/*
* Copyright (c) 2009 Lukas Mejdrech
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup eth
* @{
*/
/** @file
* Ethernet module implementation.
* @see eth.h
*/
#include <async.h>
#include <malloc.h>
#include <mem.h>
#include <stdio.h>
#include <string.h>
#include <ipc/ipc.h>
#include <ipc/services.h>
#include "../../err.h"
#include "../../messages.h"
#include "../../modules.h"
#include "../../include/byteorder.h"
#include "../../include/crc.h"
#include "../../include/ethernet_lsap.h"
#include "../../include/ethernet_protocols.h"
#include "../../include/protocol_map.h"
#include "../../include/device.h"
#include "../../include/netif_interface.h"
#include "../../include/net_interface.h"
#include "../../include/nil_interface.h"
#include "../../include/il_interface.h"
#include "../../structures/measured_strings.h"
#include "../../structures/packet/packet_client.h"
#include "../nil_module.h"
#include "eth.h"
#include "eth_header.h"
/** Reserved packet prefix length.
*/
#define ETH_PREFIX ( sizeof( eth_header_t ) + sizeof( eth_header_lsap_t ) + sizeof( eth_header_snap_t ))
/** Reserved packet suffix length.
*/
#define ETH_SUFFIX sizeof( eth_fcs_t )
/** Maximum packet content length.
*/
#define ETH_MAX_CONTENT 1500u
/** Minimum packet content length.
*/
#define ETH_MIN_CONTENT 46u
/** Maximum tagged packet content length.
*/
#define ETH_MAX_TAGGED_CONTENT( flags ) ( ETH_MAX_CONTENT - (( IS_8023_2_LSAP( flags ) || IS_8023_2_SNAP( flags )) ? sizeof( eth_header_lsap_t ) : 0 ) - ( IS_8023_2_SNAP( flags ) ? sizeof( eth_header_snap_t ) : 0 ))
/** Minimum tagged packet content length.
*/
#define ETH_MIN_TAGGED_CONTENT( flags ) ( ETH_MIN_CONTENT - (( IS_8023_2_LSAP( flags ) || IS_8023_2_SNAP( flags )) ? sizeof( eth_header_lsap_t ) : 0 ) - ( IS_8023_2_SNAP( flags ) ? sizeof( eth_header_snap_t ) : 0 ))
/** Dummy flag shift value.
*/
#define ETH_DUMMY_SHIFT 0
/** Mode flag shift value.
*/
#define ETH_MODE_SHIFT 1
/** Dummy device flag.
* Preamble and FCS are mandatory part of the packets.
*/
#define ETH_DUMMY ( 1 << ETH_DUMMY_SHIFT )
/** Returns the dummy flag.
* @see ETH_DUMMY
*/
#define IS_DUMMY( flags ) (( flags ) & ETH_DUMMY )
/** Device mode flags.
* @see ETH_DIX
* @see ETH_8023_2_LSAP
* @see ETH_8023_2_SNAP
*/
#define ETH_MODE_MASK ( 3 << ETH_MODE_SHIFT )
/** DIX Ethernet mode flag.
*/
#define ETH_DIX ( 1 << ETH_MODE_SHIFT )
/** Returns whether the DIX Ethernet mode flag is set.
* @param flags The ethernet flags. Input parameter.
* @see ETH_DIX
*/
#define IS_DIX( flags ) ((( flags ) & ETH_MODE_MASK ) == ETH_DIX )
/** 802.3 + 802.2 + LSAP mode flag.
*/
#define ETH_8023_2_LSAP ( 2 << ETH_MODE_SHIFT )
/** Returns whether the 802.3 + 802.2 + LSAP mode flag is set.
* @param flags The ethernet flags. Input parameter.
* @see ETH_8023_2_LSAP
*/
#define IS_8023_2_LSAP( flags ) ((( flags ) & ETH_MODE_MASK ) == ETH_8023_2_LSAP )
/** 802.3 + 802.2 + LSAP + SNAP mode flag.
*/
#define ETH_8023_2_SNAP ( 3 << ETH_MODE_SHIFT )
/** Returns whether the 802.3 + 802.2 + LSAP + SNAP mode flag is set.
* @param flags The ethernet flags. Input parameter.
* @see ETH_8023_2_SNAP
*/
#define IS_8023_2_SNAP( flags ) ((( flags ) & ETH_MODE_MASK ) == ETH_8023_2_SNAP )
/** Type definition of the ethernet address type.
* @see eth_addr_type
*/
typedef enum eth_addr_type eth_addr_type_t;
/** Type definition of the ethernet address type pointer.
* @see eth_addr_type
*/
typedef eth_addr_type_t * eth_addr_type_ref;
/** Ethernet address type.
*/
enum eth_addr_type{
/** Local address.
*/
ETH_LOCAL_ADDR,
/** Broadcast address.
*/
ETH_BROADCAST_ADDR
};
/** Ethernet module global data.
*/
eth_globals_t eth_globals;
/** @name Message processing functions
*/
/*@{*/
/** Processes IPC messages from the registered device driver modules in an infinite loop.
* @param iid The message identifier. Input parameter.
* @param icall The message parameters. Input/output parameter.
*/
void eth_receiver( ipc_callid_t iid, ipc_call_t * icall );
/** Registers new device or updates the MTU of an existing one.
* Determines the device local hardware address.
* @param device_id The new device identifier. Input parameter.
* @param service The device driver service. Input parameter.
* @param mtu The device maximum transmission unit. Input parameter.
* @returns EOK on success.
* @returns EEXIST if the device with the different service exists.
* @returns ENOMEM if there is not enough memory left.
* @returns Other error codes as defined for the net_get_device_conf_req() function.
* @returns Other error codes as defined for the netif_bind_service() function.
* @returns Other error codes as defined for the netif_get_addr() function.
*/
int eth_device_message( device_id_t device_id, services_t service, size_t mtu );
/** Registers receiving module service.
* Passes received packets for this service.
* @param service The module service. Input parameter.
* @param phone The service phone. Input parameter.
* @returns EOK on success.
* @returns ENOENT if the service is not known.
* @returns ENOMEM if there is not enough memory left.
*/
int eth_register_message( services_t service, int phone );
/** Returns the device packet dimensions for sending.
* @param device_id The device identifier. Input parameter.
* @param addr_len The minimum reserved address length. Output parameter.
* @param prefix The minimum reserved prefix size. Output parameter.
* @param content The maximum content size. Output parameter.
* @param suffix The minimum reserved suffix size. Output parameter.
* @returns EOK on success.
* @returns EBADMEM if either one of the parameters is NULL.
* @returns ENOENT if there is no such device.
*/
int eth_packet_space_message( device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix );
/** Returns the device hardware address.
* @param device_id The device identifier. Input parameter.
* @param type Type of the desired address. Input parameter
* @param address The device hardware address. Output parameter.
* @returns EOK on success.
* @returns EBADMEM if the address parameter is NULL.
* @returns ENOENT if there no such device.
*/
int eth_addr_message( device_id_t device_id, eth_addr_type_t type, measured_string_ref * address );
/** Sends the packet queue.
* Sends only packet successfully processed by the eth_prepare_packet() function.
* @param device_id The device identifier. Input parameter.
* @param packet The packet queue. Input parameter.
* @param sender The sending module service. Input parameter.
* @returns EOK on success.
* @returns ENOENT if there no such device.
* @returns EINVAL if the service parameter is not known.
*/
int eth_send_message( device_id_t device_id, packet_t packet, services_t sender );
/*@}*/
/** Processes the received packet and chooses the target registered module.
* @param flags The device flags. Input parameter.
* @param packet The packet. Input parameter.
* @returns The target registered module.
* @returns NULL if the packet is not long enough.
* @returns NULL if the packet is too long.
* @returns NULL if the raw ethernet protocol is used.
* @returns NULL if the dummy device FCS checksum is invalid.
* @returns NULL if the packet address length is not big enough.
*/
eth_proto_ref eth_process_packet( int flags, packet_t packet );
/** Prepares the packet for sending.
* @param flags The device flags. Input parameter.
* @param packet The packet. Input parameter.
* @param src_addr The source hardware address. Input parameter.
* @param ethertype The ethernet protocol type. Input parameter.
* @param mtu The device maximum transmission unit. Input parameter.
* @returns EOK on success.
* @returns EINVAL if the packet addresses length is not long enough.
* @returns EINVAL if the packet is bigger than the device MTU.
* @returns ENOMEM if there is not enough memory in the packet.
*/
int eth_prepare_packet( int flags, packet_t packet, uint8_t * src_addr, int ethertype, size_t mtu );
DEVICE_MAP_IMPLEMENT( eth_devices, eth_device_t )
INT_MAP_IMPLEMENT( eth_protos, eth_proto_t )
int nil_device_state_msg( int nil_phone, device_id_t device_id, int state ){
int index;
eth_proto_ref proto;
fibril_rwlock_read_lock( & eth_globals.protos_lock );
for( index = eth_protos_count( & eth_globals.protos ) - 1; index >= 0; -- index ){
proto = eth_protos_get_index( & eth_globals.protos, index );
if( proto && proto->phone ) il_device_state_msg( proto->phone, device_id, state, proto->service );
}
fibril_rwlock_read_unlock( & eth_globals.protos_lock );
return EOK;
}
int nil_initialize( int net_phone ){
ERROR_DECLARE;
fibril_rwlock_initialize( & eth_globals.devices_lock );
fibril_rwlock_initialize( & eth_globals.protos_lock );
fibril_rwlock_write_lock( & eth_globals.devices_lock );
fibril_rwlock_write_lock( & eth_globals.protos_lock );
eth_globals.net_phone = net_phone;
eth_globals.broadcast_addr = measured_string_create_bulk( "\xFF\xFF\xFF\xFF\xFF\xFF", CONVERT_SIZE( uint8_t, char, ETH_ADDR ));
if( ! eth_globals.broadcast_addr ) return ENOMEM;
ERROR_PROPAGATE( eth_devices_initialize( & eth_globals.devices ));
if( ERROR_OCCURRED( eth_protos_initialize( & eth_globals.protos ))){
eth_devices_destroy( & eth_globals.devices );
return ERROR_CODE;
}
fibril_rwlock_write_unlock( & eth_globals.protos_lock );
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
return EOK;
}
int eth_device_message( device_id_t device_id, services_t service, size_t mtu ){
ERROR_DECLARE;
eth_device_ref device;
int index;
measured_string_t names[ 2 ] = {{ "ETH_MODE", 8 }, { "ETH_DUMMY", 9 }};
measured_string_ref configuration;
size_t count = sizeof( names ) / sizeof( measured_string_t );
char * data;
eth_proto_ref proto;
fibril_rwlock_write_lock( & eth_globals.devices_lock );
// an existing device?
device = eth_devices_find( & eth_globals.devices, device_id );
if( device ){
if( device->service != service ){
printf( "Device %d already exists\n", device
->device_id
);
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
return EEXIST;
}else{
// update mtu
if(( mtu > 0 ) && ( mtu <= ETH_MAX_TAGGED_CONTENT( device->flags ))){
device->mtu = mtu;
}else{
device->mtu = ETH_MAX_TAGGED_CONTENT( device->flags );
}
printf( "Device %d already exists:\tMTU\t= %d\n", device
->device_id
, device
->mtu
);
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
// notify all upper layer modules
fibril_rwlock_read_lock( & eth_globals.protos_lock );
for( index = 0; index < eth_protos_count( & eth_globals.protos ); ++ index ){
proto = eth_protos_get_index( & eth_globals.protos, index );
if ( proto->phone ){
il_mtu_changed_msg( proto->phone, device->device_id, device->mtu, proto->service );
}
}
fibril_rwlock_read_unlock( & eth_globals.protos_lock );
return EOK;
}
}else{
// create a new device
device
= ( eth_device_ref
) malloc( sizeof( eth_device_t
));
if( ! device ) return ENOMEM;
device->device_id = device_id;
device->service = service;
device->flags = 0;
if(( mtu > 0 ) && ( mtu <= ETH_MAX_TAGGED_CONTENT( device->flags ))){
device->mtu = mtu;
}else{
device->mtu = ETH_MAX_TAGGED_CONTENT( device->flags );
}
configuration = & names[ 0 ];
if( ERROR_OCCURRED( net_get_device_conf_req( eth_globals.net_phone, device->device_id, & configuration, count, & data ))){
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
return ERROR_CODE;
}
if( configuration ){
if( ! str_lcmp( configuration[ 0 ].value, "DIX", configuration[ 0 ].length )){
device->flags |= ETH_DIX;
}else if( ! str_lcmp( configuration[ 0 ].value, "8023_2_LSAP", configuration[ 0 ].length )){
// TODO 8023_2_LSAP
printf( "8023_2_LSAP is not supported (yet?), DIX used instead\n" );
device->flags |= ETH_DIX;
}else device->flags |= ETH_8023_2_SNAP;
if(( configuration[ 1 ].value ) && ( configuration[ 1 ].value[ 0 ] == 'y' )){
device->flags |= ETH_DUMMY;
}
net_free_settings( configuration, data );
}else{
device->flags |= ETH_8023_2_SNAP;
}
// bind the device driver
device->phone = netif_bind_service( device->service, device->device_id, SERVICE_ETHERNET, eth_receiver );
if( device->phone < 0 ){
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
return device->phone;
}
// get hardware address
if( ERROR_OCCURRED( netif_get_addr( device->phone, device->device_id, & device->addr, & device->addr_data ))){
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
return ERROR_CODE;
}
// add to the cache
index = eth_devices_add( & eth_globals.devices, device->device_id, device );
if( index < 0 ){
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
free( device
->addr_data
);
return index;
}
printf( "New device registered:\n\tid\t= %d\n\tservice\t= %d\n\tMTU\t= %d\n\taddress\t= %X:%X:%X:%X:%X:%X\n\tflags\t= 0x%x\n", device
->device_id
, device
->service
, device
->mtu
, device
->addr_data
[ 0 ], device
->addr_data
[ 1 ], device
->addr_data
[ 2 ], device
->addr_data
[ 3 ], device
->addr_data
[ 4 ], device
->addr_data
[ 5 ], device
->flags
);
}
fibril_rwlock_write_unlock( & eth_globals.devices_lock );
return EOK;
}
eth_proto_ref eth_process_packet( int flags, packet_t packet ){
ERROR_DECLARE;
eth_header_ex_ref header;
size_t length;
eth_type_t type;
size_t prefix;
size_t suffix;
eth_fcs_ref fcs;
uint8_t * data;
length = packet_get_data_length( packet );
if( IS_DUMMY( flags )){
packet_trim( packet, sizeof( eth_preamble_t ), 0 );
}
if( length < sizeof( eth_header_t ) + ETH_MIN_CONTENT + ( IS_DUMMY( flags ) ? ETH_SUFFIX : 0 )) return NULL;
data = packet_get_data( packet );
header = ( eth_header_ex_ref ) data;
type = ntohs( header->header.ethertype );
if( type >= ETH_MIN_PROTO ){
// DIX Ethernet
prefix = sizeof( eth_header_t );
suffix = 0;
fcs = ( eth_fcs_ref ) data + length - sizeof( eth_fcs_t );
length -= sizeof( eth_fcs_t );
}else if( type <= ETH_MAX_CONTENT ){
// translate "LSAP" values
if(( header->lsap.dsap == ETH_LSAP_GLSAP ) && ( header->lsap.ssap == ETH_LSAP_GLSAP )){
// raw packet
// discard
return NULL;
}else if(( header->lsap.dsap == ETH_LSAP_SNAP ) && ( header->lsap.ssap == ETH_LSAP_SNAP )){
// IEEE 802.3 + 802.2 + LSAP + SNAP
// organization code not supported
type = ntohs( header->snap.ethertype );
prefix = sizeof( eth_header_t ) + sizeof( eth_header_lsap_t ) + sizeof( eth_header_snap_t );
}else{
// IEEE 802.3 + 802.2 LSAP
type = lsap_map( header->lsap.dsap );
prefix = sizeof( eth_header_t ) + sizeof( eth_header_lsap_t);
}
suffix = ( type < ETH_MIN_CONTENT ) ? ETH_MIN_CONTENT - type : 0u;
fcs = ( eth_fcs_ref ) data + prefix + type + suffix;
suffix += length - prefix - type;
length = prefix + type + suffix;
}else{
// invalid length/type, should not occurr
return NULL;
}
if( IS_DUMMY( flags )){
if(( ~ compute_crc32( ~ 0u, data, length * 8 )) != ntohl( * fcs )){
return NULL;
}
suffix += sizeof( eth_fcs_t );
}
if( ERROR_OCCURRED( packet_set_addr( packet, header->header.source_address, header->header.destination_address, ETH_ADDR ))
|| ERROR_OCCURRED( packet_trim( packet, prefix, suffix ))){
return NULL;
}
return eth_protos_find( & eth_globals.protos, type );
}
int nil_received_msg( int nil_phone, device_id_t device_id, packet_t packet, services_t target ){
eth_proto_ref proto;
packet_t next;
eth_device_ref device;
int flags;
fibril_rwlock_read_lock( & eth_globals.devices_lock );
device = eth_devices_find( & eth_globals.devices, device_id );
if( ! device ){
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
return ENOENT;
}
flags = device->flags;
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
fibril_rwlock_read_lock( & eth_globals.protos_lock );
do{
next = pq_detach( packet );
proto = eth_process_packet( flags, packet );
if( proto ){
il_received_msg( proto->phone, device_id, packet, proto->service );
}else{
// drop invalid/unknown
pq_release( eth_globals.net_phone, packet_get_id( packet ));
}
packet = next;
}while( packet );
fibril_rwlock_read_unlock( & eth_globals.protos_lock );
return EOK;
}
int eth_packet_space_message( device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix ){
eth_device_ref device;
if( !( addr_len && prefix && content && suffix )) return EBADMEM;
fibril_rwlock_read_lock( & eth_globals.devices_lock );
device = eth_devices_find( & eth_globals.devices, device_id );
if( ! device ){
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
return ENOENT;
}
* content = device->mtu;
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
* addr_len = ETH_ADDR;
* prefix = ETH_PREFIX;
* suffix = ETH_MIN_CONTENT + ETH_SUFFIX;
return EOK;
}
int eth_addr_message( device_id_t device_id, eth_addr_type_t type, measured_string_ref * address ){
eth_device_ref device;
if( ! address ) return EBADMEM;
if( type == ETH_BROADCAST_ADDR ){
* address = eth_globals.broadcast_addr;
}else{
fibril_rwlock_read_lock( & eth_globals.devices_lock );
device = eth_devices_find( & eth_globals.devices, device_id );
if( ! device ){
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
return ENOENT;
}
* address = device->addr;
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
}
return ( * address ) ? EOK : ENOENT;
}
int eth_register_message( services_t service, int phone ){
eth_proto_ref proto;
int protocol;
int index;
protocol = protocol_map( SERVICE_ETHERNET, service );
if( ! protocol ) return ENOENT;
fibril_rwlock_write_lock( & eth_globals.protos_lock );
proto = eth_protos_find( & eth_globals.protos, protocol );
if( proto ){
proto->phone = phone;
fibril_rwlock_write_unlock( & eth_globals.protos_lock );
return EOK;
}else{
proto
= ( eth_proto_ref
) malloc( sizeof( eth_proto_t
));
if( ! proto ){
fibril_rwlock_write_unlock( & eth_globals.protos_lock );
return ENOMEM;
}
proto->service = service;
proto->protocol = protocol;
proto->phone = phone;
index = eth_protos_add( & eth_globals.protos, protocol, proto );
if( index < 0 ){
fibril_rwlock_write_unlock( & eth_globals.protos_lock );
return index;
}
}
printf( "New protocol registered:\n\tprotocol\t= 0x%x\n\tservice\t= %d\n\tphone\t= %d\n", proto
->protocol
, proto
->service
, proto
->phone
);
fibril_rwlock_write_unlock( & eth_globals.protos_lock );
return EOK;
}
int eth_prepare_packet( int flags, packet_t packet, uint8_t * src_addr, int ethertype, size_t mtu ){
eth_header_ex_ref header;
eth_header_ref header_dix;
eth_fcs_ref fcs;
uint8_t * src;
uint8_t * dest;
size_t length;
int i;
void * padding;
eth_preamble_ref preamble;
i = packet_get_addr( packet, & src, & dest );
if( i < 0 ) return i;
if( i != ETH_ADDR ) return EINVAL;
length = packet_get_data_length( packet );
if( length > mtu ) return EINVAL;
if( length < ETH_MIN_TAGGED_CONTENT( flags )){
padding = packet_suffix( packet, ETH_MIN_TAGGED_CONTENT( flags ) - length );
if( ! padding ) return ENOMEM;
bzero( padding, ETH_MIN_TAGGED_CONTENT( flags ) - length );
}
if( IS_DUMMY( flags )){
preamble = PACKET_PREFIX( packet, eth_preamble_t );
if( ! preamble ) return ENOMEM;
for( i = 0; i < 7; ++ i ) preamble->preamble[ i ] = ETH_PREAMBLE;
preamble->sfd = ETH_SFD;
}
// TODO LSAP only device
if( IS_DIX( flags ) || IS_8023_2_LSAP( flags )){
header_dix = PACKET_PREFIX( packet, eth_header_t );
if( ! header_dix ) return ENOMEM;
header_dix->ethertype = ( uint16_t ) ethertype;
memcpy( header_dix
->source_address
, src_addr
, ETH_ADDR
);
memcpy( header_dix
->destination_address
, dest
, ETH_ADDR
);
src = & header_dix->destination_address[ 0 ];
}else if( IS_8023_2_SNAP( flags )){
header = PACKET_PREFIX( packet, eth_header_ex_t );
if( ! header ) return ENOMEM;
header->header.ethertype = htons( length + sizeof( eth_header_lsap_t ) + sizeof( eth_header_snap_t ));
header->lsap.dsap = ( uint16_t ) ETH_LSAP_SNAP;
header->lsap.ssap = header->lsap.dsap;
header->lsap.ctrl = 0;
for( i = 0; i < 3; ++ i ) header->snap.protocol[ i ] = 0;
header->snap.ethertype = ( uint16_t ) ethertype;
memcpy( header
->header.
source_address, src_addr
, ETH_ADDR
);
memcpy( header
->header.
destination_address, dest
, ETH_ADDR
);
src = & header->header.destination_address[ 0 ];
}
if( IS_DUMMY( flags )){
fcs = PACKET_SUFFIX( packet, eth_fcs_t );
if( ! fcs ) return ENOMEM;
* fcs = htonl( ~ compute_crc32( ~ 0u, src, length * 8 ));
}
return EOK;
}
int eth_send_message( device_id_t device_id, packet_t packet, services_t sender ){
ERROR_DECLARE;
eth_device_ref device;
packet_t next;
packet_t tmp;
int ethertype;
ethertype = htons( protocol_map( SERVICE_ETHERNET, sender ));
if( ! ethertype ){
pq_release( eth_globals.net_phone, packet_get_id( packet ));
return EINVAL;
}
fibril_rwlock_read_lock( & eth_globals.devices_lock );
device = eth_devices_find( & eth_globals.devices, device_id );
if( ! device ){
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
return ENOENT;
}
// process packet queue
next = packet;
do{
if( ERROR_OCCURRED( eth_prepare_packet( device->flags, next, ( uint8_t * ) device->addr->value, ethertype, device->mtu ))){
// release invalid packet
tmp = pq_detach( next );
if( next == packet ) packet = tmp;
pq_release( eth_globals.net_phone, packet_get_id( next ));
next = tmp;
}else{
next = pq_next( next );
}
}while( next );
// send packet queue
if( packet ){
netif_send_msg( device->phone, device_id, packet, SERVICE_ETHERNET );
}
fibril_rwlock_read_unlock( & eth_globals.devices_lock );
return EOK;
}
int nil_message( ipc_callid_t callid, ipc_call_t * call, ipc_call_t * answer, int * answer_count ){
ERROR_DECLARE;
measured_string_ref address;
packet_t packet;
// printf( "message %d - %d\n", IPC_GET_METHOD( * call ), NET_NIL_FIRST );
* answer_count = 0;
switch( IPC_GET_METHOD( * call )){
case IPC_M_PHONE_HUNGUP:
return EOK;
case NET_NIL_DEVICE:
return eth_device_message( IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ), IPC_GET_MTU( call ));
case NET_NIL_SEND:
ERROR_PROPAGATE( packet_translate( eth_globals.net_phone, & packet, IPC_GET_PACKET( call )));
return eth_send_message( IPC_GET_DEVICE( call ), packet, IPC_GET_SERVICE( call ));
case NET_NIL_PACKET_SPACE:
ERROR_PROPAGATE( eth_packet_space_message( IPC_GET_DEVICE( call ), IPC_SET_ADDR( answer ), IPC_SET_PREFIX( answer ), IPC_SET_CONTENT( answer ), IPC_SET_SUFFIX( answer )));
* answer_count = 4;
return EOK;
case NET_NIL_ADDR:
ERROR_PROPAGATE( eth_addr_message( IPC_GET_DEVICE( call ), ETH_LOCAL_ADDR, & address ));
return measured_strings_reply( address, 1 );
case NET_NIL_BROADCAST_ADDR:
ERROR_PROPAGATE( eth_addr_message( IPC_GET_DEVICE( call ), ETH_BROADCAST_ADDR, & address ));
return measured_strings_reply( address, 1 );
case IPC_M_CONNECT_TO_ME:
return eth_register_message( NIL_GET_PROTO( call ), IPC_GET_PHONE( call ));
}
return ENOTSUP;
}
void eth_receiver( ipc_callid_t iid, ipc_call_t * icall ){
ERROR_DECLARE;
packet_t packet;
while( true ){
// printf( "message %d - %d\n", IPC_GET_METHOD( * icall ), NET_NIL_FIRST );
switch( IPC_GET_METHOD( * icall )){
case NET_NIL_DEVICE_STATE:
nil_device_state_msg( 0, IPC_GET_DEVICE( icall ), IPC_GET_STATE( icall ));
ipc_answer_0( iid, EOK );
break;
case NET_NIL_RECEIVED:
if( ! ERROR_OCCURRED( packet_translate( eth_globals.net_phone, & packet, IPC_GET_PACKET( icall )))){
ERROR_CODE = nil_received_msg( 0, IPC_GET_DEVICE( icall ), packet, 0 );
}
ipc_answer_0( iid, ( ipcarg_t ) ERROR_CODE );
break;
default:
ipc_answer_0( iid, ( ipcarg_t ) ENOTSUP );
}
iid = async_get_call( icall );
}
}
/** @}
*/