Rev 4743 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed
/*
* Copyright (c) 2009 Lukas Mejdrech
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup ip
* @{
*/
/** @file
* IP module implementation.
* @see arp.h
*/
#include <async.h>
#include <errno.h>
#include <fibril_sync.h>
#include <stdio.h>
#include <string.h>
#include <ipc/ipc.h>
#include <ipc/services.h>
#include <sys/types.h>
#include "../../err.h"
#include "../../messages.h"
#include "../../modules.h"
#include "../../include/arp_interface.h"
#include "../../include/byteorder.h"
#include "../../include/checksum.h"
#include "../../include/device.h"
#include "../../include/icmp_client.h"
#include "../../include/icmp_codes.h"
#include "../../include/icmp_interface.h"
#include "../../include/il_interface.h"
#include "../../include/in.h"
#include "../../include/in6.h"
#include "../../include/inet.h"
#include "../../include/ip_client.h"
#include "../../include/ip_interface.h"
#include "../../include/net_interface.h"
#include "../../include/nil_interface.h"
#include "../../include/tl_interface.h"
#include "../../include/socket_codes.h"
#include "../../include/socket_errno.h"
#include "../../structures/measured_strings.h"
#include "../../structures/module_map.h"
#include "../../structures/packet/packet_client.h"
#include "../../nil/nil_messages.h"
#include "../il_messages.h"
#include "ip.h"
#include "ip_header.h"
#include "ip_messages.h"
#include "ip_module.h"
/** IP version 4.
*/
#define IPV4 4
/** Default network interface IP version.
*/
#define NET_DEFAULT_IPV IPV4
/** Default network interface IP routing.
*/
#define NET_DEFAULT_IP_ROUTING false
/** Minimum IP packet content.
*/
#define IP_MIN_CONTENT 576
/** ARP module name.
*/
#define ARP_NAME "arp"
/** ARP module filename.
*/
#define ARP_FILENAME "/srv/arp"
/** IP packet address length.
*/
#define IP_ADDR sizeof( struct sockaddr_in6 )
/** IP packet prefix length.
*/
#define IP_PREFIX sizeof( ip_header_t )
/** IP packet suffix length.
*/
#define IP_SUFFIX 0
/** IP packet maximum content length.
*/
#define IP_MAX_CONTENT 65535
/** The IP localhost address.
*/
#define IPV4_LOCALHOST_ADDRESS htonl(( 127 << 24 ) + 1 )
/** IP global data.
*/
ip_globals_t ip_globals;
DEVICE_MAP_IMPLEMENT( ip_netifs, ip_netif_t )
INT_MAP_IMPLEMENT( ip_protos, ip_proto_t )
GENERIC_FIELD_IMPLEMENT( ip_routes, ip_route_t )
/** Updates the device content length according to the new MTU value.
* @param[in] device_id The device identifier.
* @param[in] mtu The new mtu value.
* @returns EOK on success.
* @returns ENOENT if device is not found.
*/
int ip_mtu_changed_message( device_id_t device_id, size_t mtu );
/** Updates the device state.
* @param[in] device_id The device identifier.
* @param[in] state The new state value.
* @returns EOK on success.
* @returns ENOENT if device is not found.
*/
int ip_device_state_message( device_id_t device_id, device_state_t state );
/** Registers the transport layer protocol.
* The traffic of this protocol will be supplied using either the receive function or IPC message.
* @param[in] protocol The transport layer module protocol.
* @param[in] service The transport layer module service.
* @param[in] phone The transport layer module phone.
* @param[in] tl_received_msg The receiving function.
* @returns EOK on success.
* @returns EINVAL if the protocol parameter and/or the service parameter is zero (0).
* @returns EINVAL if the phone parameter is not a positive number and the tl_receive_msg is NULL.
* @returns ENOMEM if there is not enough memory left.
*/
int ip_register( int protocol, services_t service, int phone, tl_received_msg_t tl_received_msg );
/** Initializes a new network interface specific data.
* Connects to the network interface layer module, reads the netif configuration, starts an ARP module if needed and sets the netif routing table.
* The device identifier and the nil service has to be set.
* @param[in,out] ip_netif Network interface specific data.
* @returns EOK on success.
* @returns ENOTSUP if DHCP is configured.
* @returns ENOTSUP if IPv6 is configured.
* @returns EINVAL if any of the addresses is invalid.
* @returns EINVAL if the used ARP module is not known.
* @returns ENOMEM if there is not enough memory left.
* @returns Other error codes as defined for the net_get_device_conf_req() function.
* @returns Other error codes as defined for the bind_service() function.
* @returns Other error codes as defined for the specific arp_device_req() function.
* @returns Other error codes as defined for the nil_packet_size_req() function.
*/
int ip_netif_initialize( ip_netif_ref ip_netif );
/** Sends the packet or the packet queue via the specified route.
* The ICMP_HOST_UNREACH error notification may be sent if route hardware destination address is found.
* @param[in,out] packet The packet to be sent.
* @param[in] netif The target network interface.
* @param[in] route The target route.
* @param[in] src The source address.
* @param[in] dest The destination address.
* @param[in] error The error module service.
* @returns EOK on success.
* @returns Other error codes as defined for the arp_translate_req() function.
* @returns Other error codes as defined for the ip_prepare_packet() function.
*/
int ip_send_route( packet_t packet, ip_netif_ref netif, ip_route_ref route, in_addr_t * src, in_addr_t dest, services_t error );
/** Prepares the outgoing packet or the packet queue.
* The packet queue is a fragmented packet
* Updates the first packet's IP header.
* Prefixes the additional packets with fragment headers.
* @param[in] source The source address.
* @param[in] dest The destination address.
* @param[in,out] packet The packet to be sent.
* @param[in] destination The destination hardware address.
* @returns EOK on success.
* @returns EINVAL if the packet is too small to contain the IP header.
* @returns EINVAL if the packet is too long than the IP allows.
* @returns ENOMEM if there is not enough memory left.
* @returns Other error codes as defined for the packet_set_addr() function.
*/
int ip_prepare_packet( in_addr_t * source, in_addr_t dest, packet_t packet, measured_string_ref destination );
/** Checks the packet queue lengths and fragments the packets if needed.
* The ICMP_FRAG_NEEDED error notification may be sent if the packet needs to be fragmented and the fragmentation is not allowed.
* @param[in,out] packet The packet or the packet queue to be checked.
* @param[in] prefix The minimum prefix size.
* @param[in] content The maximum content size.
* @param[in] suffix The minimum suffix size.
* @param[in] addr_len The minimum address length.
* @param[in] error The error module service.
* @returns The packet or the packet queue of the allowed length.
* @returns NULL if there are no packets left.
*/
packet_t ip_split_packet( packet_t packet, size_t prefix, size_t content, size_t suffix, socklen_t addr_len, services_t error );
/** Checks the packet length and fragments it if needed.
* The new fragments are queued before the original packet.
* @param[in,out] packet The packet to be checked.
* @param[in] length The maximum packet length.
* @param[in] prefix The minimum prefix size.
* @param[in] suffix The minimum suffix size.
* @param[in] addr_len The minimum address length.
* @returns EOK on success.
* @returns EINVAL if the packet_get_addr() function fails.
* @returns EINVAL if the packet does not contain the IP header.
* @returns EPERM if the packet needs to be fragmented and the fragmentation is not allowed.
* @returns ENOMEM if there is not enough memory left.
* @returns ENOMEM if there is no packet available.
* @returns ENOMEM if the packet is too small to contain the IP header.
* @returns Other error codes as defined for the packet_trim() function.
* @returns Other error codes as defined for the ip_create_middle_header() function.
* @returns Other error codes as defined for the ip_fragment_packet_data() function.
*/
int ip_fragment_packet( packet_t packet, size_t length, size_t prefix, size_t suffix, socklen_t addr_len );
/** Fragments the packet from the end.
* @param[in] packet The packet to be fragmented.
* @param[in,out] new_packet The new packet fragment.
* @param[in,out] header The original packet header.
* @param[in,out] new_header The new packet fragment header.
* @param[in] length The new fragment length.
* @param[in] src The source address.
* @param[in] dest The destiantion address.
* @param[in] addrlen The address length.
* @returns EOK on success.
* @returns ENOMEM if the target packet is too small.
* @returns Other error codes as defined for the packet_set_addr() function.
* @returns Other error codes as defined for the pq_insert_after() function.
*/
int ip_fragment_packet_data( packet_t packet, packet_t new_packet, ip_header_ref header, ip_header_ref new_header, size_t length, const struct sockaddr * src, const struct sockaddr * dest, socklen_t addrlen );
/** Prefixes a middle fragment header based on the last fragment header to the packet.
* @param[in] packet The packet to be prefixed.
* @param[in] last The last header to be copied.
* @returns The prefixed middle header.
* @returns NULL on error.
*/
ip_header_ref ip_create_middle_header( packet_t packet, ip_header_ref last );
/** Copies the fragment header.
* Copies only the header itself and relevant IP options.
* @param[out] last The created header.
* @param[in] first The original header to be copied.
*/
void ip_create_last_header( ip_header_ref last, ip_header_ref first );
/** Returns the network interface's IP address.
* @param[in] netif The network interface.
* @returns The IP address.
* @returns NULL if no IP address was found.
*/
in_addr_t * ip_netif_address( ip_netif_ref netif );
/** Searches all network interfaces if there is a suitable route.
* @param[in] destination The destination address.
* @returns The found route.
* @returns NULL if no route was found.
*/
ip_route_ref ip_find_route( in_addr_t destination );
/** Searches the network interfaces if there is a suitable route.
* @param[in] netif The network interface to be searched for routes. May be NULL.
* @param[in] destination The destination address.
* @returns The found route.
* @returns NULL if no route was found.
*/
ip_route_ref ip_netif_find_route( ip_netif_ref netif, in_addr_t destination );
/** Processes the received IP packet or the packet queue one by one.
* The packet is either passed to another module or released on error.
* @param[in] device_id The source device identifier.
* @param[in,out] packet The received packet.
* @returns EOK on success and the packet is no longer needed.
* @returns EINVAL if the packet is too small to carry the IP packet.
* @returns EINVAL if the received address lengths differs from the registered values.
* @returns ENOENT if the device is not found in the cache.
* @returns ENOENT if the protocol for the device is not found in the cache.
* @returns ENOMEM if there is not enough memory left.
*/
int ip_receive_message( device_id_t device_id, packet_t packet );
/** Processes the received packet.
* The packet is either passed to another module or released on error.
* The ICMP_PARAM_POINTER error notification may be sent if the checksum is invalid.
* The ICMP_EXC_TTL error notification may be sent if the TTL is less than two (2).
* The ICMP_HOST_UNREACH error notification may be sent if no route was found.
* The ICMP_HOST_UNREACH error notification may be sent if the packet is for another host and the routing is disabled.
* @param[in] device_id The source device identifier.
* @param[in] packet The received packet to be processed.
* @returns EOK on success.
* @returns EINVAL if the TTL is less than two (2).
* @returns EINVAL if the checksum is invalid.
* @returns EAFNOSUPPORT if the address family is not supported.
* @returns ENOENT if no route was found.
* @returns ENOENT if the packet is for another host and the routing is disabled.
*/
int ip_process_packet( device_id_t device_id, packet_t packet );
/** Returns the packet destination address from the IP header.
* @param[in] header The packet IP header to be read.
* @returns The packet destination address.
*/
in_addr_t ip_get_destination( ip_header_ref header );
/** Delivers the packet to the local host.
* The packet is either passed to another module or released on error.
* The ICMP_PROT_UNREACH error notification may be sent if the protocol is not found.
* @param[in] device_id The source device identifier.
* @param[in] packet The packet to be delivered.
* @param[in] header The first packet IP header. May be NULL.
* @param[in] error The packet error service.
* @returns EOK on success.
* @returns ENOTSUP if the packet is a fragment.
* @returns EAFNOSUPPORT if the address family is not supported.
* @returns ENOENT if the target protocol is not found.
* @returns Other error codes as defined for the packet_set_addr() function.
* @returns Other error codes as defined for the packet_trim() function.
* @returns Other error codes as defined for the protocol specific tl_received_msg function.
*/
int ip_deliver_local( device_id_t device_id, packet_t packet, ip_header_ref header, services_t error );
/** Prepares the ICMP notification packet.
* Releases additional packets and keeps only the first one.
* All packets is released on error.
* @param[in] error The packet error service.
* @param[in] packet The packet or the packet queue to be reported as faulty.
* @param[in] header The first packet IP header. May be NULL.
* @returns The found ICMP phone.
* @returns EINVAL if the error parameter is set.
* @returns EINVAL if the ICMP phone is not found.
* @returns EINVAL if the ip_prepare_icmp() fails.
*/
int ip_prepare_icmp_and_get_phone( services_t error, packet_t packet, ip_header_ref header );
/** Returns the ICMP phone.
* Searches the registered protocols.
* @returns The found ICMP phone.
* @returns ENOENT if the ICMP is not registered.
*/
int ip_get_icmp_phone( void );
/** Prepares the ICMP notification packet.
* Releases additional packets and keeps only the first one.
* @param[in] packet The packet or the packet queue to be reported as faulty.
* @param[in] header The first packet IP header. May be NULL.
* @returns EOK on success.
* @returns EINVAL if there are no data in the packet.
* @returns EINVAL if the packet is a fragment.
* @returns ENOMEM if the packet is too short to contain the IP header.
* @returns EAFNOSUPPORT if the address family is not supported.
* @returns Other error codes as defined for the packet_set_addr().
*/
int ip_prepare_icmp( packet_t packet, ip_header_ref header );
/** Releases the packet and returns the result.
* @param[in] packet The packet queue to be released.
* @param[in] result The result to be returned.
* @return The result parameter.
*/
int ip_release_and_return( packet_t packet, int result );
int ip_initialize( async_client_conn_t client_connection ){
ERROR_DECLARE;
fibril_rwlock_initialize( & ip_globals.lock );
fibril_rwlock_write_lock( & ip_globals.lock );
fibril_rwlock_initialize( & ip_globals.protos_lock );
fibril_rwlock_initialize( & ip_globals.netifs_lock );
ip_globals.packet_counter = 0;
ip_globals.gateway.address.s_addr = 0;
ip_globals.gateway.netmask.s_addr = 0;
ip_globals.gateway.gateway.s_addr = 0;
ip_globals.gateway.netif = NULL;
ERROR_PROPAGATE( ip_netifs_initialize( & ip_globals.netifs ));
ERROR_PROPAGATE( ip_protos_initialize( & ip_globals.protos ));
ip_globals.client_connection = client_connection;
ERROR_PROPAGATE( modules_initialize( & ip_globals.modules ));
ERROR_PROPAGATE( add_module( NULL, & ip_globals.modules, ARP_NAME, ARP_FILENAME, SERVICE_ARP, arp_task_get_id(), arp_connect_module ));
fibril_rwlock_write_unlock( & ip_globals.lock );
return EOK;
}
int ip_device_req( int il_phone, device_id_t device_id, services_t netif ){
ERROR_DECLARE;
ip_netif_ref ip_netif;
ip_route_ref route;
int index;
char * data;
ip_netif = ( ip_netif_ref ) malloc( sizeof( ip_netif_t ));
if( ! ip_netif ) return ENOMEM;
if( ERROR_OCCURRED( ip_routes_initialize( & ip_netif->routes ))){
free( ip_netif );
return ERROR_CODE;
}
ip_netif->device_id = device_id;
ip_netif->service = netif;
ip_netif->state = NETIF_STOPPED;
fibril_rwlock_write_lock( & ip_globals.netifs_lock );
if( ERROR_OCCURRED( ip_netif_initialize( ip_netif ))){
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
ip_routes_destroy( & ip_netif->routes );
free( ip_netif );
return ERROR_CODE;
}
if( ip_netif->arp ) ++ ip_netif->arp->usage;
// print the settings
printf( "New device registered:\n\tid\t= %d\n\tphone\t= %d\n\tIPV\t= %d\n", ip_netif->device_id, ip_netif->phone, ip_netif->ipv );
printf( "\tconfiguration\t= %s\n", ip_netif->dhcp ? "dhcp" : "static" );
// TODO ipv6 addresses
data = ( char * ) malloc( INET_ADDRSTRLEN );
if( data ){
for( index = 0; index < ip_routes_count( & ip_netif->routes ); ++ index ){
route = ip_routes_get_index( & ip_netif->routes, index );
if( route ){
printf( "\tRouting %d:\n", index );
inet_ntop( AF_INET, ( uint8_t * ) & route->address.s_addr, data, INET_ADDRSTRLEN );
printf( "\t\taddress\t= %s\n", data );
inet_ntop( AF_INET, ( uint8_t * ) & route->netmask.s_addr, data, INET_ADDRSTRLEN );
printf( "\t\tnetmask\t= %s\n", data );
inet_ntop( AF_INET, ( uint8_t * ) & route->gateway.s_addr, data, INET_ADDRSTRLEN );
printf( "\t\tgateway\t= %s\n", data );
}
}
inet_ntop( AF_INET, ( uint8_t * ) & ip_netif->broadcast.s_addr, data, INET_ADDRSTRLEN );
printf( "\t\tbroadcast\t= %s\n", data );
free( data );
}
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return EOK;
}
int ip_netif_initialize( ip_netif_ref ip_netif ){
ERROR_DECLARE;
measured_string_t names[] = {{ "IPV", 3 }, { "IP_CONFIG", 9 }, { "IP_ADDR", 7 }, { "IP_NETMASK", 10 }, { "IP_GATEWAY", 10 }, { "IP_BROADCAST", 12 }, { "ARP", 3 }, { "IP_ROUTING", 10 }};
measured_string_ref configuration;
size_t count = sizeof( names ) / sizeof( measured_string_t );
char * data;
measured_string_t address;
int index;
ip_route_ref route;
in_addr_t gateway;
ip_netif->arp = NULL;
route = NULL;
ip_netif->ipv = NET_DEFAULT_IPV;
ip_netif->dhcp = false;
ip_netif->routing = NET_DEFAULT_IP_ROUTING;
configuration = & names[ 0 ];
// get configuration
ERROR_PROPAGATE( net_get_device_conf_req( ip_globals.net_phone, ip_netif->device_id, & configuration, count, & data ));
if( configuration ){
if( configuration[ 0 ].value ){
ip_netif->ipv = strtol( configuration[ 0 ].value, NULL, 0 );
}
ip_netif->dhcp = ! str_lcmp( configuration[ 1 ].value, "dhcp", configuration[ 1 ].length );
if( ip_netif->dhcp ){
// TODO dhcp
net_free_settings( configuration, data );
return ENOTSUP;
}else if( ip_netif->ipv == IPV4 ){
route = ( ip_route_ref ) malloc( sizeof( ip_route_t ));
if( ! route ){
net_free_settings( configuration, data );
return ENOMEM;
}
route->address.s_addr = 0;
route->netmask.s_addr = 0;
route->gateway.s_addr = 0;
route->netif = ip_netif;
index = ip_routes_add( & ip_netif->routes, route );
if( index < 0 ){
net_free_settings( configuration, data );
free( route );
return index;
}
if( ERROR_OCCURRED( inet_pton( AF_INET, configuration[ 2 ].value, ( uint8_t * ) & route->address.s_addr ))
|| ERROR_OCCURRED( inet_pton( AF_INET, configuration[ 3 ].value, ( uint8_t * ) & route->netmask.s_addr ))
|| ( inet_pton( AF_INET, configuration[ 4 ].value, ( uint8_t * ) & gateway.s_addr ) == EINVAL )
|| ( inet_pton( AF_INET, configuration[ 5 ].value, ( uint8_t * ) & ip_netif->broadcast.s_addr ) == EINVAL )){
net_free_settings( configuration, data );
return EINVAL;
}
}else{
// TODO ipv6 in separate module
net_free_settings( configuration, data );
return ENOTSUP;
}
if( configuration[ 6 ].value ){
ip_netif->arp = get_running_module( & ip_globals.modules, configuration[ 6 ].value );
if( ! ip_netif->arp ){
printf( "Failed to start the arp %s\n", configuration[ 6 ].value );
net_free_settings( configuration, data );
return EINVAL;
}
}
if( configuration[ 7 ].value ){
ip_netif->routing = ( configuration[ 7 ].value[ 0 ] == 'y' );
}
net_free_settings( configuration, data );
}
// binds the netif service which also initializes the device
ip_netif->phone = nil_bind_service( ip_netif->service, ( ipcarg_t ) ip_netif->device_id, SERVICE_IP, ip_globals.client_connection );
if( ip_netif->phone < 0 ){
printf( "Failed to contact the nil service %d\n", ip_netif->service );
return ip_netif->phone;
}
// has to be after the device netif module initialization
if( ip_netif->arp ){
if( route ){
address.value = ( char * ) & route->address.s_addr;
address.length = CONVERT_SIZE( in_addr_t, char, 1 );
ERROR_PROPAGATE( arp_device_req( ip_netif->arp->phone, ip_netif->device_id, SERVICE_IP, ip_netif->service, & address ));
}else{
ip_netif->arp = 0;
}
}
// get packet dimensions
ERROR_PROPAGATE( nil_packet_size_req( ip_netif->phone, ip_netif->device_id, & ip_netif->addr_len, & ip_netif->prefix, & ip_netif->content, & ip_netif->suffix ));
if( ip_netif->content < IP_MIN_CONTENT ){
printf( "Maximum transmission unit %d bytes is too small, at least %d bytes are needed\n", ip_netif->content, IP_MIN_CONTENT );
ip_netif->content = IP_MIN_CONTENT;
}
index = ip_netifs_add( & ip_globals.netifs, ip_netif->device_id, ip_netif );
if( index < 0 ) return index;
if( gateway.s_addr ){
// the default gateway
ip_globals.gateway.address.s_addr = 0;
ip_globals.gateway.netmask.s_addr = 0;
ip_globals.gateway.gateway.s_addr = gateway.s_addr;
ip_globals.gateway.netif = ip_netif;
}
return EOK;
}
int ip_mtu_changed_message( device_id_t device_id, size_t mtu ){
ip_netif_ref netif;
fibril_rwlock_write_lock( & ip_globals.netifs_lock );
netif = ip_netifs_find( & ip_globals.netifs, device_id );
if( ! netif ){
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return ENOENT;
}
netif->content = mtu;
printf( "ip - device %d changed mtu to %d\n\n", device_id, mtu );
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return EOK;
}
int ip_device_state_message( device_id_t device_id, device_state_t state ){
ip_netif_ref netif;
fibril_rwlock_write_lock( & ip_globals.netifs_lock );
// find the device
netif = ip_netifs_find( & ip_globals.netifs, device_id );
if( ! netif ){
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return ENOENT;
}
netif->state = state;
printf( "ip - device %d changed state to %d\n\n", device_id, state );
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return EOK;
}
int ip_connect_module( services_t service ){
return EOK;
}
int ip_bind_service( services_t service, int protocol, services_t me, async_client_conn_t receiver, tl_received_msg_t received_msg ){
return ip_register( protocol, me, 0, received_msg );
}
int ip_register( int protocol, services_t service, int phone, tl_received_msg_t received_msg ){
ip_proto_ref proto;
int index;
if( !( protocol && service && (( phone > 0 ) || ( received_msg )))) return EINVAL;
proto = ( ip_proto_ref ) malloc( sizeof( ip_protos_t ));
if( ! proto ) return ENOMEM;
proto->protocol = protocol;
proto->service = service;
proto->phone = phone;
proto->received_msg = received_msg;
fibril_rwlock_write_lock( & ip_globals.protos_lock );
index = ip_protos_add( & ip_globals.protos, proto->protocol, proto );
if( index < 0 ){
fibril_rwlock_write_unlock( & ip_globals.protos_lock );
free( proto );
return index;
}
printf( "New protocol registered:\n\tprotocol\t= %d\n\tphone\t= %d\n", proto->protocol, proto->phone );
fibril_rwlock_write_unlock( & ip_globals.protos_lock );
return EOK;
}
int ip_send_msg( int il_phone, device_id_t device_id, packet_t packet, services_t sender, services_t error ){
ERROR_DECLARE;
int addrlen;
ip_netif_ref netif;
ip_route_ref route;
struct sockaddr * addr;
struct sockaddr_in * address_in;
// struct sockaddr_in6 * address_in6;
in_addr_t * dest;
in_addr_t * src;
int phone;
// addresses in the host byte order
// should be the next hop address or the target destination address
addrlen = packet_get_addr( packet, NULL, ( uint8_t ** ) & addr );
if( addrlen < 0 ){
return ip_release_and_return( packet, addrlen );
}
if(( size_t ) addrlen < sizeof( struct sockaddr )){
return ip_release_and_return( packet, EINVAL );
}
switch( addr->sa_family ){
case AF_INET:
if( addrlen != sizeof( struct sockaddr_in )){
return ip_release_and_return( packet, EINVAL );
}
address_in = ( struct sockaddr_in * ) addr;
dest = & address_in->sin_addr;
break;
// TODO IPv6
/* case AF_INET6:
if( addrlen != sizeof( struct sockaddr_in6 )) return EINVAL;
address_in6 = ( struct sockaddr_in6 * ) dest;
address_in6.sin6_addr.s6_addr;
*/ default:
return ip_release_and_return( packet, EAFNOSUPPORT );
}
fibril_rwlock_read_lock( & ip_globals.netifs_lock );
// device specified?
if( device_id > 0 ){
netif = ip_netifs_find( & ip_globals.netifs, device_id );
route = ip_netif_find_route( netif, * dest );
if( netif && ( ! route ) && ( ip_globals.gateway.netif == netif )){
route = & ip_globals.gateway;
}
}else{
route = ip_find_route( * dest );
netif = route ? route->netif : NULL;
}
if( !( netif && route )){
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
phone = ip_prepare_icmp_and_get_phone( error, packet, NULL );
if( phone >= 0 ){
// unreachable ICMP if no routing
icmp_destination_unreachable_msg( phone, ICMP_NET_UNREACH, 0, packet );
}
return ENOENT;
}
if( error ){
// do not send for broadcast, anycast packets or network broadcast
if(( ! dest->s_addr )
|| ( !( ~ dest->s_addr ))
|| ( !( ~(( dest->s_addr & ( ~ route->netmask.s_addr )) | route->netmask.s_addr )))
|| ( !( dest->s_addr & ( ~ route->netmask.s_addr )))){
return ip_release_and_return( packet, EINVAL );
}
}
if( route->address.s_addr == dest->s_addr ){
// find the loopback device to deliver
dest->s_addr = IPV4_LOCALHOST_ADDRESS;
route = ip_find_route( * dest );
netif = route ? route->netif : NULL;
if( !( netif && route )){
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
phone = ip_prepare_icmp_and_get_phone( error, packet, NULL );
if( phone >= 0 ){
// unreachable ICMP if no routing
icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
}
return ENOENT;
}
}
src = ip_netif_address( netif );
if( ! src ){
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
return ip_release_and_return( packet, ENOENT );
}
ERROR_CODE = ip_send_route( packet, netif, route, src, * dest, error );
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
return ERROR_CODE;
}
in_addr_t * ip_netif_address( ip_netif_ref netif ){
ip_route_ref route;
route = ip_routes_get_index( & netif->routes, 0 );
return route ? & route->address : NULL;
}
int ip_send_route( packet_t packet, ip_netif_ref netif, ip_route_ref route, in_addr_t * src, in_addr_t dest, services_t error ){
ERROR_DECLARE;
measured_string_t destination;
measured_string_ref translation;
char * data;
int phone;
// get destination hardware address
if( netif->arp && ( route->address.s_addr != dest.s_addr )){
destination.value = route->gateway.s_addr ? ( char * ) & route->gateway.s_addr : ( char * ) & dest.s_addr;
destination.length = CONVERT_SIZE( dest.s_addr, char, 1 );
if( ERROR_OCCURRED( arp_translate_req( netif->arp->phone, netif->device_id, SERVICE_IP, & destination, & translation, & data ))){
// sleep( 1 );
// ERROR_PROPAGATE( arp_translate_req( netif->arp->phone, netif->device_id, SERVICE_IP, & destination, & translation, & data ));
pq_release( ip_globals.net_phone, packet_get_id( packet ));
return ERROR_CODE;
}
if( !( translation && translation->value )){
if( translation ){
free( translation );
free( data );
}
phone = ip_prepare_icmp_and_get_phone( error, packet, NULL );
if( phone >= 0 ){
// unreachable ICMP if no routing
icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
}
return EINVAL;
}
}else translation = NULL;
if( ERROR_OCCURRED( ip_prepare_packet( src, dest, packet, translation ))){
pq_release( ip_globals.net_phone, packet_get_id( packet ));
}else{
packet = ip_split_packet( packet, netif->prefix, netif->content, netif->suffix, netif->addr_len, error );
if( packet ){
nil_send_msg( netif->phone, netif->device_id, packet, SERVICE_IP );
}
}
if( translation ){
free( translation );
free( data );
}
return ERROR_CODE;
}
int ip_prepare_packet( in_addr_t * source, in_addr_t dest, packet_t packet, measured_string_ref destination ){
ERROR_DECLARE;
size_t length;
ip_header_ref header;
ip_header_ref last_header;
ip_header_ref middle_header;
packet_t next;
length = packet_get_data_length( packet );
if(( length < sizeof( ip_header_t )) || ( length > IP_MAX_CONTENT )) return EINVAL;
header = ( ip_header_ref ) packet_get_data( packet );
if( destination ){
ERROR_PROPAGATE( packet_set_addr( packet, NULL, ( uint8_t * ) destination->value, CONVERT_SIZE( char, uint8_t, destination->length )));
}else{
ERROR_PROPAGATE( packet_set_addr( packet, NULL, NULL, 0 ));
}
header->version = IPV4;
header->fragment_offset_high = 0;
header->fragment_offset_low = 0;
header->header_checksum = 0;
if( source ) header->source_address = source->s_addr;
header->destination_address = dest.s_addr;
fibril_rwlock_write_lock( & ip_globals.lock );
++ ip_globals.packet_counter;
header->identification = htons( ip_globals.packet_counter );
fibril_rwlock_write_unlock( & ip_globals.lock );
// length = packet_get_data_length( packet );
if( pq_next( packet )){
last_header = ( ip_header_ref ) malloc( IP_HEADER_LENGTH( header ));
if( ! last_header ) return ENOMEM;
ip_create_last_header( last_header, header );
next = pq_next( packet );
while( pq_next( next )){
middle_header = ( ip_header_ref ) packet_prefix( next, IP_HEADER_LENGTH( last_header ));
if( ! middle_header ) return ENOMEM;
memcpy( middle_header, last_header, IP_HEADER_LENGTH( last_header ));
header->flags |= IPFLAG_MORE_FRAGMENTS;
middle_header->total_length = htons( packet_get_data_length( next ));
middle_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH( length );
middle_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW( length );
middle_header->header_checksum = IP_HEADER_CHECKSUM( middle_header );
if( destination ){
ERROR_PROPAGATE( packet_set_addr( next, NULL, ( uint8_t * ) destination->value, CONVERT_SIZE( char, uint8_t, destination->length )));
}
length += packet_get_data_length( next );
next = pq_next( next );
}
middle_header = ( ip_header_ref ) packet_prefix( next, IP_HEADER_LENGTH( last_header ));
if( ! middle_header ) return ENOMEM;
memcpy( middle_header, last_header, IP_HEADER_LENGTH( last_header ));
middle_header->total_length = htons( packet_get_data_length( next ));
middle_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH( length );
middle_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW( length );
middle_header->header_checksum = IP_HEADER_CHECKSUM( middle_header );
if( destination ){
ERROR_PROPAGATE( packet_set_addr( next, NULL, ( uint8_t * ) destination->value, CONVERT_SIZE( char, uint8_t, destination->length )));
}
length += packet_get_data_length( next );
free( last_header );
header->flags |= IPFLAG_MORE_FRAGMENTS;
}
header->total_length = htons( length );
// unnecessary for all protocols
header->header_checksum = IP_HEADER_CHECKSUM( header );
return EOK;
}
int ip_message( ipc_callid_t callid, ipc_call_t * call, ipc_call_t * answer, int * answer_count ){
ERROR_DECLARE;
packet_t packet;
struct sockaddr * addr;
size_t addrlen;
ip_pseudo_header_ref header;
size_t headerlen;
* answer_count = 0;
switch( IPC_GET_METHOD( * call )){
case IPC_M_PHONE_HUNGUP:
return EOK;
case NET_IL_DEVICE:
return ip_device_req( 0, IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ));
case IPC_M_CONNECT_TO_ME:
return ip_register( IL_GET_PROTO( call ), IL_GET_SERVICE( call ), IPC_GET_PHONE( call ), NULL );
case NET_IL_SEND:
ERROR_PROPAGATE( packet_translate( ip_globals.net_phone, & packet, IPC_GET_PACKET( call )));
return ip_send_msg( 0, IPC_GET_DEVICE( call ), packet, 0, IPC_GET_ERROR( call ));
case NET_IL_DEVICE_STATE:
return ip_device_state_message( IPC_GET_DEVICE( call ), IPC_GET_STATE( call ));
case NET_IL_RECEIVED:
ERROR_PROPAGATE( packet_translate( ip_globals.net_phone, & packet, IPC_GET_PACKET( call )));
return ip_receive_message( IPC_GET_DEVICE( call ), packet );
case NET_IP_RECEIVED_ERROR:
ERROR_PROPAGATE( packet_translate( ip_globals.net_phone, & packet, IPC_GET_PACKET( call )));
return ip_received_error_msg( 0, IPC_GET_DEVICE( call ), packet, IPC_GET_TARGET( call ), IPC_GET_ERROR( call ));
case NET_IP_ADD_ROUTE:
return ip_add_route_req( 0, IPC_GET_DEVICE( call ), IP_GET_ADDRESS( call ), IP_GET_NETMASK( call ), IP_GET_GATEWAY( call ));
case NET_IP_SET_GATEWAY:
return ip_set_gateway_req( 0, IPC_GET_DEVICE( call ), IP_GET_GATEWAY( call ));
case NET_IP_GET_ROUTE:
ERROR_PROPAGATE( data_receive(( void ** ) & addr, & addrlen ));
ERROR_PROPAGATE( ip_get_route_req( 0, IP_GET_PROTOCOL( call ), addr, ( socklen_t ) addrlen, IPC_SET_DEVICE( answer ), & header, & headerlen ));
* IP_SET_HEADERLEN( answer ) = headerlen;
* answer_count = 2;
if( ! ERROR_OCCURRED( data_reply( & headerlen, sizeof( headerlen )))){
ERROR_CODE = data_reply( header, headerlen );
}
free( header );
return ERROR_CODE;
case NET_IL_PACKET_SPACE:
ERROR_PROPAGATE( ip_packet_size_req( 0, IPC_GET_DEVICE( call ), IPC_SET_ADDR( answer ), IPC_SET_PREFIX( answer ), IPC_SET_CONTENT( answer ), IPC_SET_SUFFIX( answer )));
* answer_count = 3;
return EOK;
case NET_IL_MTU_CHANGED:
return ip_mtu_changed_message( IPC_GET_DEVICE( call ), IPC_GET_MTU( call ));
}
return ENOTSUP;
}
int ip_packet_size_req( int ip_phone, device_id_t device_id, size_t * addr_len, size_t * prefix, size_t * content, size_t * suffix ){
ip_netif_ref netif;
int index;
if( !( addr_len && prefix && content && suffix )) return EBADMEM;
* content = IP_MAX_CONTENT - IP_PREFIX;
fibril_rwlock_read_lock( & ip_globals.netifs_lock );
if( device_id < 0 ){
* addr_len = IP_ADDR;
* prefix = 0;
* suffix = 0;
for( index = ip_netifs_count( & ip_globals.netifs ) - 1; index >= 0; -- index ){
netif = ip_netifs_get_index( & ip_globals.netifs, index );
if( netif ){
if( netif->addr_len > * addr_len ) * addr_len = netif->addr_len;
if( netif->prefix > * prefix ) * prefix = netif->prefix;
if( netif->suffix > * suffix ) * suffix = netif->suffix;
}
}
* prefix = * prefix + IP_PREFIX;
* suffix = * suffix + IP_SUFFIX;
}else{
netif = ip_netifs_find( & ip_globals.netifs, device_id );
if( ! netif ){
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
return ENOENT;
}
* addr_len = ( netif->addr_len > IP_ADDR ) ? netif->addr_len : IP_ADDR;
* prefix = netif->prefix + IP_PREFIX;
* suffix = netif->suffix + IP_SUFFIX;
}
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
return EOK;
}
int ip_add_route_req( int ip_phone, device_id_t device_id, in_addr_t address, in_addr_t netmask, in_addr_t gateway ){
ip_route_ref route;
ip_netif_ref netif;
int index;
fibril_rwlock_write_lock( & ip_globals.netifs_lock );
netif = ip_netifs_find( & ip_globals.netifs, device_id );
if( ! netif ){
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return ENOENT;
}
route = ( ip_route_ref ) malloc( sizeof( ip_route_t ));
if( ! route ){
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return ENOMEM;
}
route->address.s_addr = address.s_addr;
route->netmask.s_addr = netmask.s_addr;
route->gateway.s_addr = gateway.s_addr;
route->netif = netif;
index = ip_routes_add( & netif->routes, route );
if( index < 0 ) free( route );
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return index;
}
ip_route_ref ip_find_route( in_addr_t destination ){
int index;
ip_route_ref route;
ip_netif_ref netif;
// start with the last netif - the newest one
index = ip_netifs_count( & ip_globals.netifs ) - 1;
while( index >= 0 ){
netif = ip_netifs_get_index( & ip_globals.netifs, index );
if( netif && ( netif->state == NETIF_ACTIVE )){
route = ip_netif_find_route( netif, destination );
if( route ) return route;
}
-- index;
}
return & ip_globals.gateway;
}
ip_route_ref ip_netif_find_route( ip_netif_ref netif, in_addr_t destination ){
int index;
ip_route_ref route;
if( netif ){
// start with the first one - the direct route
for( index = 0; index < ip_routes_count( & netif->routes ); ++ index ){
route = ip_routes_get_index( & netif->routes, index );
if( route && (( route->address.s_addr & route->netmask.s_addr ) == ( destination.s_addr & route->netmask.s_addr ))){
return route;
}
}
}
return NULL;
}
int ip_set_gateway_req( int ip_phone, device_id_t device_id, in_addr_t gateway ){
ip_netif_ref netif;
fibril_rwlock_write_lock( & ip_globals.netifs_lock );
netif = ip_netifs_find( & ip_globals.netifs, device_id );
if( ! netif ){
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return ENOENT;
}
ip_globals.gateway.address.s_addr = 0;
ip_globals.gateway.netmask.s_addr = 0;
ip_globals.gateway.gateway.s_addr = gateway.s_addr;
ip_globals.gateway.netif = netif;
fibril_rwlock_write_unlock( & ip_globals.netifs_lock );
return EOK;
}
packet_t ip_split_packet( packet_t packet, size_t prefix, size_t content, size_t suffix, socklen_t addr_len, services_t error ){
size_t length;
packet_t next;
packet_t new_packet;
int result;
int phone;
next = packet;
// check all packets
while( next ){
length = packet_get_data_length( next );
// too long?
if( length > content ){
result = ip_fragment_packet( next, content, prefix, suffix, addr_len );
if( result != EOK ){
new_packet = pq_detach( next );
if( next == packet ){
// the new first packet of the queue
packet = new_packet;
}
// fragmentation needed?
if( result == EPERM ){
phone = ip_prepare_icmp_and_get_phone( error, next, NULL );
if( phone >= 0 ){
// fragmentation necessary ICMP
icmp_destination_unreachable_msg( phone, ICMP_FRAG_NEEDED, content, next );
}
}else{
pq_release( ip_globals.net_phone, packet_get_id( next ));
}
next = new_packet;
continue;
}
}
next = pq_next( next );
}
return packet;
}
int ip_fragment_packet( packet_t packet, size_t length, size_t prefix, size_t suffix, socklen_t addr_len ){
ERROR_DECLARE;
packet_t new_packet;
ip_header_ref header;
ip_header_ref middle_header;
ip_header_ref last_header;
struct sockaddr * src;
struct sockaddr * dest;
socklen_t addrlen;
int result;
result = packet_get_addr( packet, ( uint8_t ** ) & src, ( uint8_t ** ) & dest );
if( result <= 0 ) return EINVAL;
addrlen = ( socklen_t ) result;
if( packet_get_data_length( packet ) <= sizeof( ip_header_t )) return ENOMEM;
// get header
header = ( ip_header_ref ) packet_get_data( packet );
if( ! header ) return EINVAL;
// fragmentation forbidden?
if( header->flags & IPFLAG_DONT_FRAGMENT ){
return EPERM;
}
// create the last fragment
new_packet = packet_get_4( ip_globals.net_phone, prefix, length, suffix, (( addrlen > addr_len ) ? addrlen : addr_len ));
if( ! new_packet ) return ENOMEM;
// allocate as much as originally
last_header = ( ip_header_ref ) packet_suffix( new_packet, IP_HEADER_LENGTH( header ));
if( ! last_header ){
return ip_release_and_return( packet, ENOMEM );
}
ip_create_last_header( last_header, header );
// trim the unused space
if( ERROR_OCCURRED( packet_trim( new_packet, 0, IP_HEADER_LENGTH( header ) - IP_HEADER_LENGTH( last_header )))){
return ip_release_and_return( packet, ERROR_CODE );
}
// biggest multiple of 8 lower than content
// TODO even fragmentation?
length = length & ( ~ 0x7 );// ( content / 8 ) * 8
if( ERROR_OCCURRED( ip_fragment_packet_data( packet, new_packet, header, last_header, (( IP_HEADER_DATA_LENGTH( header ) - (( length - IP_HEADER_LENGTH( header )) & ( ~ 0x7 ))) % (( length - IP_HEADER_LENGTH( last_header )) & ( ~ 0x7 ))), src, dest, addrlen ))){
return ip_release_and_return( packet, ERROR_CODE );
}
// mark the first as fragmented
header->flags |= IPFLAG_MORE_FRAGMENTS;
// create middle framgents
while( IP_TOTAL_LENGTH( header ) > length ){
new_packet = packet_get_4( ip_globals.net_phone, prefix, length, suffix, (( addrlen >= addr_len ) ? addrlen : addr_len ));
if( ! new_packet ) return ENOMEM;
middle_header = ip_create_middle_header( new_packet, last_header );
if( ! middle_header ){
return ip_release_and_return( packet, ENOMEM );
}
if( ERROR_OCCURRED( ip_fragment_packet_data( packet, new_packet, header, middle_header, ( length - IP_HEADER_LENGTH( middle_header )) & ( ~ 0x7 ), src, dest, addrlen ))){
return ip_release_and_return( packet, ERROR_CODE );
}
}
// finish the first fragment
header->header_checksum = IP_HEADER_CHECKSUM( header );
return EOK;
}
int ip_fragment_packet_data( packet_t packet, packet_t new_packet, ip_header_ref header, ip_header_ref new_header, size_t length, const struct sockaddr * src, const struct sockaddr * dest, socklen_t addrlen ){
ERROR_DECLARE;
void * data;
size_t offset;
data = packet_suffix( new_packet, length );
if( ! data ) return ENOMEM;
memcpy( data, (( void * ) header ) + IP_TOTAL_LENGTH( header ) - length, length );
ERROR_PROPAGATE( packet_trim( packet, 0, length ));
header->total_length = htons( IP_TOTAL_LENGTH( header ) - length );
new_header->total_length = htons( IP_HEADER_LENGTH( new_header ) + length );
offset = IP_FRAGMENT_OFFSET( header ) + IP_HEADER_DATA_LENGTH( header );
new_header->fragment_offset_high = IP_COMPUTE_FRAGMENT_OFFSET_HIGH( offset );
new_header->fragment_offset_low = IP_COMPUTE_FRAGMENT_OFFSET_LOW( offset );
new_header->header_checksum = IP_HEADER_CHECKSUM( new_header );
ERROR_PROPAGATE( packet_set_addr( new_packet, ( const uint8_t * ) src, ( const uint8_t * ) dest, addrlen ));
return pq_insert_after( packet, new_packet );
}
ip_header_ref ip_create_middle_header( packet_t packet, ip_header_ref last ){
ip_header_ref middle;
middle = ( ip_header_ref ) packet_suffix( packet, IP_HEADER_LENGTH( last ));
if( ! middle ) return NULL;
memcpy( middle, last, IP_HEADER_LENGTH( last ));
middle->flags |= IPFLAG_MORE_FRAGMENTS;
return middle;
}
void ip_create_last_header( ip_header_ref last, ip_header_ref first ){
ip_option_ref option;
size_t next;
size_t length;
// copy first itself
memcpy( last, first, sizeof( ip_header_t ));
length = sizeof( ip_header_t );
next = sizeof( ip_header_t );
// process all ip options
while( next < first->header_length ){
option = ( ip_option_ref ) ((( uint8_t * ) first ) + next );
// skip end or noop
if(( option->type == IPOPT_END ) || ( option->type == IPOPT_NOOP )){
++ next;
}else{
// copy if said so or skip
if( IPOPT_COPIED( option->type )){
memcpy((( uint8_t * ) last ) + length, (( uint8_t * ) first ) + next, option->length );
length += option->length;
}
// next option
next += option->length;
}
}
// align 4 byte boundary
if( length % 4 ){
bzero((( uint8_t * ) last ) + length, 4 - ( length % 4 ));
last->header_length = length / 4 + 1;
}else{
last->header_length = length / 4;
}
last->header_checksum = 0;
}
int ip_receive_message( device_id_t device_id, packet_t packet ){
packet_t next;
do{
next = pq_detach( packet );
ip_process_packet( device_id, packet );
packet = next;
}while( packet );
return EOK;
}
int ip_process_packet( device_id_t device_id, packet_t packet ){
ERROR_DECLARE;
ip_header_ref header;
in_addr_t dest;
ip_route_ref route;
int phone;
struct sockaddr * addr;
struct sockaddr_in addr_in;
// struct sockaddr_in addr_in6;
socklen_t addrlen;
header = ( ip_header_ref ) packet_get_data( packet );
if( ! header ){
return ip_release_and_return( packet, ENOMEM );
}
// checksum
if(( header->header_checksum ) && ( IP_HEADER_CHECKSUM( header ))){
phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
if( phone >= 0 ){
// checksum error ICMP
icmp_parameter_problem_msg( phone, ICMP_PARAM_POINTER, (( size_t ) (( void * ) & header->header_checksum )) - (( size_t ) (( void * ) header )), packet );
}
return EINVAL;
}
if( header->ttl <= 1 ){
phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
if( phone >= 0 ){
// ttl oxceeded ICMP
icmp_time_exceeded_msg( phone, ICMP_EXC_TTL, packet );
}
return EINVAL;
}
// process ipopt and get destination
dest = ip_get_destination( header );
// set the addrination address
switch( header->version ){
case IPVERSION:
addrlen = sizeof( addr_in );
bzero( & addr_in, addrlen );
addr_in.sin_family = AF_INET;
memcpy( & addr_in.sin_addr.s_addr, & dest, sizeof( dest ));
addr = ( struct sockaddr * ) & addr_in;
break;
/* case IPv6VERSION:
addrlen = sizeof( dest_in6 );
bzero( & dest_in6, addrlen );
dest_in6.sin6_family = AF_INET6;
memcpy( & dest_in6.sin6_addr.s6_addr, );
dest = ( struct sockaddr * ) & dest_in;
break;
*/ default:
return ip_release_and_return( packet, EAFNOSUPPORT );
}
ERROR_PROPAGATE( packet_set_addr( packet, NULL, ( uint8_t * ) & addr, addrlen ));
route = ip_find_route( dest );
if( ! route ){
phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
if( phone >= 0 ){
// unreachable ICMP
icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
}
return ENOENT;
}
if( route->address.s_addr == dest.s_addr ){
// local delivery
return ip_deliver_local( device_id, packet, header, 0 );
}else{
// only if routing enabled
if( route->netif->routing ){
-- header->ttl;
return ip_send_route( packet, route->netif, route, NULL, dest, 0 );
}else{
phone = ip_prepare_icmp_and_get_phone( 0, packet, header );
if( phone >= 0 ){
// unreachable ICMP if no routing
icmp_destination_unreachable_msg( phone, ICMP_HOST_UNREACH, 0, packet );
}
return ENOENT;
}
}
}
int ip_received_error_msg( int ip_phone, device_id_t device_id, packet_t packet, services_t target, services_t error ){
uint8_t * data;
int offset;
icmp_type_t type;
icmp_code_t code;
ip_netif_ref netif;
measured_string_t address;
ip_route_ref route;
ip_header_ref header;
switch( error ){
case SERVICE_ICMP:
offset = icmp_client_process_packet( packet, & type, & code, NULL, NULL );
if( offset < 0 ){
return ip_release_and_return( packet, ENOMEM );
}
data = packet_get_data( packet );
header = ( ip_header_ref )( data + offset );
// destination host unreachable?
if(( type == ICMP_DEST_UNREACH ) && ( code == ICMP_HOST_UNREACH )){
fibril_rwlock_read_lock( & ip_globals.netifs_lock );
netif = ip_netifs_find( & ip_globals.netifs, device_id );
if( netif && netif->arp ){
route = ip_routes_get_index( & netif->routes, 0 );
// from the same network?
if( route && (( route->address.s_addr & route->netmask.s_addr ) == ( header->destination_address & route->netmask.s_addr ))){
// clear the ARP mapping if any
address.value = ( char * ) & header->destination_address;
address.length = CONVERT_SIZE( uint8_t, char, sizeof( header->destination_address ));
arp_clear_address_req( netif->arp->phone, netif->device_id, SERVICE_IP, & address );
}
}
fibril_rwlock_read_unlock( & ip_globals.netifs_lock );
}
break;
default:
return ip_release_and_return( packet, ENOTSUP );
}
return ip_deliver_local( device_id, packet, header, error );
}
int ip_deliver_local( device_id_t device_id, packet_t packet, ip_header_ref header, services_t error ){
ERROR_DECLARE;
ip_proto_ref proto;
int phone;
services_t service;
tl_received_msg_t received_msg;
struct sockaddr * src;
struct sockaddr * dest;
struct sockaddr_in src_in;
struct sockaddr_in dest_in;
// struct sockaddr_in src_in6;
// struct sockaddr_in dest_in6;
socklen_t addrlen;
if(( header->flags & IPFLAG_MORE_FRAGMENTS ) || IP_FRAGMENT_OFFSET( header )){
// TODO fragmented
return ENOTSUP;
}else{
switch( header->version ){
case IPVERSION:
addrlen = sizeof( src_in );
bzero( & src_in, addrlen );
src_in.sin_family = AF_INET;
memcpy( & dest_in, & src_in, addrlen );
memcpy( & src_in.sin_addr.s_addr, & header->source_address, sizeof( header->source_address ));
memcpy( & dest_in.sin_addr.s_addr, & header->destination_address, sizeof( header->destination_address ));
src = ( struct sockaddr * ) & src_in;
dest = ( struct sockaddr * ) & dest_in;
break;
/* case IPv6VERSION:
addrlen = sizeof( src_in6 );
bzero( & src_in6, addrlen );
src_in6.sin6_family = AF_INET6;
memcpy( & dest_in6, & src_in6, addrlen );
memcpy( & src_in6.sin6_addr.s6_addr, );
memcpy( & dest_in6.sin6_addr.s6_addr, );
src = ( struct sockaddr * ) & src_in;
dest = ( struct sockaddr * ) & dest_in;
break;
*/ default:
return ip_release_and_return( packet, EAFNOSUPPORT );
}
if( ERROR_OCCURRED( packet_set_addr( packet, ( uint8_t * ) src, ( uint8_t * ) dest, addrlen ))){
return ip_release_and_return( packet, ERROR_CODE );
}
// trim padding if present
if(( ! error ) && ( IP_TOTAL_LENGTH( header ) < packet_get_data_length( packet ))){
if( ERROR_OCCURRED( packet_trim( packet, 0, packet_get_data_length( packet ) - IP_TOTAL_LENGTH( header )))){
return ip_release_and_return( packet, ERROR_CODE );
}
}
fibril_rwlock_read_lock( & ip_globals.protos_lock );
proto = ip_protos_find( & ip_globals.protos, header->protocol );
if( ! proto ){
fibril_rwlock_read_unlock( & ip_globals.protos_lock );
phone = ip_prepare_icmp_and_get_phone( error, packet, header );
if( phone >= 0 ){
// unreachable ICMP
icmp_destination_unreachable_msg( phone, ICMP_PROT_UNREACH, 0, packet );
}
return ENOENT;
}
if( proto->received_msg ){
service = proto->service;
received_msg = proto->received_msg;
fibril_rwlock_read_unlock( & ip_globals.protos_lock );
ERROR_CODE = received_msg( device_id, packet, service, error );
}else{
ERROR_CODE = tl_received_msg( proto->phone, device_id, packet, proto->service, error );
fibril_rwlock_read_unlock( & ip_globals.protos_lock );
}
return ERROR_CODE;
}
}
in_addr_t ip_get_destination( ip_header_ref header ){
in_addr_t destination;
// TODO search set ipopt route?
destination.s_addr = header->destination_address;
return destination;
}
int ip_prepare_icmp( packet_t packet, ip_header_ref header ){
packet_t next;
struct sockaddr * dest;
struct sockaddr_in dest_in;
// struct sockaddr_in dest_in6;
socklen_t addrlen;
// detach the first packet and release the others
next = pq_detach( packet );
if( next ){
pq_release( ip_globals.net_phone, packet_get_id( next ));
}
if( ! header ){
if( packet_get_data_length( packet ) <= sizeof( ip_header_t )) return ENOMEM;
// get header
header = ( ip_header_ref ) packet_get_data( packet );
if( ! header ) return EINVAL;
}
// only for the first fragment
if( IP_FRAGMENT_OFFSET( header )) return EINVAL;
// set the destination address
switch( header->version ){
case IPVERSION:
addrlen = sizeof( dest_in );
bzero( & dest_in, addrlen );
dest_in.sin_family = AF_INET;
memcpy( & dest_in.sin_addr.s_addr, & header->source_address, sizeof( header->source_address ));
dest = ( struct sockaddr * ) & dest_in;
break;
/* case IPv6VERSION:
addrlen = sizeof( dest_in6 );
bzero( & dest_in6, addrlen );
dest_in6.sin6_family = AF_INET6;
memcpy( & dest_in6.sin6_addr.s6_addr, );
dest = ( struct sockaddr * ) & dest_in;
break;
*/ default:
return EAFNOSUPPORT;
}
return packet_set_addr( packet, NULL, ( uint8_t * ) dest, addrlen );
}
int ip_get_icmp_phone( void ){
ip_proto_ref proto;
int phone;
fibril_rwlock_read_lock( & ip_globals.protos_lock );
proto = ip_protos_find( & ip_globals.protos, IPPROTO_ICMP );
phone = proto ? proto->phone : ENOENT;
fibril_rwlock_read_unlock( & ip_globals.protos_lock );
return phone;
}
int ip_prepare_icmp_and_get_phone( services_t error, packet_t packet, ip_header_ref header ){
int phone;
phone = ip_get_icmp_phone();
if( error || ( phone < 0 ) || ip_prepare_icmp( packet, header )){
return ip_release_and_return( packet, EINVAL );
}
return phone;
}
int ip_release_and_return( packet_t packet, int result ){
pq_release( ip_globals.net_phone, packet_get_id( packet ));
return result;
}
int ip_get_route_req( int ip_phone, ip_protocol_t protocol, const struct sockaddr * destination, socklen_t addrlen, device_id_t * device_id, ip_pseudo_header_ref * header, size_t * headerlen ){
struct sockaddr_in * address_in;
// struct sockaddr_in6 * address_in6;
in_addr_t * dest;
in_addr_t * src;
ip_route_ref route;
ipv4_pseudo_header_ref header_in;
if( !( destination && ( addrlen > 0 ))) return EINVAL;
if( !( device_id && header && headerlen )) return EBADMEM;
if(( size_t ) addrlen < sizeof( struct sockaddr )){
return EINVAL;
}
switch( destination->sa_family ){
case AF_INET:
if( addrlen != sizeof( struct sockaddr_in )){
return EINVAL;
}
address_in = ( struct sockaddr_in * ) destination;
dest = & address_in->sin_addr;
break;
// TODO IPv6
/* case AF_INET6:
if( addrlen != sizeof( struct sockaddr_in6 )) return EINVAL;
address_in6 = ( struct sockaddr_in6 * ) dest;
address_in6.sin6_addr.s6_addr;
*/ default:
return EAFNOSUPPORT;
}
fibril_rwlock_read_lock( & ip_globals.lock );
route = ip_find_route( * dest );
if( !( route && route->netif )){
fibril_rwlock_read_unlock( & ip_globals.lock );
return ENOENT;
}
* device_id = route->netif->device_id;
src = ip_netif_address( route->netif );
fibril_rwlock_read_unlock( & ip_globals.lock );
* headerlen = sizeof( * header_in );
header_in = ( ipv4_pseudo_header_ref ) malloc( * headerlen );
if( ! header_in ) return ENOMEM;
bzero( header_in, * headerlen );
header_in->destination_address = dest->s_addr;
header_in->source_address = src->s_addr;
header_in->protocol = protocol;
header_in->data_length = 0;
* header = ( ip_pseudo_header_ref ) header_in;
return EOK;
}
/** @}
*/