Subversion Repositories HelenOS-historic

Rev

Rev 1702 | Rev 1766 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2006 Ondrej Palkovsky
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup genericmm
  30.  * @{
  31.  */
  32.  
  33. /**
  34.  * @file
  35.  * @brief   Slab allocator.
  36.  *
  37.  * The slab allocator is closely modelled after OpenSolaris slab allocator.
  38.  * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
  39.  *
  40.  * with the following exceptions:
  41.  * @li empty slabs are deallocated immediately
  42.  *     (in Linux they are kept in linked list, in Solaris ???)
  43.  * @li empty magazines are deallocated when not needed
  44.  *     (in Solaris they are held in linked list in slab cache)
  45.  *
  46.  * Following features are not currently supported but would be easy to do:
  47.  * @li cache coloring
  48.  * @li dynamic magazine growing (different magazine sizes are already
  49.  *     supported, but we would need to adjust allocation strategy)
  50.  *
  51.  * The slab allocator supports per-CPU caches ('magazines') to facilitate
  52.  * good SMP scaling.
  53.  *
  54.  * When a new object is being allocated, it is first checked, if it is
  55.  * available in a CPU-bound magazine. If it is not found there, it is
  56.  * allocated from a CPU-shared slab - if a partially full one is found,
  57.  * it is used, otherwise a new one is allocated.
  58.  *
  59.  * When an object is being deallocated, it is put to a CPU-bound magazine.
  60.  * If there is no such magazine, a new one is allocated (if this fails,
  61.  * the object is deallocated into slab). If the magazine is full, it is
  62.  * put into cpu-shared list of magazines and a new one is allocated.
  63.  *
  64.  * The CPU-bound magazine is actually a pair of magazines in order to avoid
  65.  * thrashing when somebody is allocating/deallocating 1 item at the magazine
  66.  * size boundary. LIFO order is enforced, which should avoid fragmentation
  67.  * as much as possible.
  68.  *  
  69.  * Every cache contains list of full slabs and list of partially full slabs.
  70.  * Empty slabs are immediately freed (thrashing will be avoided because
  71.  * of magazines).
  72.  *
  73.  * The slab information structure is kept inside the data area, if possible.
  74.  * The cache can be marked that it should not use magazines. This is used
  75.  * only for slab related caches to avoid deadlocks and infinite recursion
  76.  * (the slab allocator uses itself for allocating all it's control structures).
  77.  *
  78.  * The slab allocator allocates a lot of space and does not free it. When
  79.  * the frame allocator fails to allocate a frame, it calls slab_reclaim().
  80.  * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
  81.  * releases slabs from cpu-shared magazine-list, until at least 1 slab
  82.  * is deallocated in each cache (this algorithm should probably change).
  83.  * The brutal reclaim removes all cached objects, even from CPU-bound
  84.  * magazines.
  85.  *
  86.  * @todo
  87.  * For better CPU-scaling the magazine allocation strategy should
  88.  * be extended. Currently, if the cache does not have magazine, it asks
  89.  * for non-cpu cached magazine cache to provide one. It might be feasible
  90.  * to add cpu-cached magazine cache (which would allocate it's magazines
  91.  * from non-cpu-cached mag. cache). This would provide a nice per-cpu
  92.  * buffer. The other possibility is to use the per-cache
  93.  * 'empty-magazine-list', which decreases competing for 1 per-system
  94.  * magazine cache.
  95.  *
  96.  * @todo
  97.  * it might be good to add granularity of locks even to slab level,
  98.  * we could then try_spinlock over all partial slabs and thus improve
  99.  * scalability even on slab level
  100.  */
  101.  
  102. #include <synch/spinlock.h>
  103. #include <mm/slab.h>
  104. #include <adt/list.h>
  105. #include <memstr.h>
  106. #include <align.h>
  107. #include <mm/frame.h>
  108. #include <config.h>
  109. #include <print.h>
  110. #include <arch.h>
  111. #include <panic.h>
  112. #include <debug.h>
  113. #include <bitops.h>
  114.  
  115. SPINLOCK_INITIALIZE(slab_cache_lock);
  116. static LIST_INITIALIZE(slab_cache_list);
  117.  
  118. /** Magazine cache */
  119. static slab_cache_t mag_cache;
  120. /** Cache for cache descriptors */
  121. static slab_cache_t slab_cache_cache;
  122. /** Cache for external slab descriptors
  123.  * This time we want per-cpu cache, so do not make it static
  124.  * - using slab for internal slab structures will not deadlock,
  125.  *   as all slab structures are 'small' - control structures of
  126.  *   their caches do not require further allocation
  127.  */
  128. static slab_cache_t *slab_extern_cache;
  129. /** Caches for malloc */
  130. static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
  131. char *malloc_names[] =  {
  132.     "malloc-16","malloc-32","malloc-64","malloc-128",
  133.     "malloc-256","malloc-512","malloc-1K","malloc-2K",
  134.     "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
  135.     "malloc-64K","malloc-128K","malloc-256K"
  136. };
  137.  
  138. /** Slab descriptor */
  139. typedef struct {
  140.     slab_cache_t *cache; /**< Pointer to parent cache */
  141.     link_t link;       /* List of full/partial slabs */
  142.     void *start;       /**< Start address of first available item */
  143.     count_t available; /**< Count of available items in this slab */
  144.     index_t nextavail; /**< The index of next available item */
  145. }slab_t;
  146.  
  147. #ifdef CONFIG_DEBUG
  148. static int _slab_initialized = 0;
  149. #endif
  150.  
  151. /**************************************/
  152. /* Slab allocation functions          */
  153.  
  154. /**
  155.  * Allocate frames for slab space and initialize
  156.  *
  157.  */
  158. static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
  159. {
  160.     void *data;
  161.     slab_t *slab;
  162.     size_t fsize;
  163.     int i;
  164.     int status;
  165.     pfn_t pfn;
  166.     int zone=0;
  167.    
  168.     pfn = frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
  169.     data = (void *) PA2KA(PFN2ADDR(pfn));
  170.     if (status != FRAME_OK) {
  171.         return NULL;
  172.     }
  173.     if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
  174.         slab = slab_alloc(slab_extern_cache, flags);
  175.         if (!slab) {
  176.             frame_free(ADDR2PFN(KA2PA(data)));
  177.             return NULL;
  178.         }
  179.     } else {
  180.         fsize = (PAGE_SIZE << cache->order);
  181.         slab = data + fsize - sizeof(*slab);
  182.     }
  183.    
  184.     /* Fill in slab structures */
  185.     for (i=0; i < (1 << cache->order); i++)
  186.         frame_set_parent(pfn+i, slab, zone);
  187.  
  188.     slab->start = data;
  189.     slab->available = cache->objects;
  190.     slab->nextavail = 0;
  191.     slab->cache = cache;
  192.  
  193.     for (i=0; i<cache->objects;i++)
  194.         *((int *) (slab->start + i*cache->size)) = i+1;
  195.  
  196.     atomic_inc(&cache->allocated_slabs);
  197.     return slab;
  198. }
  199.  
  200. /**
  201.  * Deallocate space associated with slab
  202.  *
  203.  * @return number of freed frames
  204.  */
  205. static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
  206. {
  207.     frame_free(ADDR2PFN(KA2PA(slab->start)));
  208.     if (! (cache->flags & SLAB_CACHE_SLINSIDE))
  209.         slab_free(slab_extern_cache, slab);
  210.  
  211.     atomic_dec(&cache->allocated_slabs);
  212.    
  213.     return 1 << cache->order;
  214. }
  215.  
  216. /** Map object to slab structure */
  217. static slab_t * obj2slab(void *obj)
  218. {
  219.     return (slab_t *)frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
  220. }
  221.  
  222. /**************************************/
  223. /* Slab functions */
  224.  
  225.  
  226. /**
  227.  * Return object to slab and call a destructor
  228.  *
  229.  * @param slab If the caller knows directly slab of the object, otherwise NULL
  230.  *
  231.  * @return Number of freed pages
  232.  */
  233. static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
  234.                 slab_t *slab)
  235. {
  236.     int freed = 0;
  237.  
  238.     if (!slab)
  239.         slab = obj2slab(obj);
  240.  
  241.     ASSERT(slab->cache == cache);
  242.  
  243.     if (cache->destructor)
  244.         freed = cache->destructor(obj);
  245.    
  246.     spinlock_lock(&cache->slablock);
  247.     ASSERT(slab->available < cache->objects);
  248.  
  249.     *((int *)obj) = slab->nextavail;
  250.     slab->nextavail = (obj - slab->start)/cache->size;
  251.     slab->available++;
  252.  
  253.     /* Move it to correct list */
  254.     if (slab->available == cache->objects) {
  255.         /* Free associated memory */
  256.         list_remove(&slab->link);
  257.         spinlock_unlock(&cache->slablock);
  258.  
  259.         return freed + slab_space_free(cache, slab);
  260.  
  261.     } else if (slab->available == 1) {
  262.         /* It was in full, move to partial */
  263.         list_remove(&slab->link);
  264.         list_prepend(&slab->link, &cache->partial_slabs);
  265.     }
  266.     spinlock_unlock(&cache->slablock);
  267.     return freed;
  268. }
  269.  
  270. /**
  271.  * Take new object from slab or create new if needed
  272.  *
  273.  * @return Object address or null
  274.  */
  275. static void * slab_obj_create(slab_cache_t *cache, int flags)
  276. {
  277.     slab_t *slab;
  278.     void *obj;
  279.  
  280.     spinlock_lock(&cache->slablock);
  281.  
  282.     if (list_empty(&cache->partial_slabs)) {
  283.         /* Allow recursion and reclaiming
  284.          * - this should work, as the slab control structures
  285.          *   are small and do not need to allocate with anything
  286.          *   other than frame_alloc when they are allocating,
  287.          *   that's why we should get recursion at most 1-level deep
  288.          */
  289.         spinlock_unlock(&cache->slablock);
  290.         slab = slab_space_alloc(cache, flags);
  291.         if (!slab)
  292.             return NULL;
  293.         spinlock_lock(&cache->slablock);
  294.     } else {
  295.         slab = list_get_instance(cache->partial_slabs.next,
  296.                      slab_t,
  297.                      link);
  298.         list_remove(&slab->link);
  299.     }
  300.     obj = slab->start + slab->nextavail * cache->size;
  301.     slab->nextavail = *((int *)obj);
  302.     slab->available--;
  303.  
  304.     if (! slab->available)
  305.         list_prepend(&slab->link, &cache->full_slabs);
  306.     else
  307.         list_prepend(&slab->link, &cache->partial_slabs);
  308.  
  309.     spinlock_unlock(&cache->slablock);
  310.  
  311.     if (cache->constructor && cache->constructor(obj, flags)) {
  312.         /* Bad, bad, construction failed */
  313.         slab_obj_destroy(cache, obj, slab);
  314.         return NULL;
  315.     }
  316.     return obj;
  317. }
  318.  
  319. /**************************************/
  320. /* CPU-Cache slab functions */
  321.  
  322. /**
  323.  * Finds a full magazine in cache, takes it from list
  324.  * and returns it
  325.  *
  326.  * @param first If true, return first, else last mag
  327.  */
  328. static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
  329.                         int first)
  330. {
  331.     slab_magazine_t *mag = NULL;
  332.     link_t *cur;
  333.  
  334.     spinlock_lock(&cache->maglock);
  335.     if (!list_empty(&cache->magazines)) {
  336.         if (first)
  337.             cur = cache->magazines.next;
  338.         else
  339.             cur = cache->magazines.prev;
  340.         mag = list_get_instance(cur, slab_magazine_t, link);
  341.         list_remove(&mag->link);
  342.         atomic_dec(&cache->magazine_counter);
  343.     }
  344.     spinlock_unlock(&cache->maglock);
  345.     return mag;
  346. }
  347.  
  348. /** Prepend magazine to magazine list in cache */
  349. static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
  350. {
  351.     spinlock_lock(&cache->maglock);
  352.  
  353.     list_prepend(&mag->link, &cache->magazines);
  354.     atomic_inc(&cache->magazine_counter);
  355.    
  356.     spinlock_unlock(&cache->maglock);
  357. }
  358.  
  359. /**
  360.  * Free all objects in magazine and free memory associated with magazine
  361.  *
  362.  * @return Number of freed pages
  363.  */
  364. static count_t magazine_destroy(slab_cache_t *cache,
  365.                 slab_magazine_t *mag)
  366. {
  367.     int i;
  368.     count_t frames = 0;
  369.  
  370.     for (i=0;i < mag->busy; i++) {
  371.         frames += slab_obj_destroy(cache, mag->objs[i], NULL);
  372.         atomic_dec(&cache->cached_objs);
  373.     }
  374.    
  375.     slab_free(&mag_cache, mag);
  376.  
  377.     return frames;
  378. }
  379.  
  380. /**
  381.  * Find full magazine, set it as current and return it
  382.  *
  383.  * Assume cpu_magazine lock is held
  384.  */
  385. static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
  386. {
  387.     slab_magazine_t *cmag, *lastmag, *newmag;
  388.  
  389.     cmag = cache->mag_cache[CPU->id].current;
  390.     lastmag = cache->mag_cache[CPU->id].last;
  391.     if (cmag) { /* First try local CPU magazines */
  392.         if (cmag->busy)
  393.             return cmag;
  394.  
  395.         if (lastmag && lastmag->busy) {
  396.             cache->mag_cache[CPU->id].current = lastmag;
  397.             cache->mag_cache[CPU->id].last = cmag;
  398.             return lastmag;
  399.         }
  400.     }
  401.     /* Local magazines are empty, import one from magazine list */
  402.     newmag = get_mag_from_cache(cache, 1);
  403.     if (!newmag)
  404.         return NULL;
  405.  
  406.     if (lastmag)
  407.         magazine_destroy(cache, lastmag);
  408.  
  409.     cache->mag_cache[CPU->id].last = cmag;
  410.     cache->mag_cache[CPU->id].current = newmag;
  411.     return newmag;
  412. }
  413.  
  414. /**
  415.  * Try to find object in CPU-cache magazines
  416.  *
  417.  * @return Pointer to object or NULL if not available
  418.  */
  419. static void * magazine_obj_get(slab_cache_t *cache)
  420. {
  421.     slab_magazine_t *mag;
  422.     void *obj;
  423.  
  424.     if (!CPU)
  425.         return NULL;
  426.  
  427.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  428.  
  429.     mag = get_full_current_mag(cache);
  430.     if (!mag) {
  431.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  432.         return NULL;
  433.     }
  434.     obj = mag->objs[--mag->busy];
  435.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  436.     atomic_dec(&cache->cached_objs);
  437.    
  438.     return obj;
  439. }
  440.  
  441. /**
  442.  * Assure that the current magazine is empty, return pointer to it, or NULL if
  443.  * no empty magazine is available and cannot be allocated
  444.  *
  445.  * Assume mag_cache[CPU->id].lock is held
  446.  *
  447.  * We have 2 magazines bound to processor.
  448.  * First try the current.
  449.  *  If full, try the last.
  450.  *   If full, put to magazines list.
  451.  *   allocate new, exchange last & current
  452.  *
  453.  */
  454. static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
  455. {
  456.     slab_magazine_t *cmag,*lastmag,*newmag;
  457.  
  458.     cmag = cache->mag_cache[CPU->id].current;
  459.     lastmag = cache->mag_cache[CPU->id].last;
  460.  
  461.     if (cmag) {
  462.         if (cmag->busy < cmag->size)
  463.             return cmag;
  464.         if (lastmag && lastmag->busy < lastmag->size) {
  465.             cache->mag_cache[CPU->id].last = cmag;
  466.             cache->mag_cache[CPU->id].current = lastmag;
  467.             return lastmag;
  468.         }
  469.     }
  470.     /* current | last are full | nonexistent, allocate new */
  471.     /* We do not want to sleep just because of caching */
  472.     /* Especially we do not want reclaiming to start, as
  473.      * this would deadlock */
  474.     newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
  475.     if (!newmag)
  476.         return NULL;
  477.     newmag->size = SLAB_MAG_SIZE;
  478.     newmag->busy = 0;
  479.  
  480.     /* Flush last to magazine list */
  481.     if (lastmag)
  482.         put_mag_to_cache(cache, lastmag);
  483.  
  484.     /* Move current as last, save new as current */
  485.     cache->mag_cache[CPU->id].last = cmag; 
  486.     cache->mag_cache[CPU->id].current = newmag;
  487.  
  488.     return newmag;
  489. }
  490.  
  491. /**
  492.  * Put object into CPU-cache magazine
  493.  *
  494.  * @return 0 - success, -1 - could not get memory
  495.  */
  496. static int magazine_obj_put(slab_cache_t *cache, void *obj)
  497. {
  498.     slab_magazine_t *mag;
  499.  
  500.     if (!CPU)
  501.         return -1;
  502.  
  503.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  504.  
  505.     mag = make_empty_current_mag(cache);
  506.     if (!mag) {
  507.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  508.         return -1;
  509.     }
  510.    
  511.     mag->objs[mag->busy++] = obj;
  512.  
  513.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  514.     atomic_inc(&cache->cached_objs);
  515.     return 0;
  516. }
  517.  
  518.  
  519. /**************************************/
  520. /* Slab cache functions */
  521.  
  522. /** Return number of objects that fit in certain cache size */
  523. static int comp_objects(slab_cache_t *cache)
  524. {
  525.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  526.         return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
  527.     else
  528.         return (PAGE_SIZE << cache->order) / cache->size;
  529. }
  530.  
  531. /** Return wasted space in slab */
  532. static int badness(slab_cache_t *cache)
  533. {
  534.     int objects;
  535.     int ssize;
  536.  
  537.     objects = comp_objects(cache);
  538.     ssize = PAGE_SIZE << cache->order;
  539.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  540.         ssize -= sizeof(slab_t);
  541.     return ssize - objects*cache->size;
  542. }
  543.  
  544. /**
  545.  * Initialize mag_cache structure in slab cache
  546.  */
  547. static void make_magcache(slab_cache_t *cache)
  548. {
  549.     int i;
  550.    
  551.     ASSERT(_slab_initialized >= 2);
  552.  
  553.     cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
  554.     for (i=0; i < config.cpu_count; i++) {
  555.         memsetb((__address)&cache->mag_cache[i],
  556.             sizeof(cache->mag_cache[i]), 0);
  557.         spinlock_initialize(&cache->mag_cache[i].lock,
  558.                     "slab_maglock_cpu");
  559.     }
  560. }
  561.  
  562. /** Initialize allocated memory as a slab cache */
  563. static void
  564. _slab_cache_create(slab_cache_t *cache,
  565.            char *name,
  566.            size_t size,
  567.            size_t align,
  568.            int (*constructor)(void *obj, int kmflag),
  569.            int (*destructor)(void *obj),
  570.            int flags)
  571. {
  572.     int pages;
  573.     ipl_t ipl;
  574.  
  575.     memsetb((__address)cache, sizeof(*cache), 0);
  576.     cache->name = name;
  577.  
  578.     if (align < sizeof(__native))
  579.         align = sizeof(__native);
  580.     size = ALIGN_UP(size, align);
  581.        
  582.     cache->size = size;
  583.  
  584.     cache->constructor = constructor;
  585.     cache->destructor = destructor;
  586.     cache->flags = flags;
  587.  
  588.     list_initialize(&cache->full_slabs);
  589.     list_initialize(&cache->partial_slabs);
  590.     list_initialize(&cache->magazines);
  591.     spinlock_initialize(&cache->slablock, "slab_lock");
  592.     spinlock_initialize(&cache->maglock, "slab_maglock");
  593.     if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
  594.         make_magcache(cache);
  595.  
  596.     /* Compute slab sizes, object counts in slabs etc. */
  597.     if (cache->size < SLAB_INSIDE_SIZE)
  598.         cache->flags |= SLAB_CACHE_SLINSIDE;
  599.  
  600.     /* Minimum slab order */
  601.     pages = SIZE2FRAMES(cache->size);
  602.     /* We need the 2^order >= pages */
  603.     if (pages == 1)
  604.         cache->order = 0;
  605.     else
  606.         cache->order = fnzb(pages-1)+1;
  607.  
  608.     while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
  609.         cache->order += 1;
  610.     }
  611.     cache->objects = comp_objects(cache);
  612.     /* If info fits in, put it inside */
  613.     if (badness(cache) > sizeof(slab_t))
  614.         cache->flags |= SLAB_CACHE_SLINSIDE;
  615.  
  616.     /* Add cache to cache list */
  617.     ipl = interrupts_disable();
  618.     spinlock_lock(&slab_cache_lock);
  619.  
  620.     list_append(&cache->link, &slab_cache_list);
  621.  
  622.     spinlock_unlock(&slab_cache_lock);
  623.     interrupts_restore(ipl);
  624. }
  625.  
  626. /** Create slab cache  */
  627. slab_cache_t * slab_cache_create(char *name,
  628.                  size_t size,
  629.                  size_t align,
  630.                  int (*constructor)(void *obj, int kmflag),
  631.                  int (*destructor)(void *obj),
  632.                  int flags)
  633. {
  634.     slab_cache_t *cache;
  635.  
  636.     cache = slab_alloc(&slab_cache_cache, 0);
  637.     _slab_cache_create(cache, name, size, align, constructor, destructor,
  638.                flags);
  639.     return cache;
  640. }
  641.  
  642. /**
  643.  * Reclaim space occupied by objects that are already free
  644.  *
  645.  * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
  646.  * @return Number of freed pages
  647.  */
  648. static count_t _slab_reclaim(slab_cache_t *cache, int flags)
  649. {
  650.     int i;
  651.     slab_magazine_t *mag;
  652.     count_t frames = 0;
  653.     int magcount;
  654.    
  655.     if (cache->flags & SLAB_CACHE_NOMAGAZINE)
  656.         return 0; /* Nothing to do */
  657.  
  658.     /* We count up to original magazine count to avoid
  659.      * endless loop
  660.      */
  661.     magcount = atomic_get(&cache->magazine_counter);
  662.     while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
  663.         frames += magazine_destroy(cache,mag);
  664.         if (!(flags & SLAB_RECLAIM_ALL) && frames)
  665.             break;
  666.     }
  667.    
  668.     if (flags & SLAB_RECLAIM_ALL) {
  669.         /* Free cpu-bound magazines */
  670.         /* Destroy CPU magazines */
  671.         for (i=0; i<config.cpu_count; i++) {
  672.             spinlock_lock(&cache->mag_cache[i].lock);
  673.  
  674.             mag = cache->mag_cache[i].current;
  675.             if (mag)
  676.                 frames += magazine_destroy(cache, mag);
  677.             cache->mag_cache[i].current = NULL;
  678.            
  679.             mag = cache->mag_cache[i].last;
  680.             if (mag)
  681.                 frames += magazine_destroy(cache, mag);
  682.             cache->mag_cache[i].last = NULL;
  683.  
  684.             spinlock_unlock(&cache->mag_cache[i].lock);
  685.         }
  686.     }
  687.  
  688.     return frames;
  689. }
  690.  
  691. /** Check that there are no slabs and remove cache from system  */
  692. void slab_cache_destroy(slab_cache_t *cache)
  693. {
  694.     ipl_t ipl;
  695.  
  696.     /* First remove cache from link, so that we don't need
  697.      * to disable interrupts later
  698.      */
  699.  
  700.     ipl = interrupts_disable();
  701.     spinlock_lock(&slab_cache_lock);
  702.  
  703.     list_remove(&cache->link);
  704.  
  705.     spinlock_unlock(&slab_cache_lock);
  706.     interrupts_restore(ipl);
  707.  
  708.     /* Do not lock anything, we assume the software is correct and
  709.      * does not touch the cache when it decides to destroy it */
  710.    
  711.     /* Destroy all magazines */
  712.     _slab_reclaim(cache, SLAB_RECLAIM_ALL);
  713.  
  714.     /* All slabs must be empty */
  715.     if (!list_empty(&cache->full_slabs) \
  716.         || !list_empty(&cache->partial_slabs))
  717.         panic("Destroying cache that is not empty.");
  718.  
  719.     if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
  720.         free(cache->mag_cache);
  721.     slab_free(&slab_cache_cache, cache);
  722. }
  723.  
  724. /** Allocate new object from cache - if no flags given, always returns
  725.     memory */
  726. void * slab_alloc(slab_cache_t *cache, int flags)
  727. {
  728.     ipl_t ipl;
  729.     void *result = NULL;
  730.    
  731.     /* Disable interrupts to avoid deadlocks with interrupt handlers */
  732.     ipl = interrupts_disable();
  733.  
  734.     if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
  735.         result = magazine_obj_get(cache);
  736.     }
  737.     if (!result)
  738.         result = slab_obj_create(cache, flags);
  739.  
  740.     interrupts_restore(ipl);
  741.  
  742.     if (result)
  743.         atomic_inc(&cache->allocated_objs);
  744.  
  745.     return result;
  746. }
  747.  
  748. /** Return object to cache, use slab if known  */
  749. static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
  750. {
  751.     ipl_t ipl;
  752.  
  753.     ipl = interrupts_disable();
  754.  
  755.     if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
  756.         || magazine_obj_put(cache, obj)) {
  757.  
  758.         slab_obj_destroy(cache, obj, slab);
  759.  
  760.     }
  761.     interrupts_restore(ipl);
  762.     atomic_dec(&cache->allocated_objs);
  763. }
  764.  
  765. /** Return slab object to cache */
  766. void slab_free(slab_cache_t *cache, void *obj)
  767. {
  768.     _slab_free(cache,obj,NULL);
  769. }
  770.  
  771. /* Go through all caches and reclaim what is possible */
  772. count_t slab_reclaim(int flags)
  773. {
  774.     slab_cache_t *cache;
  775.     link_t *cur;
  776.     count_t frames = 0;
  777.  
  778.     spinlock_lock(&slab_cache_lock);
  779.  
  780.     /* TODO: Add assert, that interrupts are disabled, otherwise
  781.      * memory allocation from interrupts can deadlock.
  782.      */
  783.  
  784.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  785.         cache = list_get_instance(cur, slab_cache_t, link);
  786.         frames += _slab_reclaim(cache, flags);
  787.     }
  788.  
  789.     spinlock_unlock(&slab_cache_lock);
  790.  
  791.     return frames;
  792. }
  793.  
  794.  
  795. /* Print list of slabs */
  796. void slab_print_list(void)
  797. {
  798.     slab_cache_t *cache;
  799.     link_t *cur;
  800.     ipl_t ipl;
  801.    
  802.     ipl = interrupts_disable();
  803.     spinlock_lock(&slab_cache_lock);
  804.     printf("slab name\t  Osize\t  Pages\t Obj/pg\t  Slabs\t Cached\tAllocobjs\tCtl\n");
  805.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  806.         cache = list_get_instance(cur, slab_cache_t, link);
  807.         printf("%s\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t\t%s\n", cache->name, cache->size,
  808.                (1 << cache->order), cache->objects,
  809.                atomic_get(&cache->allocated_slabs),
  810.                atomic_get(&cache->cached_objs),
  811.                atomic_get(&cache->allocated_objs),
  812.                cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
  813.     }
  814.     spinlock_unlock(&slab_cache_lock);
  815.     interrupts_restore(ipl);
  816. }
  817.  
  818. void slab_cache_init(void)
  819. {
  820.     int i, size;
  821.  
  822.     /* Initialize magazine cache */
  823.     _slab_cache_create(&mag_cache,
  824.                "slab_magazine",
  825.                sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
  826.                sizeof(__address),
  827.                NULL, NULL,
  828.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  829.     /* Initialize slab_cache cache */
  830.     _slab_cache_create(&slab_cache_cache,
  831.                "slab_cache",
  832.                sizeof(slab_cache_cache),
  833.                sizeof(__address),
  834.                NULL, NULL,
  835.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  836.     /* Initialize external slab cache */
  837.     slab_extern_cache = slab_cache_create("slab_extern",
  838.                           sizeof(slab_t),
  839.                           0, NULL, NULL,
  840.                           SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
  841.  
  842.     /* Initialize structures for malloc */
  843.     for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
  844.          i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
  845.          i++, size <<= 1) {
  846.         malloc_caches[i] = slab_cache_create(malloc_names[i],
  847.                              size, 0,
  848.                              NULL,NULL, SLAB_CACHE_MAGDEFERRED);
  849.     }
  850. #ifdef CONFIG_DEBUG      
  851.     _slab_initialized = 1;
  852. #endif
  853. }
  854.  
  855. /** Enable cpu_cache
  856.  *
  857.  * Kernel calls this function, when it knows the real number of
  858.  * processors.
  859.  * Allocate slab for cpucache and enable it on all existing
  860.  * slabs that are SLAB_CACHE_MAGDEFERRED
  861.  */
  862. void slab_enable_cpucache(void)
  863. {
  864.     link_t *cur;
  865.     slab_cache_t *s;
  866.  
  867. #ifdef CONFIG_DEBUG
  868.     _slab_initialized = 2;
  869. #endif
  870.  
  871.     spinlock_lock(&slab_cache_lock);
  872.    
  873.     for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
  874.         s = list_get_instance(cur, slab_cache_t, link);
  875.         if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
  876.             continue;
  877.         make_magcache(s);
  878.         s->flags &= ~SLAB_CACHE_MAGDEFERRED;
  879.     }
  880.  
  881.     spinlock_unlock(&slab_cache_lock);
  882. }
  883.  
  884. /**************************************/
  885. /* kalloc/kfree functions             */
  886. void * malloc(unsigned int size, int flags)
  887. {
  888.     int idx;
  889.  
  890.     ASSERT(_slab_initialized);
  891.     ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
  892.    
  893.     if (size < (1 << SLAB_MIN_MALLOC_W))
  894.         size = (1 << SLAB_MIN_MALLOC_W);
  895.  
  896.     idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
  897.  
  898.     return slab_alloc(malloc_caches[idx], flags);
  899. }
  900.  
  901. void free(void *obj)
  902. {
  903.     slab_t *slab;
  904.  
  905.     if (!obj) return;
  906.  
  907.     slab = obj2slab(obj);
  908.     _slab_free(slab->cache, obj, slab);
  909. }
  910.  
  911. /** @}
  912.  */
  913.