/*
* Copyright (C) 2006 Ondrej Palkovsky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <test.h>
#include <mm/slab.h>
#include <print.h>
#include <proc/thread.h>
#include <arch.h>
#include <panic.h>
#include <mm/frame.h>
#include <memstr.h>
#include <synch/condvar.h>
#include <synch/mutex.h>
#define ITEM_SIZE 256
/** Fill memory with 2 caches, when allocation fails,
* free one of the caches. We should have everything in magazines,
* now allocation should clean magazines and allow for full allocation.
*/
static void totalmemtest(void)
{
slab_cache_t *cache1;
slab_cache_t *cache2;
int i;
void *data1, *data2;
void *olddata1=NULL, *olddata2=NULL;
cache1 = slab_cache_create("cache1_tst", ITEM_SIZE, 0, NULL, NULL, 0);
cache2 = slab_cache_create("cache2_tst", ITEM_SIZE, 0, NULL, NULL, 0);
/* Use atomic alloc, so that we find end of memory */
do {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
data2 = slab_alloc(cache2, FRAME_ATOMIC);
if (!data1 || !data2) {
if (data1)
slab_free(cache1,data1);
if (data2)
slab_free(cache2,data2);
break;
}
memsetb((uintptr_t)data1, ITEM_SIZE, 0);
memsetb((uintptr_t)data2, ITEM_SIZE, 0);
*((void **)data1) = olddata1;
*((void **)data2) = olddata2;
olddata1 = data1;
olddata2 = data2;
} while(1);
/* We do not have memory - now deallocate cache2 */
printf("Deallocating cache2...");
while (olddata2) {
data2 = *((void **)olddata2);
slab_free(cache2, olddata2);
olddata2 = data2;
}
printf("Allocating to cache1...\n");
for (i=0; i<30; i++) {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1) {
panic("Incorrect memory size - use another test.");
}
memsetb((uintptr_t)data1, ITEM_SIZE, 0);
*((void **)data1) = olddata1;
olddata1 = data1;
}
while (1) {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1) {
break;
}
memsetb((uintptr_t)data1, ITEM_SIZE, 0);
*((void **)data1) = olddata1;
olddata1 = data1;
}
printf("Deallocating cache1...");
while (olddata1) {
data1 = *((void **)olddata1);
slab_free(cache1, olddata1);
olddata1 = data1;
}
slab_print_list();
slab_cache_destroy(cache1);
slab_cache_destroy(cache2);
}
static slab_cache_t *thr_cache;
static semaphore_t thr_sem;
static condvar_t thread_starter;
static mutex_t starter_mutex;
#define THREADS 8
static void slabtest(void *priv)
{
void *data = NULL, *new;
thread_detach(THREAD);
mutex_lock(&starter_mutex);
condvar_wait(&thread_starter,&starter_mutex);
mutex_unlock(&starter_mutex);
printf("Starting thread #%d...\n",THREAD
->tid
);
/* Alloc all */
printf("Thread #%d allocating...\n", THREAD
->tid
);
while (1) {
/* Call with atomic to detect end of memory */
new = slab_alloc(thr_cache, FRAME_ATOMIC);
if (!new)
break;
*((void **)new) = data;
data = new;
}
printf("Thread #%d releasing...\n", THREAD
->tid
);
while (data) {
new = *((void **)data);
*((void **)data) = NULL;
slab_free(thr_cache, data);
data = new;
}
printf("Thread #%d allocating...\n", THREAD
->tid
);
while (1) {
/* Call with atomic to detect end of memory */
new = slab_alloc(thr_cache, FRAME_ATOMIC);
if (!new)
break;
*((void **)new) = data;
data = new;
}
printf("Thread #%d releasing...\n", THREAD
->tid
);
while (data) {
new = *((void **)data);
*((void **)data) = NULL;
slab_free(thr_cache, data);
data = new;
}
printf("Thread #%d finished\n", THREAD
->tid
);
slab_print_list();
semaphore_up(&thr_sem);
}
static void multitest(int size)
{
/* Start 8 threads that just allocate as much as possible,
* then release everything, then again allocate, then release
*/
thread_t *t;
int i;
printf("Running stress test with size %d\n", size
);
condvar_initialize(&thread_starter);
mutex_initialize(&starter_mutex);
thr_cache = slab_cache_create("thread_cache", size, 0,
NULL, NULL,
0);
semaphore_initialize(&thr_sem,0);
for (i = 0; i < THREADS; i++) {
if (!(t = thread_create(slabtest, NULL, TASK, 0, "slabtest")))
printf("Could not create thread %d\n", i
);
else
thread_ready(t);
}
thread_sleep(1);
condvar_broadcast(&thread_starter);
for (i = 0; i < THREADS; i++)
semaphore_down(&thr_sem);
slab_cache_destroy(thr_cache);
printf("Stress test complete.\n");
}
char * test_slab2(void)
{
printf("Running reclaim single-thread test .. pass 1\n");
totalmemtest();
printf("Running reclaim single-thread test .. pass 2\n");
totalmemtest();
multitest(128);
multitest(2048);
multitest(8192);
return NULL;
}