/*
* Copyright (c) 2009 Lukas Mejdrech
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup arp
* @{
*/
/** @file
* ARP module implementation.
* @see arp.h
*/
#include <async.h>
#include <malloc.h>
#include <mem.h>
#include <rwlock.h>
#include <stdio.h>
#include <ipc/ipc.h>
#include <ipc/services.h>
#include "../../err.h"
#include "../../messages.h"
#include "../../modules.h"
#include "../../include/byteorder.h"
#include "../../include/device.h"
#include "../../include/protocol_map.h"
#include "../../structures/measured_strings.h"
#include "../../structures/packet/packet.h"
#include "../../structures/packet/packet_client.h"
#include "arp.h"
#include "arp_header.h"
#include "arp_oc.h"
//#include "arp_messages.h"
#include "arp_module.h"
/** Returns the device identifier message parameter.
*/
#define IPC_GET_DEVICE( call ) ( device_id_t ) IPC_GET_ARG1( * call )
/** Returns the packet identifier message parameter.
*/
#define IPC_GET_PACKET( call ) ( packet_id_t ) IPC_GET_ARG2( * call )
/** Returns the protocol service message parameter.
*/
#define IPC_GET_PROTO( call ) ( services_t ) IPC_GET_ARG2( * call )
/** Returns the device driver service message parameter.
*/
#define IPC_GET_SERVICE( call ) ( services_t ) IPC_GET_ARG3( * call )
/** ARP global data.
*/
arp_globals_t arp_globals;
/** Creates new protocol specific data.
* @param proto Protocol specific data. Output parameter.
* @param service Protocol module service. Input parameter.
* @param address Actual protocol device address. Input parameter.
* @returns EOK on success.
* @returns ENOMEM if there is not enough memory left.
*/
int arp_proto_create( arp_proto_ref * proto, services_t service, measured_string_ref address );
/** Registers the device.
* Creates new device entry in the cache or updates the protocol address if the device with the device identifier and the driver service exists.
* @param device_id The device identifier. Input parameter.
* @param service The device driver service. Input parameter.
* @param protocol The protocol service. Input parameter.
* @param address The actual device protocol address.
* @returns EOK on success.
* @returns EEXIST if another device with the same device identifier and different driver service exists.
* @returns ENOMEM if there is not enough memory left.
* @returns Other error codes as defined for the measured_strings_return() function.
*/
int arp_device_message( device_id_t device_id, services_t service, services_t protocol, measured_string_ref address );
/** Returns the hardware address for the given protocol address.
* Sends the ARP request packet if the hardware address is not found in the cache.
* @param device_id The device identifier. Input parameter.
* @param protocol The protocol service. Input parameter.
* @param target The target protocol address. Input parameter.
* @returns The hardware address of the target.
* @returns NULL if the target parameter is NULL.
* @returns NULL if the device is not found.
* @returns NULL if the device packet is too small to send a request.
* @returns NULL if the hardware address is not found in the cache.
*/
measured_string_ref arp_translate_message( device_id_t device_id, services_t protocol, measured_string_ref target );
/** Processes the received ARP packet.
* Updates the source hardware address if the source entry exists or the packet is targeted to my protocol address.
* Responses to the ARP request if the packet is the ARP request and is targeted to my address.
* @param device_id The source device identifier. Input parameter.
* @param packet The received packet. Input/output parameter.
* @returns EOK on success.
* @returns EINVAL if the packet is too small to carry the ARP packet.
* @returns EINVAL if the received address lengths differs from the registered values.
* @returns ENOENT if the device is not found in the cache.
* @returns ENOENT if the protocol for the device is not found in the cache.
* @returns ENOMEM if there is not enough memory left.
*/
int arp_receive_message( device_id_t device_id, packet_t packet );
/** Clears the device specific data from the cache.
* @param device_id The device identifier. Input parameter.
* @returns EOK on success.
* @returns ENOENT if the device is not found in the cache.
*/
int arp_clear_device_message( device_id_t device_id );
/** Clears the device specific data.
* @param device The device specific data.
*/
void clear_device( arp_device_ref device );
/** Clears the whole cache.
* @returns EOK on success.
*/
int arp_clean_cache_message( void );
/** Processes IPC messages from the registered device driver modules in an infinite loop.
* @param iid The message identifier. Input parameter.
* @param icall The message parameters. Input/output parameter.
*/
void arp_receiver( ipc_callid_t iid, ipc_call_t * icall );
DEVICE_MAP_IMPLEMENT( arp_cache, arp_device_t )
INT_MAP_IMPLEMENT( arp_protos, arp_proto_t )
GENERIC_CHAR_MAP_IMPLEMENT( arp_addr, measured_string_t )
int arp_initialize( void ){
ERROR_DECLARE;
rwlock_initialize( & arp_globals.lock );
rwlock_write_lock( & arp_globals.lock );
ERROR_PROPAGATE( arp_cache_initialize( & arp_globals.cache ));
rwlock_write_unlock( & arp_globals.lock );
return EOK;
}
int arp_proto_create( arp_proto_ref * proto, services_t service, measured_string_ref address ){
ERROR_DECLARE;
* proto
= ( arp_proto_ref
) malloc( sizeof( arp_proto_t
));
if( !( * proto )) return ENOMEM;
( ** proto ).service = service;
( ** proto ).addr = address;
( ** proto ).addr_data = address->value;
if( ERROR_OCCURRED( arp_addr_initialize( &( ** proto).addresses ))){
return ERROR_CODE;
}
return EOK;
}
int arp_device_message( device_id_t device_id, services_t service, services_t protocol, measured_string_ref address ){
ERROR_DECLARE;
arp_device_ref device;
aid_t message;
ipc_call_t answer;
ipcarg_t result;
arp_proto_ref proto;
int index;
rwlock_write_lock( & arp_globals.lock );
// an existing device?
device = arp_cache_find( & arp_globals.cache, device_id );
if( device ){
if( device->service != service ){
printf( "\nDevice %d already exists", device
->device_id
);
rwlock_write_unlock( & arp_globals.lock );
return EEXIST;
}
proto = arp_protos_find( & device->protos, protocol );
if( proto ){
free( proto
->addr_data
);
proto->addr = address;
proto->addr_data = address->value;
}else{
if( ERROR_OCCURRED( arp_proto_create( & proto, protocol, address ))){
rwlock_write_unlock( & arp_globals.lock );
return ERROR_CODE;
}
index = arp_protos_add( & device->protos, proto->service, proto );
if( index < 0 ){
rwlock_write_unlock( & arp_globals.lock );
return result;
}
}
printf( "\nCache of the existing device %d cleaned", device
->device_id
);
}else{
index = hardware_map( service );
if( ! index ) return ENOENT;
// create a new device
device
= ( arp_device_ref
) malloc( sizeof( arp_device_t
));
if( ! device ){
rwlock_write_unlock( & arp_globals.lock );
return ENOMEM;
}
device->hardware = index;
device->device_id = device_id;
if( ERROR_OCCURRED( arp_protos_initialize( & device->protos ))
|| ERROR_OCCURRED( arp_proto_create( & proto, protocol, address ))){
rwlock_write_unlock( & arp_globals.lock );
return ERROR_CODE;
}
index = arp_protos_add( & device->protos, proto->service, proto );
if( index < 0 ){
rwlock_write_unlock( & arp_globals.lock );
arp_protos_destroy( & device->protos );
return index;
}
device->service = service;
// bind the new one
device->phone = bind_service( device->service, device->device_id, SERVICE_ARP, 0, arp_receiver );
if( device->phone < 0 ){
rwlock_write_unlock( & arp_globals.lock );
arp_protos_destroy( & device->protos );
return EREFUSED;
}
// get packet dimensions
if( ERROR_OCCURRED( async_req_1_4( device->phone, NET_NIL_PACKET_SPACE, device_id, & device->addr_len, & device->prefix, & device->content, & device->suffix ))){
rwlock_write_unlock( & arp_globals.lock );
arp_protos_destroy( & device->protos );
return ERROR_CODE;
}
// get hardware address
message = async_send_1( device->phone, NET_NIL_ADDR, device->device_id, & answer );
if( ERROR_OCCURRED( measured_strings_return( device->phone, & device->addr, & device->addr_data, 1 ))){
rwlock_write_unlock( & arp_globals.lock );
arp_protos_destroy( & device->protos );
async_wait_for( message, NULL );
return ERROR_CODE;
}
async_wait_for( message, & result );
if( ERROR_OCCURRED( result )){
rwlock_write_unlock( & arp_globals.lock );
free( device
->addr_data
);
arp_protos_destroy( & device->protos );
return ERROR_CODE;
}
// get broadcast address
message = async_send_1( device->phone, NET_NIL_BROADCAST_ADDR, device->device_id, & answer );
if( ERROR_OCCURRED( measured_strings_return( device->phone, & device->broadcast_addr, & device->broadcast_data, 1 ))){
rwlock_write_unlock( & arp_globals.lock );
free( device
->addr_data
);
arp_protos_destroy( & device->protos );
async_wait_for( message, NULL );
return ERROR_CODE;
}
async_wait_for( message, & result );
// add to the cache
if( ERROR_OCCURRED( result )
|| ERROR_OCCURRED( arp_cache_add( & arp_globals.cache, device->device_id, device ))){
rwlock_write_unlock( & arp_globals.lock );
free( device
->addr_data
);
free( device
->broadcast_addr
);
free( device
->broadcast_data
);
arp_protos_destroy( & device->protos );
return ERROR_CODE;
}
printf( "\nNew device registered:\n\tid\t= %d\n\ttype\t= 0x%x\n\tservice\t= %d", device
->device_id
, device
->hardware
, device
->service
);
}
rwlock_write_unlock( & arp_globals.lock );
return EOK;
}
measured_string_ref arp_translate_message( device_id_t device_id, services_t protocol, measured_string_ref target ){
arp_device_ref device;
arp_proto_ref proto;
measured_string_ref addr;
size_t length;
packet_t packet;
arp_header_ref header;
if( ! target ) return NULL;
device = arp_cache_find( & arp_globals.cache, device_id );
if( ! device ) return NULL;
proto = arp_protos_find( & device->protos, protocol );
if(( ! proto ) || ( proto->addr->length != target->length )) return NULL;
addr = arp_addr_find( & proto->addresses, target->value, target->length );
if( addr ) return addr;
// ARP packet content size = header + ( address + translation ) * 2
length = 8 + ( CONVERT_SIZE( char, uint8_t, proto->addr->length ) + CONVERT_SIZE( char, uint8_t, device->addr->length )) * 2;
if( length > device->content ) return NULL;
packet = packet_get_4( arp_globals.networking_phone, device->addr_len, device->prefix, length, device->suffix );
if( ! packet ) return NULL;
header = ( arp_header_ref ) packet_suffix( packet, length );
header->hardware = htons( device->hardware );
header->hardware_length = device->addr->length;
header->protocol = htons( protocol_map( device->service, protocol ));
header->protocol_length = proto->addr->length;
header->operation = htons( ARPOP_REQUEST );
length = sizeof( arp_header_t );
memcpy((( uint8_t * ) header
) + length
, device
->addr
->value
, device
->addr
->length
);
length += device->addr->length;
memcpy((( uint8_t * ) header
) + length
, proto
->addr
->value
, proto
->addr
->length
);
length += proto->addr->length;
bzero((( uint8_t * ) header ) + length, device->addr->length );
length += device->addr->length;
memcpy((( uint8_t * ) header
) + length
, target
->value
, target
->length
);
packet_set_addr( packet, ( uint8_t * ) device->addr->value, ( uint8_t * ) device->broadcast_addr->value, CONVERT_SIZE( char, uint8_t, device->addr->length ));
async_msg_3( device->phone, NET_NIL_SEND, device_id, packet_get_id( packet ), SERVICE_ARP );
return NULL;
}
int arp_receive_message( device_id_t device_id, packet_t packet ){
ERROR_DECLARE;
size_t length;
arp_header_ref header;
arp_device_ref device;
arp_proto_ref proto;
measured_string_ref hw_source;
uint8_t * src_hw;
uint8_t * src_proto;
uint8_t * des_hw;
uint8_t * des_proto;
length = packet_get_data_length( packet );
if( length <= sizeof( arp_header_t )) return EINVAL;
device = arp_cache_find( & arp_globals.cache, device_id );
if( ! device ) return ENOENT;
header = ( arp_header_ref ) packet_get_data( packet );
if(( ntohs( header->hardware ) != device->hardware )
|| ( length < sizeof( arp_header_t ) + ( header->hardware_length + header->protocol_length ) * 2 )){
return EINVAL;
}
proto = arp_protos_find( & device->protos, protocol_unmap( device->service, ntohs( header->protocol )));
if( ! proto ) return ENOENT;
src_hw = (( uint8_t * ) header ) + sizeof( arp_header_t );
src_proto = src_hw + header->hardware_length;
des_hw = src_proto + header->protocol_length;
des_proto = des_hw + header->hardware_length;
hw_source = arp_addr_find( & proto->addresses, ( char * ) src_proto, CONVERT_SIZE( uint8_t, char, header->protocol_length ));
// exists?
if( hw_source ){
if( hw_source->length != CONVERT_SIZE( uint8_t, char, header->hardware_length )){
return EINVAL;
}
memcpy( hw_source
->value
, src_hw
, hw_source
->length
);
}
// is my protocol address?
if( proto->addr->length != CONVERT_SIZE( uint8_t, char, header->hardware_length )){
return EINVAL;
}
if( ! strncmp( proto
->addr
->value
, ( char * ) des_proto
, proto
->addr
->length
)){
// not already upadted?
if( ! hw_source ){
hw_source = measured_string_create_bulk(( char * ) src_hw, CONVERT_SIZE( uint8_t, char, header->hardware_length ));
if( ! hw_source ) return ENOMEM;
ERROR_PROPAGATE( arp_addr_add( & proto->addresses, ( char * ) src_proto, CONVERT_SIZE( uint8_t, char, header->protocol_length ), hw_source ));
}
if( ntohs( header->operation ) == ARPOP_REQUEST ){
header->operation = htons( ARPOP_REPLY );
memcpy( des_proto
, src_proto
, header
->protocol_length
);
memcpy( src_proto
, proto
->addr
->value
, header
->protocol_length
);
memcpy( src_hw
, des_hw
, header
->hardware_length
);
memcpy( des_hw
, hw_source
->value
, header
->hardware_length
);
packet_set_addr( packet, src_hw, des_hw, header->hardware_length );
async_msg_3( device->phone, NET_NIL_SEND, device_id, packet_get_id( packet ), SERVICE_ARP );
}else{
pq_release( arp_globals.networking_phone, packet_get_id( packet ));
}
}
return EOK;
}
int arp_clear_device_message( device_id_t device_id ){
arp_device_ref device;
rwlock_write_lock( & arp_globals.lock );
device = arp_cache_find( & arp_globals.cache, device_id );
if( ! device ){
rwlock_write_unlock( & arp_globals.lock );
return ENOENT;
}
clear_device( device );
printf( "\nDevice %d cleared", device_id
);
rwlock_write_unlock( & arp_globals.lock );
return EOK;
}
void clear_device( arp_device_ref device ){
int count;
arp_proto_ref proto;
for( count = arp_protos_count( & device->protos ) - 1; count >= 0; -- count ){
proto = arp_protos_get_index( & device->protos, count );
if( proto ){
if( proto
->addr
) free( proto
->addr
);
if( proto
->addr_data
) free( proto
->addr_data
);
arp_addr_destroy( & proto->addresses );
}
}
arp_protos_clear( & device->protos );
}
int arp_clean_cache_message( void ){
int count;
arp_device_ref device;
rwlock_write_lock( & arp_globals.lock );
for( count = arp_cache_count( & arp_globals.cache ) - 1; count >= 0; -- count ){
device = arp_cache_get_index( & arp_globals.cache, count );
if( device ){
clear_device( device );
if( device
->addr_data
) free( device
->addr_data
);
if( device
->broadcast_data
) free( device
->broadcast_data
);
}
}
arp_cache_clear( & arp_globals.cache );
rwlock_write_unlock( & arp_globals.lock );
return EOK;
}
int arp_message( ipc_callid_t callid, ipc_call_t * call, ipc_call_t * answer, int * answer_count ){
ERROR_DECLARE;
measured_string_ref address;
measured_string_ref translation;
char * data;
// printf( "\nmessage %d - %d", IPC_GET_METHOD( * call ), NET_ARP_FIRST );
* answer_count = 0;
switch( IPC_GET_METHOD( * call )){
case IPC_M_PHONE_HUNGUP:
return EOK;
case NET_ARP_DEVICE:
ERROR_PROPAGATE( measured_strings_receive( & address, & data, 1 ));
if( ERROR_OCCURRED( arp_device_message( IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ), IPC_GET_PROTO( call ), address ))){
}
return ERROR_CODE;
case NET_ARP_TRANSLATE:
ERROR_PROPAGATE( measured_strings_receive( & address, & data, 1 ));
rwlock_read_lock( & arp_globals.lock );
translation = arp_translate_message( IPC_GET_DEVICE( call ), IPC_GET_PROTO( call ), address );
if( ! translation ){
rwlock_read_unlock( & arp_globals.lock );
return ENOENT;
}
ERROR_CODE = measured_strings_reply( translation, 1 );
rwlock_read_unlock( & arp_globals.lock );
return ERROR_CODE;
case NET_ARP_CLEAR_DEVICE:
return arp_clear_device_message( IPC_GET_DEVICE( call ));
case NET_ARP_CLEAN_CACHE:
return arp_clean_cache_message();
}
return ENOTSUP;
}
void arp_receiver( ipc_callid_t iid, ipc_call_t * icall ){
ERROR_DECLARE;
packet_t packet;
while( true ){
switch( IPC_GET_METHOD( * icall )){
case NET_IL_DEVICE_STATE:
// do nothing - keep the cache
ipc_answer_0( iid, EOK );
break;
case NET_IL_RECEIVED:
if( ! ERROR_OCCURRED( packet_translate( arp_globals.networking_phone, & packet, IPC_GET_PACKET( icall )))){
rwlock_read_lock( & arp_globals.lock );
ERROR_CODE = arp_receive_message( IPC_GET_DEVICE( icall ), packet );
rwlock_read_unlock( & arp_globals.lock );
}
ipc_answer_0( iid, ERROR_CODE );
break;
default:
ipc_answer_0( iid, ENOTSUP );
}
iid = async_get_call( icall );
}
}
/** @}
*/