/*
* Copyright (C) 2001-2004 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch/types.h>
#include <arch/smp/apic.h>
#include <arch/smp/ap.h>
#include <arch/smp/mps.h>
#include <mm/page.h>
#include <time/delay.h>
#include <arch/interrupt.h>
#include <print.h>
#include <arch/asm.h>
#include <arch.h>
#ifdef CONFIG_SMP
/*
* Advanced Programmable Interrupt Controller for SMP systems.
* Tested on:
* Bochs 2.0.2 - Bochs 2.2 with 2-8 CPUs
* Simics 2.0.28 - Simics 2.2.19 2-8 CPUs
* ASUS P/I-P65UP5 + ASUS C-P55T2D REV. 1.41 with 2x 200Mhz Pentium CPUs
* ASUS PCH-DL with 2x 3000Mhz Pentium 4 Xeon (HT) CPUs
* MSI K7D Master-L with 2x 2100MHz Athlon MP CPUs
*/
/*
* These variables either stay configured as initilalized, or are changed by
* the MP configuration code.
*
* Pay special attention to the volatile keyword. Without it, gcc -O2 would
* optimize the code too much and accesses to l_apic and io_apic, that must
* always be 32-bit, would use byte oriented instructions.
*/
volatile __u32 *l_apic = (__u32 *) 0xfee00000;
volatile __u32 *io_apic = (__u32 *) 0xfec00000;
__u32 apic_id_mask = 0;
int apic_poll_errors(void);
/** Initialize APIC on BSP. */
void apic_init(void)
{
__u32 tmp, id, i;
trap_register(VECTOR_APIC_SPUR, apic_spurious);
enable_irqs_function = io_apic_enable_irqs;
disable_irqs_function = io_apic_disable_irqs;
eoi_function = l_apic_eoi;
/*
* Configure interrupt routing.
* IRQ 0 remains masked as the time signal is generated by l_apic's themselves.
* Other interrupts will be forwarded to the lowest priority CPU.
*/
io_apic_disable_irqs(0xffff);
trap_register(VECTOR_CLK, l_apic_timer_interrupt);
for (i=0; i<16; i++) {
int pin;
if ((pin = smp_irq_to_pin(i)) != -1) {
io_apic_change_ioredtbl(pin, 0xff, IVT_IRQBASE+i, LOPRI);
}
}
/*
* Ensure that io_apic has unique ID.
*/
tmp = io_apic_read(IOAPICID);
id = (tmp >> 24) & 0xf;
if ((1<<id) & apic_id_mask) {
int i;
for (i=0; i<15; i++) {
if (!((1<<i) & apic_id_mask)) {
io_apic_write(IOAPICID, (tmp & (~(0xf<<24))) | (i<<24));
break;
}
}
}
/*
* Configure the BSP's lapic.
*/
l_apic_init();
l_apic_debug();
}
void apic_spurious(__u8 n, __native stack[])
{
printf("cpu%d: APIC spurious interrupt\n", CPU
->id
);
}
int apic_poll_errors(void)
{
__u32 esr;
esr = l_apic[ESR] & ~ESRClear;
if ((esr>>0) & 1)
if ((esr>>1) & 1)
if ((esr>>2) & 1)
printf("Send Accept Error\n");
if ((esr>>3) & 1)
printf("Receive Accept Error\n");
if ((esr>>5) & 1)
printf("Send Illegal Vector\n");
if ((esr>>6) & 1)
printf("Received Illegal Vector\n");
if ((esr>>7) & 1)
printf("Illegal Register Address\n");
return !esr;
}
/*
* Send all CPUs excluding CPU IPI vector.
*/
int l_apic_broadcast_custom_ipi(__u8 vector)
{
icr_t icr;
icr.lo = l_apic[ICRlo];
icr.delmod = DELMOD_FIXED;
icr.destmod = DESTMOD_LOGIC;
icr.level = LEVEL_ASSERT;
icr.shorthand = SHORTHAND_ALL_EXCL;
icr.trigger_mode = TRIGMOD_LEVEL;
icr.vector = vector;
l_apic[ICRlo] = icr.lo;
icr.lo = l_apic[ICRlo];
if (icr.lo & SEND_PENDING)
return apic_poll_errors();
}
/*
* Universal Start-up Algorithm for bringing up the AP processors.
*/
int l_apic_send_init_ipi(__u8 apicid)
{
icr_t icr;
int i;
/*
* Read the ICR register in and zero all non-reserved fields.
*/
icr.lo = l_apic[ICRlo];
icr.hi = l_apic[ICRhi];
icr.delmod = DELMOD_INIT;
icr.destmod = DESTMOD_PHYS;
icr.level = LEVEL_ASSERT;
icr.trigger_mode = TRIGMOD_LEVEL;
icr.shorthand = SHORTHAND_NONE;
icr.vector = 0;
icr.dest = apicid;
l_apic[ICRhi] = icr.hi;
l_apic[ICRlo] = icr.lo;
/*
* According to MP Specification, 20us should be enough to
* deliver the IPI.
*/
delay(20);
if (!apic_poll_errors()) return 0;
icr.lo = l_apic[ICRlo];
if (icr.lo & SEND_PENDING)
icr.delmod = DELMOD_INIT;
icr.destmod = DESTMOD_PHYS;
icr.level = LEVEL_DEASSERT;
icr.shorthand = SHORTHAND_NONE;
icr.trigger_mode = TRIGMOD_LEVEL;
icr.vector = 0;
l_apic[ICRlo] = icr.lo;
/*
* Wait 10ms as MP Specification specifies.
*/
delay(10000);
if (!is_82489DX_apic(l_apic[LAVR])) {
/*
* If this is not 82489DX-based l_apic we must send two STARTUP IPI's.
*/
for (i = 0; i<2; i++) {
icr.lo = l_apic[ICRlo];
icr.vector = ((__address) ap_boot) / 4096; /* calculate the reset vector */
icr.delmod = DELMOD_STARTUP;
icr.destmod = DESTMOD_PHYS;
icr.level = LEVEL_ASSERT;
icr.shorthand = SHORTHAND_NONE;
icr.trigger_mode = TRIGMOD_LEVEL;
l_apic[ICRlo] = icr.lo;
delay(200);
}
}
return apic_poll_errors();
}
void l_apic_init(void)
{
lvt_error_t error;
lvt_lint_t lint;
svr_t svr;
lvt_tm_t tm;
icr_t icr;
__u32 t1, t2;
/* Initialize LVT Error register. */
error.value = l_apic[LVT_Err];
error.masked = true;
l_apic[LVT_Err] = error.value;
/* Initialize LVT LINT0 register. */
lint.value = l_apic[LVT_LINT0];
lint.masked = true;
l_apic[LVT_LINT0] = lint.value;
/* Initialize LVT LINT1 register. */
lint.value = l_apic[LVT_LINT1];
lint.masked = true;
l_apic[LVT_LINT1] = lint.value;
/* Spurious-Interrupt Vector Register initialization. */
svr.value = l_apic[SVR];
svr.vector = VECTOR_APIC_SPUR;
svr.lapic_enabled = true;
l_apic[SVR] = svr.value;
l_apic[TPR] &= TPRClear;
if (CPU->arch.family >= 6)
enable_l_apic_in_msr();
/* Interrupt Command Register initialization. */
icr.lo = l_apic[ICRlo];
icr.delmod = DELMOD_INIT;
icr.destmod = DESTMOD_PHYS;
icr.level = LEVEL_DEASSERT;
icr.shorthand = SHORTHAND_ALL_INCL;
icr.trigger_mode = TRIGMOD_LEVEL;
l_apic[ICRlo] = icr.lo;
/*
* Program the timer for periodic mode and respective vector.
*/
l_apic[TDCR] &= TDCRClear;
l_apic[TDCR] |= 0xb;
tm.value = l_apic[LVT_Tm];
tm.vector = VECTOR_CLK;
tm.mode = TIMER_PERIODIC;
tm.masked = false;
l_apic[LVT_Tm] = tm.value;
t1 = l_apic[CCRT];
l_apic[ICRT] = 0xffffffff;
while (l_apic[CCRT] == t1)
;
t1 = l_apic[CCRT];
delay(1000);
t2 = l_apic[CCRT];
l_apic[ICRT] = t1-t2;
}
void l_apic_eoi(void)
{
l_apic[EOI] = 0;
}
void l_apic_debug(void)
{
#ifdef LAPIC_VERBOSE
int i, lint;
printf("LVT on cpu%d, LAPIC ID: %d\n", CPU
->id
, l_apic_id
());
printf("%B\n", l_apic
[LVT_Tm
] & 0xff);
for (i=0; i<2; i++) {
lint = i ? LVT_LINT1 : LVT_LINT0;
switch ((l_apic[lint]>>8)&7) {
case 0: printf("fixed"); break;
case 7: printf("ExtINT"); break;
}
printf("%B\n", l_apic
[lint
] & 0xff);
}
printf("%B\n", l_apic
[LVT_Err
] & 0xff);
/*
* This register is supported only on P6 and higher.
*/
if (CPU->arch.family > 5) {
switch ((l_apic[LVT_PCINT] >> 8)&7) {
case 0: printf("fixed"); break;
case 7: printf("ExtINT"); break;
}
printf("%B\n", l_apic
[LVT_PCINT
] & 0xff);
}
#endif
}
void l_apic_timer_interrupt(__u8 n, __native stack[])
{
l_apic_eoi();
}
__u8 l_apic_id(void)
{
return (l_apic[L_APIC_ID] >> L_APIC_IDShift)&L_APIC_IDMask;
}
__u32 io_apic_read(__u8 address)
{
__u32 tmp;
tmp = io_apic[IOREGSEL] & ~0xf;
io_apic[IOREGSEL] = tmp | address;
return io_apic[IOWIN];
}
void io_apic_write(__u8 address, __u32 x)
{
__u32 tmp;
tmp = io_apic[IOREGSEL] & ~0xf;
io_apic[IOREGSEL] = tmp | address;
io_apic[IOWIN] = x;
}
void io_apic_change_ioredtbl(int signal, int dest, __u8 v, int flags)
{
io_redirection_reg_t reg;
int dlvr = 0;
if (flags & LOPRI)
dlvr = DELMOD_LOWPRI;
reg.lo = io_apic_read(IOREDTBL + signal*2);
reg.hi = io_apic_read(IOREDTBL + signal*2 + 1);
reg.dest = dest;
reg.destmod = DESTMOD_LOGIC;
reg.trigger_mode = TRIGMOD_EDGE;
reg.intpol = POLARITY_HIGH;
reg.delmod = dlvr;
reg.intvec = v;
io_apic_write(IOREDTBL + signal*2, reg.lo);
io_apic_write(IOREDTBL + signal*2 + 1, reg.hi);
}
void io_apic_disable_irqs(__u16 irqmask)
{
io_redirection_reg_t reg;
int i, pin;
for (i=0;i<16;i++) {
if ((irqmask>>i) & 1) {
/*
* Mask the signal input in IO APIC if there is a
* mapping for the respective IRQ number.
*/
pin = smp_irq_to_pin(i);
if (pin != -1) {
reg.lo = io_apic_read(IOREDTBL + pin*2);
reg.masked = true;
io_apic_write(IOREDTBL + pin*2, reg.lo);
}
}
}
}
void io_apic_enable_irqs(__u16 irqmask)
{
int i, pin;
io_redirection_reg_t reg;
for (i=0;i<16;i++) {
if ((irqmask>>i) & 1) {
/*
* Unmask the signal input in IO APIC if there is a
* mapping for the respective IRQ number.
*/
pin = smp_irq_to_pin(i);
if (pin != -1) {
reg.lo = io_apic_read(IOREDTBL + pin*2);
reg.masked = false;
io_apic_write(IOREDTBL + pin*2, reg.lo);
}
}
}
}
#endif /* CONFIG_SMP */