Subversion Repositories HelenOS

Rev

Rev 3588 | Rev 4338 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

/*
 * Copyright (c) 2001-2004 Jakub Jermar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup main
 * @{
 */

/**
 * @file
 * @brief   Main initialization kernel function for all processors.
 *
 * During kernel boot, all processors, after architecture dependent
 * initialization, start executing code found in this file. After
 * bringing up all subsystems, control is passed to scheduler().
 *
 * The bootstrap processor starts executing main_bsp() while
 * the application processors start executing main_ap().
 *
 * @see scheduler()
 * @see main_bsp()
 * @see main_ap()
 */

#include <arch/asm.h>
#include <context.h>
#include <print.h>
#include <panic.h>
#include <debug.h>
#include <config.h>
#include <time/clock.h>
#include <time/timeout.h>
#include <proc/scheduler.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/tasklet.h>
#include <main/kinit.h>
#include <main/version.h>
#include <console/kconsole.h>
#include <console/console.h>
#include <cpu.h>
#include <align.h>
#include <interrupt.h>
#include <mm/frame.h>
#include <mm/page.h>
#include <genarch/mm/page_pt.h>
#include <mm/tlb.h>
#include <mm/as.h>
#include <mm/slab.h>
#include <synch/waitq.h>
#include <synch/futex.h>
#include <arch/arch.h>
#include <arch.h>
#include <arch/faddr.h>
#include <ipc/ipc.h>
#include <macros.h>
#include <adt/btree.h>
#include <smp/smp.h>
#include <ddi/ddi.h>


/** Global configuration structure. */
config_t config;

/** Initial user-space tasks */
init_t init = {
    .cnt = 0
};

/** Boot allocations. */
ballocs_t ballocs = {
    .base = NULL,
    .size = 0
};

context_t ctx;

/*
 * These 'hardcoded' variables will be intialized by
 * the linker or the low level assembler code with
 * appropriate sizes and addresses.
 */

/**< Virtual address of where the kernel is loaded. */
uintptr_t hardcoded_load_address = 0;
/**< Size of the kernel code in bytes. */
size_t hardcoded_ktext_size = 0;
/**< Size of the kernel data in bytes. */
size_t hardcoded_kdata_size = 0;
/**< Lowest safe stack virtual address. */
uintptr_t stack_safe = 0;       

void main_bsp(void);
void main_ap(void);

/*
 * These two functions prevent stack from underflowing during the
 * kernel boot phase when SP is set to the very top of the reserved
 * space. The stack could get corrupted by a fooled compiler-generated
 * pop sequence otherwise.
 */
static void main_bsp_separated_stack(void);
#ifdef CONFIG_SMP
static void main_ap_separated_stack(void);
#endif

#define CONFIG_STACK_SIZE   ((1 << STACK_FRAMES) * STACK_SIZE)

/** Main kernel routine for bootstrap CPU.
 *
 * The code here still runs on the boot stack, which knows nothing about
 * preemption counts.  Because of that, this function cannot directly call
 * functions that disable or enable preemption (e.g. spinlock_lock()). The
 * primary task of this function is to calculate address of a new stack and
 * switch to it.
 *
 * Assuming interrupts_disable().
 *
 */
void main_bsp(void)
{
    config.cpu_count = 1;
    config.cpu_active = 1;
    
    config.base = hardcoded_load_address;
    config.kernel_size = ALIGN_UP(hardcoded_ktext_size +
        hardcoded_kdata_size, PAGE_SIZE);
    config.stack_size = CONFIG_STACK_SIZE;
    
    /* Initialy the stack is placed just after the kernel */
    config.stack_base = config.base + config.kernel_size;
    
    /* Avoid placing stack on top of init */
    count_t i;
    for (i = 0; i < init.cnt; i++) {
        if (PA_overlaps(config.stack_base, config.stack_size,
            init.tasks[i].addr, init.tasks[i].size))
            config.stack_base = ALIGN_UP(init.tasks[i].addr +
                init.tasks[i].size, config.stack_size);
    }

    /* Avoid placing stack on top of boot allocations. */
    if (ballocs.size) {
        if (PA_overlaps(config.stack_base, config.stack_size,
            ballocs.base, ballocs.size))
            config.stack_base = ALIGN_UP(ballocs.base +
                ballocs.size, PAGE_SIZE);
    }
    
    if (config.stack_base < stack_safe)
        config.stack_base = ALIGN_UP(stack_safe, PAGE_SIZE);
    
    context_save(&ctx);
    context_set(&ctx, FADDR(main_bsp_separated_stack), config.stack_base,
        THREAD_STACK_SIZE);
    context_restore(&ctx);
    /* not reached */
}


/** Main kernel routine for bootstrap CPU using new stack.
 *
 * Second part of main_bsp().
 *
 */
void main_bsp_separated_stack(void) 
{
    /* Keep this the first thing. */
    the_initialize(THE);
    
    version_print();
    
    LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
        "\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
        config.base, config.kernel_size, config.stack_base,
        config.stack_size);

#ifdef CONFIG_KCONSOLE
    /*
     * kconsole data structures must be initialized very early
     * because other subsystems will register their respective
     * commands.
     */
    LOG_EXEC(kconsole_init());
#endif
    
    /*
     * Exception handler initialization, before architecture
     * starts adding its own handlers
     */
    LOG_EXEC(exc_init());

    /*
     * Memory management subsystems initialization.
     */
    LOG_EXEC(arch_pre_mm_init());
    LOG_EXEC(frame_init());
    
    /* Initialize at least 1 memory segment big enough for slab to work. */
    LOG_EXEC(slab_cache_init());
    LOG_EXEC(btree_init());
    LOG_EXEC(as_init());
    LOG_EXEC(page_init());
    LOG_EXEC(tlb_init());
    LOG_EXEC(ddi_init());
    LOG_EXEC(tasklet_init());
    LOG_EXEC(arch_post_mm_init());
    LOG_EXEC(arch_pre_smp_init());
    LOG_EXEC(smp_init());
    
    /* Slab must be initialized after we know the number of processors. */
    LOG_EXEC(slab_enable_cpucache());
    
    printf("Detected %" PRIc " CPU(s), %" PRIu64" MiB free memory\n",
        config.cpu_count, SIZE2MB(zone_total_size()));
    
    LOG_EXEC(cpu_init());
    
    LOG_EXEC(calibrate_delay_loop());
    LOG_EXEC(clock_counter_init());
    LOG_EXEC(timeout_init());
    LOG_EXEC(scheduler_init());
    LOG_EXEC(task_init());
    LOG_EXEC(thread_init());
    LOG_EXEC(futex_init());
    
    if (init.cnt > 0) {
        count_t i;
        for (i = 0; i < init.cnt; i++)
            LOG("init[%" PRIc "].addr=%#" PRIp ", init[%" PRIc
                "].size=%#" PRIs "\n", i, init.tasks[i].addr, i,
                init.tasks[i].size);
    } else
        printf("No init binaries found\n");
    
    LOG_EXEC(ipc_init());
    LOG_EXEC(klog_init());

    /*
     * Create kernel task.
     */
    task_t *kernel = task_create(AS_KERNEL, "kernel");
    if (!kernel)
        panic("Can't create kernel task\n");
    
    /*
     * Create the first thread.
     */
    thread_t *kinit_thread
        = thread_create(kinit, NULL, kernel, 0, "kinit", true);
    if (!kinit_thread)
        panic("Can't create kinit thread\n");
    LOG_EXEC(thread_ready(kinit_thread));
    
    /*
     * This call to scheduler() will return to kinit,
     * starting the thread of kernel threads.
     */
    scheduler();
    /* not reached */
}


#ifdef CONFIG_SMP
/** Main kernel routine for application CPUs.
 *
 * Executed by application processors, temporary stack
 * is at ctx.sp which was set during BSP boot.
 * This function passes control directly to
 * main_ap_separated_stack().
 *
 * Assuming interrupts_disable()'d.
 *
 */
void main_ap(void)
{
    /*
     * Incrementing the active CPU counter will guarantee that the
     * *_init() functions can find out that they need to
     * do initialization for AP only.
     */
    config.cpu_active++;

    /*
     * The THE structure is well defined because ctx.sp is used as stack.
     */
    the_initialize(THE);
    
    arch_pre_mm_init();
    frame_init();
    page_init();
    tlb_init();
    arch_post_mm_init();
    
    cpu_init();
    calibrate_delay_loop();
    arch_post_cpu_init();

    the_copy(THE, (the_t *) CPU->stack);

    /*
     * If we woke kmp up before we left the kernel stack, we could
     * collide with another CPU coming up. To prevent this, we
     * switch to this cpu's private stack prior to waking kmp up.
     */
    context_save(&CPU->saved_context);
    context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
    context_restore(&CPU->saved_context);
    /* not reached */
}


/** Main kernel routine for application CPUs using new stack.
 *
 * Second part of main_ap().
 *
 */
void main_ap_separated_stack(void)
{
    /*
     * Configure timeouts for this cpu.
     */
    timeout_init();

    waitq_wakeup(&ap_completion_wq, WAKEUP_FIRST);
    scheduler();
    /* not reached */
}
#endif /* CONFIG_SMP */

/** @}
 */