malloc( sizeof( eth_device_t ));
  325.         if( ! device ) return ENOMEM;
  326.         device->device_id = device_id;
  327.         device->service = service;
  328.         device->flags = 0;
  329.         device->mtu = (( mtu > 0 ) && ( mtu <= ETH_MAX_TAGGED_CONTENT( device->flags ))) ? mtu : ETH_MAX_TAGGED_CONTENT( device->flags );
  330.         configuration = & names[ 0 ];
  331.         if( ERROR_OCCURRED( net_get_device_conf_req( eth_globals.net_phone, device->device_id, & configuration, count, & data ))){
  332.             rwlock_write_unlock( & eth_globals.devices_lock );
  333.             free( device );
  334.             return ERROR_CODE;
  335.         }
  336.         if( configuration ){
  337.             if( ! str_lcmp( configuration[ 0 ].value, "DIX", configuration[ 0 ].length )){
  338.                 device->flags |= ETH_DIX;
  339.             }else if( ! str_lcmp( configuration[ 0 ].value, "8023_2_LSAP", configuration[ 0 ].length )){
  340.                 // TODO 8023_2_LSAP
  341.                 printf( "8023_2_LSAP is not supported (yet?), DIX used instead\n" );
  342.                 device->flags |= ETH_DIX;
  343.             }else device->flags |= ETH_8023_2_SNAP;
  344.             if(( configuration[ 1 ].value ) && ( configuration[ 1 ].value[ 0 ] == 'y' )){
  345.                 device->flags |= ETH_DUMMY;
  346.             }
  347.             net_free_settings( configuration, data );
  348.         }else{
  349.             device->flags |= ETH_8023_2_SNAP;
  350.         }
  351.         // bind the device driver
  352.         device->phone = netif_bind_service( device->service, device->device_id, SERVICE_ETHERNET, eth_receiver );
  353.         if( device->phone < 0 ){
  354.             rwlock_write_unlock( & eth_globals.devices_lock );
  355.             free( device );
  356.             return device->phone;
  357.         }
  358.         // get hardware address
  359.         if( ERROR_OCCURRED( netif_get_addr( device->phone, device->device_id, & device->addr, & device->addr_data ))){
  360.             rwlock_write_unlock( & eth_globals.devices_lock );
  361.             free( device );
  362.             return ERROR_CODE;
  363.         }
  364.         // add to the cache
  365.         index = eth_devices_add( & eth_globals.devices, device->device_id, device );
  366.         if( index < 0 ){
  367.             rwlock_write_unlock( & eth_globals.devices_lock );
  368.             free( device->addr );
  369.             free( device->addr_data );
  370.             free( device );
  371.             return index;
  372.         }
  373.         printf( "New device registered:\n\tid\t= %d\n\tservice\t= %d\n\tMTU\t= %d\n\taddress\t= %X:%X:%X:%X:%X:%X\n\tflags\t= 0x%x\n", device->device_id, device->service, device->mtu, device->addr_data[ 0 ], device->addr_data[ 1 ], device->addr_data[ 2 ], device->addr_data[ 3 ], device->addr_data[ 4 ], device->addr_data[ 5 ], device->flags );
  374.     }
  375.     rwlock_write_unlock( & eth_globals.devices_lock );
  376.     return EOK;
  377. }
  378.  
  379. eth_proto_ref eth_process_packet( int flags, packet_t packet ){
  380.     ERROR_DECLARE;
  381.  
  382.     eth_header_ex_ref   header;
  383.     size_t              length;
  384.     eth_type_t          type;
  385.     size_t              prefix;
  386.     size_t              suffix;
  387.     eth_fcs_ref         fcs;
  388.     uint8_t *           data;
  389.  
  390.     length = packet_get_data_length( packet );
  391.     if( IS_DUMMY( flags )){
  392.         packet_trim( packet, sizeof( eth_preamble_t ), 0 );
  393.     }
  394.     if( length < sizeof( eth_header_t ) + ETH_MIN_CONTENT + ( IS_DUMMY( flags ) ? ETH_SUFFIX : 0 )) return NULL;
  395.     data = packet_get_data( packet );
  396.     header = ( eth_header_ex_ref ) data;
  397.     type = ntohs( header->header.ethertype );
  398.     if( type >= ETH_MIN_PROTO ){
  399.         // DIX Ethernet
  400.         prefix = sizeof( eth_header_t );
  401.         suffix = 0;
  402.         fcs = ( eth_fcs_ref ) data + length - sizeof( eth_fcs_t );
  403.         length -= sizeof( eth_fcs_t );
  404.     }else if( type <= ETH_MAX_CONTENT ){
  405.         // translate "LSAP" values
  406.         if(( header->lsap.dsap == ETH_LSAP_GLSAP ) && ( header->lsap.ssap == ETH_LSAP_GLSAP )){
  407.             // raw packet
  408.             // discard
  409.             return NULL;
  410.         }else if(( header->lsap.dsap == ETH_LSAP_SNAP ) && ( header->lsap.ssap == ETH_LSAP_SNAP )){
  411.             // IEEE 802.3 + 802.2 + LSAP + SNAP
  412.             // organization code not supported
  413.             type = ntohs( header->snap.ethertype );
  414.             prefix = sizeof( eth_header_t ) + sizeof( eth_header_lsap_t ) + sizeof( eth_header_snap_t );
  415.         }else{
  416.             // IEEE 802.3 + 802.2 LSAP
  417.             type = lsap_map( header->lsap.dsap );
  418.             prefix = sizeof( eth_header_t ) + sizeof( eth_header_lsap_t);
  419.         }
  420.         suffix = ( type < ETH_MIN_CONTENT ) ? ETH_MIN_CONTENT - type : 0u;
  421.         fcs = ( eth_fcs_ref ) data + prefix + type + suffix;
  422.         suffix += length - prefix - type;
  423.         length = prefix + type + suffix;
  424.     }else{
  425.         // invalid length/type, should not occurr
  426.         return NULL;
  427.     }
  428.     if( IS_DUMMY( flags )){
  429.         if(( ~ compute_crc32( ~ 0u, data, length * 8 )) != ntohl( * fcs )){
  430.             return NULL;
  431.         }
  432.         suffix += sizeof( eth_fcs_t );
  433.     }
  434.     if( ERROR_OCCURRED( packet_set_addr( packet, header->header.src, header->header.dest, ETH_ADDR ))
  435.     || ERROR_OCCURRED( packet_trim( packet, prefix, suffix ))){
  436.         return NULL;
  437.     }
  438.     return eth_protos_find( & eth_globals.protos, type );
  439. }
  440.  
  441. int nil_received_msg( int nil_phone, device_id_t device_id, packet_t packet, services_t target ){
  442.     eth_proto_ref   proto;
  443.     packet_t        next;
  444.     eth_device_ref  device;
  445.     int             flags;
  446.  
  447.     rwlock_read_lock( & eth_globals.devices_lock );
  448.     device = eth_devices_find( & eth_globals.devices, device_id );
  449.     if( ! device ){
  450.         rwlock_read_unlock( & eth_globals.devices_lock );
  451.         return ENOENT;
  452.     }
  453.     flags = device->flags;
  454.     rwlock_read_unlock( & eth_globals.devices_lock );
  455.     rwlock_read_lock( & eth_globals.protos_lock );
  456.     do{
  457.         next = pq_detach( packet );
  458.         proto = eth_process_packet( flags, packet );
  459.         if( proto ){
  460.             il_received_msg( proto->phone, device_id, packet, proto->service );
  461.         }else{
  462.             // drop invalid/unknown
  463.             pq_release( eth_globals.net_phone, packet_get_id( packet ));
  464.         }
  465.         packet = next;
  466.     }while( packet );
  467.     rwlock_read_unlock( & eth_globals.protos_lock );
  468.     return EOK;
  469. }
  470.  
  471. int eth_packet_space_message( device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix ){
  472.     eth_device_ref  device;
  473.  
  474.     if( !( addr_len && prefix && content && suffix )) return EBADMEM;
  475.     rwlock_read_lock( & eth_globals.devices_lock );
  476.     device = eth_devices_find( & eth_globals.devices, device_id );
  477.     if( ! device ){
  478.         rwlock_read_unlock( & eth_globals.devices_lock );
  479.         return ENOENT;
  480.     }
  481.     * content = device->mtu;
  482.     rwlock_read_unlock( & eth_globals.devices_lock );
  483.     * addr_len = ETH_ADDR;
  484.     * prefix = ETH_PREFIX;
  485.     * suffix = ETH_MIN_CONTENT + ETH_SUFFIX;
  486.     return EOK;
  487. }
  488.  
  489. int eth_addr_message( device_id_t device_id, eth_addr_type_t type, measured_string_ref * address ){
  490.     eth_device_ref  device;
  491.  
  492.     if( ! address ) return EBADMEM;
  493.     if( type == ETH_BROADCAST_ADDR ){
  494.         * address = eth_globals.broadcast_addr;
  495.     }else{
  496.         rwlock_read_lock( & eth_globals.devices_lock );
  497.         device = eth_devices_find( & eth_globals.devices, device_id );
  498.         if( ! device ){
  499.             rwlock_read_unlock( & eth_globals.devices_lock );
  500.             return ENOENT;
  501.         }
  502.         * address = device->addr;
  503.         rwlock_read_unlock( & eth_globals.devices_lock );
  504.     }
  505.     return ( * address ) ? EOK : ENOENT;
  506. }
  507.  
  508. int nil_register_message( services_t service, int phone ){
  509.     eth_proto_ref   proto;
  510.     int             protocol;
  511.     int             index;
  512.  
  513.     protocol = protocol_map( SERVICE_ETHERNET, service );
  514.     if( ! protocol ) return ENOENT;
  515.     rwlock_write_lock( & eth_globals.protos_lock );
  516.     proto = eth_protos_find( & eth_globals.protos, protocol );
  517.     if( proto ){
  518.         proto->phone = phone;
  519.         rwlock_write_unlock( & eth_globals.protos_lock );
  520.         return EOK;
  521.     }else{
  522.         proto = ( eth_proto_ref ) malloc( sizeof( eth_proto_t ));
  523.         if( ! proto ){
  524.             rwlock_write_unlock( & eth_globals.protos_lock );
  525.             return ENOMEM;
  526.         }
  527.         proto->service = service;
  528.         proto->protocol = protocol;
  529.         proto->phone = phone;
  530.         index = eth_protos_add( & eth_globals.protos, protocol, proto );
  531.         if( index < 0 ){
  532.             rwlock_write_unlock( & eth_globals.protos_lock );
  533.             free( proto );
  534.             return index;
  535.         }
  536.     }
  537.     printf( "New protocol registered:\n\tprotocol\t= 0x%x\n\tservice\t= %d\n\tphone\t= %d\n", proto->protocol, proto->service, proto->phone );
  538.     rwlock_write_unlock( & eth_globals.protos_lock );
  539.     return EOK;
  540. }
  541.  
  542. int eth_prepare_packet( int flags, packet_t packet, uint8_t * src_addr, int ethertype, size_t mtu ){
  543.     eth_header_ex_ref   header;
  544.     eth_header_ref      header_dix;
  545.     eth_fcs_ref         fcs;
  546.     uint8_t *           src;
  547.     uint8_t *           dest;
  548.     size_t              length;
  549.     int                 i;
  550.     void *              padding;
  551.     eth_preamble_ref    preamble;
  552.  
  553.     i = packet_get_addr( packet, & src, & dest );
  554.     if( i < 0 ) return i;
  555.     if( i != ETH_ADDR ) return EINVAL;
  556.     length = packet_get_data_length( packet );
  557.     if( length > mtu ) return EINVAL;
  558.     if( length < ETH_MIN_TAGGED_CONTENT( flags )){
  559.         padding = packet_suffix( packet, ETH_MIN_TAGGED_CONTENT( flags ) - length );
  560.         if( ! padding ) return ENOMEM;
  561.         bzero( padding, ETH_MIN_TAGGED_CONTENT( flags ) - length );
  562.     }
  563.     if( IS_DUMMY( flags )){
  564.         preamble = PACKET_PREFIX( packet, eth_preamble_t );
  565.         if( ! preamble ) return ENOMEM;
  566.         for( i = 0; i < 7; ++ i ) preamble->preamble[ i ] = ETH_PREAMBLE;
  567.         preamble->sfd = ETH_SFD;
  568.     }
  569.     // TODO LSAP only device
  570.     if( IS_DIX( flags ) || IS_8023_2_LSAP( flags )){
  571.         header_dix = PACKET_PREFIX( packet, eth_header_t );
  572.         if( ! header_dix ) return ENOMEM;
  573.         header_dix->ethertype = ( uint16_t ) ethertype;
  574.         memcpy( header_dix->src, src_addr, ETH_ADDR );
  575.         memcpy( header_dix->dest, dest, ETH_ADDR );
  576.         src = & header_dix->dest[ 0 ];
  577.     }else if( IS_8023_2_SNAP( flags )){
  578.         header = PACKET_PREFIX( packet, eth_header_ex_t );
  579.         if( ! header ) return ENOMEM;
  580.         header->header.ethertype = htons( length + sizeof( eth_header_lsap_t ) + sizeof( eth_header_snap_t ));
  581.         header->lsap.dsap = ( uint16_t ) ETH_LSAP_SNAP;
  582.         header->lsap.ssap = header->lsap.dsap;
  583.         header->lsap.ctrl = 0;
  584.         for( i = 0; i < 3; ++ i ) header->snap.proto[ i ] = 0;
  585.         header->snap.ethertype = ( uint16_t ) ethertype;
  586.         memcpy( header->header.src, src_addr, ETH_ADDR );
  587.         memcpy( header->header.dest, dest, ETH_ADDR );
  588.         src = & header->header.dest[ 0 ];
  589.     }
  590.     if( IS_DUMMY( flags )){
  591.         fcs = PACKET_SUFFIX( packet, eth_fcs_t );
  592.         if( ! fcs ) return ENOMEM;
  593.         * fcs = htonl( ~ compute_crc32( ~ 0u, src, length * 8 ));
  594.     }
  595.     return EOK;
  596. }
  597.  
  598. int eth_send_message( device_id_t device_id, packet_t packet, services_t sender ){
  599.     ERROR_DECLARE;
  600.  
  601.     eth_device_ref      device;
  602.     packet_t            next;
  603.     packet_t            tmp;
  604.     int                 ethertype;
  605.  
  606.     ethertype = htons( protocol_map( SERVICE_ETHERNET, sender ));
  607.     if( ! ethertype ){
  608.         pq_release( eth_globals.net_phone, packet_get_id( packet ));
  609.         return EINVAL;
  610.     }
  611.     rwlock_read_lock( & eth_globals.devices_lock );
  612.     device = eth_devices_find( & eth_globals.devices, device_id );
  613.     if( ! device ){
  614.         rwlock_read_unlock( & eth_globals.devices_lock );
  615.         return ENOENT;
  616.     }
  617.     // process packet queue
  618.     next = packet;
  619.     do{
  620.         if( ERROR_OCCURRED( eth_prepare_packet( device->flags, next, ( uint8_t * ) device->addr->value, ethertype, device->mtu ))){
  621.             // release invalid packet
  622.             tmp = pq_detach( next );
  623.             if( next == packet ) packet = tmp;
  624.             pq_release( eth_globals.net_phone, packet_get_id( next ));
  625.             next = tmp;
  626.         }else{
  627.             next = pq_next( next );
  628.         }
  629.     }while( next );
  630.     // send packet queue
  631.     if( packet ){
  632.         netif_send_msg( device->phone, device_id, packet, SERVICE_ETHERNET );
  633.     }
  634.     rwlock_read_unlock( & eth_globals.devices_lock );
  635.     return EOK;
  636. }
  637.  
  638. int nil_message( ipc_callid_t callid, ipc_call_t * call, ipc_call_t * answer, int * answer_count ){
  639.     ERROR_DECLARE;
  640.  
  641.     measured_string_ref address;
  642.     packet_t            packet;
  643.  
  644. //  printf( "message %d - %d\n", IPC_GET_METHOD( * call ), NET_NIL_FIRST );
  645.     * answer_count = 0;
  646.     switch( IPC_GET_METHOD( * call )){
  647.         case IPC_M_PHONE_HUNGUP:
  648.             return EOK;
  649.         case NET_NIL_DEVICE:
  650.             return eth_device_message( IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ), NIL_GET_MTU( call ));
  651.         case NET_NIL_SEND:
  652.             ERROR_PROPAGATE( packet_translate( eth_globals.net_phone, & packet, IPC_GET_PACKET( call )));
  653.             return eth_send_message( IPC_GET_DEVICE( call ), packet, IPC_GET_SERVICE( call ));
  654.         case NET_NIL_PACKET_SPACE:
  655.             ERROR_PROPAGATE( eth_packet_space_message( IPC_GET_DEVICE( call ), IPC_SET_ADDR( answer ), IPC_SET_PREFIX( answer ), IPC_SET_CONTENT( answer ), IPC_SET_SUFFIX( answer )));
  656.             * answer_count = 4;
  657.             return EOK;
  658.         case NET_NIL_ADDR:
  659.             ERROR_PROPAGATE( eth_addr_message( IPC_GET_DEVICE( call ), ETH_LOCAL_ADDR, & address ));
  660.             return measured_strings_reply( address, 1 );
  661.         case NET_NIL_BROADCAST_ADDR:
  662.             ERROR_PROPAGATE( eth_addr_message( IPC_GET_DEVICE( call ), ETH_BROADCAST_ADDR, & address ));
  663.             return measured_strings_reply( address, 1 );
  664.         case IPC_M_CONNECT_TO_ME:
  665.             return nil_register_message( NIL_GET_PROTO( call ), IPC_GET_PHONE( call ));
  666.     }
  667.     return ENOTSUP;
  668. }
  669.  
  670. void eth_receiver( ipc_callid_t iid, ipc_call_t * icall ){
  671.     ERROR_DECLARE;
  672.  
  673.     packet_t        packet;
  674.  
  675.     while( true ){
  676. //      printf( "message %d - %d\n", IPC_GET_METHOD( * icall ), NET_NIL_FIRST );
  677.         switch( IPC_GET_METHOD( * icall )){
  678.             case NET_NIL_DEVICE_STATE:
  679.                 nil_device_state_msg( 0, IPC_GET_DEVICE( icall ), IPC_GET_STATE( icall ));
  680.                 ipc_answer_0( iid, EOK );
  681.                 break;
  682.             case NET_NIL_RECEIVED:
  683.                 if( ! ERROR_OCCURRED( packet_translate( eth_globals.net_phone, & packet, IPC_GET_PACKET( icall )))){
  684.                     ERROR_CODE = nil_received_msg( 0, IPC_GET_DEVICE( icall ), packet, 0 );
  685.                 }
  686.                 ipc_answer_0( iid, ( ipcarg_t ) ERROR_CODE );
  687.                 break;
  688.             default:
  689.                 ipc_answer_0( iid, ( ipcarg_t ) ENOTSUP );
  690.         }
  691.         iid = async_get_call( icall );
  692.     }
  693. }
  694.  
  695. /** @}
  696.  */
  697.