/*
* Copyright (c) 2007 Michal Kebrt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup kbdarm32gxemul GXemul
* @brief HelenOS arm32 GXEmul uspace keyboard handler.
* @ingroup kbdarm32
* @{
*/
/** @file
* @brief GXemul uspace keyboard handler.
*/
#include <ipc/ipc.h>
#include <sysinfo.h>
#include <kbd.h>
#include <keys.h>
#include <bool.h>
#define GXEMUL_KEY_F1 0x504f1bL
#define GXEMUL_KEY_F2 0x514f1bL
#define GXEMUL_KEY_F3 0x524f1bL
#define GXEMUL_KEY_F4 0x534f1bL
#define GXEMUL_KEY_F5 0x35315b1bL
#define GXEMUL_KEY_F6 0x37315b1bL
#define GXEMUL_KEY_F7 0x38315b1bL
#define GXEMUL_KEY_F8 0x39315b1bL
#define GXEMUL_KEY_F9 0x30325b1bL
#define GXEMUL_KEY_F10 0x31325b1bL
#define GXEMUL_KEY_F11 0x33325d1bL
#define GXEMUL_KEY_F12 0x34325b1bL
#define GXEMUL_FB_KEY_F1 0x504f5b1bL
#define GXEMUL_FB_KEY_F2 0x514f5b1bL
#define GXEMUL_FB_KEY_F3 0x524f5b1bL
#define GXEMUL_FB_KEY_F4 0x534f5b1bL
#define GXEMUL_FB_KEY_F5 0x35315b1bL
#define GXEMUL_FB_KEY_F6 0x37315b1bL
#define GXEMUL_FB_KEY_F7 0x38315b1bL
#define GXEMUL_FB_KEY_F8 0x39315b1bL
#define GXEMUL_FB_KEY_F9 0x38325b1bL
#define GXEMUL_FB_KEY_F10 0x39325b1bL
#define GXEMUL_FB_KEY_F11 0x33325b1bL
#define GXEMUL_FB_KEY_F12 0x34325b1bL
/** Function keys start code (F1=0x101) */
#define FUNCTION_KEYS 0x100
static irq_cmd_t gxemul_cmds[] = {
{
CMD_MEM_READ_1,
(void *) 0,
0,
2
}
};
static irq_code_t gxemul_kbd = {
1,
gxemul_cmds
};
/** Framebuffer switched on. */
static bool fb;
/*
// Please preserve this code (it can be used to determine scancodes)
int to_hex(int v)
{
return "0123456789ABCDEF"[v];
}
*/
/** Process data sent when a key is pressed (in no-framebuffer mode).
*
* @param keybuffer Buffer of scan codes.
* @param scan_code Scan code.
*
* @return Code of the pressed key.
*/
static int gxemul_process_no_fb(keybuffer_t *keybuffer, int scan_code)
{
static unsigned long buf = 0;
static int count = 0;
// Preserve for detecting scan codes.
// keybuffer_push(keybuffer, to_hex((scan_code>>4)&0xf));
// keybuffer_push(keybuffer, to_hex(scan_code&0xf));
// keybuffer_push(keybuffer, 'X');
// keybuffer_push(keybuffer, 'Y');
// return 1;
if (scan_code == '\r')
scan_code = '\n';
if(scan_code == 0x7e) {
switch (buf) {
case GXEMUL_KEY_F5:
keybuffer_push(keybuffer,FUNCTION_KEYS | 5);
buf = count = 0;
return 1;
case GXEMUL_KEY_F6:
keybuffer_push(keybuffer,FUNCTION_KEYS | 6);
buf = count = 0;
return 1;
case GXEMUL_KEY_F7:
keybuffer_push(keybuffer,FUNCTION_KEYS | 7);
buf = count = 0;
return 1;
case GXEMUL_KEY_F8:
keybuffer_push(keybuffer,FUNCTION_KEYS | 8);
buf = count = 0;
return 1;
case GXEMUL_KEY_F9:
keybuffer_push(keybuffer,FUNCTION_KEYS | 9);
buf = count = 0;
return 1;
case GXEMUL_KEY_F10:
keybuffer_push(keybuffer,FUNCTION_KEYS | 10);
buf = count = 0;
return 1;
case GXEMUL_KEY_F11:
keybuffer_push(keybuffer,FUNCTION_KEYS | 11);
buf = count = 0;
return 1;
case GXEMUL_KEY_F12:
keybuffer_push(keybuffer,FUNCTION_KEYS | 12);
buf = count = 0;
return 1;
default:
keybuffer_push(keybuffer, buf & 0xff);
keybuffer_push(keybuffer, (buf >> 8) &0xff);
keybuffer_push(keybuffer, (buf >> 16) &0xff);
keybuffer_push(keybuffer, (buf >> 24) &0xff);
keybuffer_push(keybuffer, scan_code);
buf = count = 0;
return 1;
}
}
buf |= ((unsigned long) scan_code)<<(8*(count++));
if((buf & 0xff) != (GXEMUL_KEY_F1 & 0xff)) {
keybuffer_push(keybuffer, buf);
buf = count = 0;
return 1;
}
if (count <= 1)
return 1;
if ((buf & 0xffff) != (GXEMUL_KEY_F1 & 0xffff)
&& (buf & 0xffff) != (GXEMUL_KEY_F5 & 0xffff) ) {
keybuffer_push(keybuffer, buf & 0xff);
keybuffer_push(keybuffer, (buf >> 8) &0xff);
buf = count = 0;
return 1;
}
if (count <= 2)
return 1;
switch (buf) {
case GXEMUL_KEY_F1:
keybuffer_push(keybuffer,FUNCTION_KEYS | 1);
buf = count = 0;
return 1;
case GXEMUL_KEY_F2:
keybuffer_push(keybuffer,FUNCTION_KEYS | 2);
buf = count = 0;
return 1;
case GXEMUL_KEY_F3:
keybuffer_push(keybuffer,FUNCTION_KEYS | 3);
buf = count = 0;
return 1;
case GXEMUL_KEY_F4:
keybuffer_push(keybuffer,FUNCTION_KEYS | 4);
buf = count = 0;
return 1;
}
if((buf & 0xffffff) != (GXEMUL_KEY_F5 & 0xffffff)
&& (buf & 0xffffff) != (GXEMUL_KEY_F9 & 0xffffff)) {
keybuffer_push(keybuffer, buf & 0xff);
keybuffer_push(keybuffer, (buf >> 8) & 0xff);
keybuffer_push(keybuffer, (buf >> 16) & 0xff);
buf=count=0;
return 1;
}
if (count <= 3)
return 1;
switch (buf) {
case GXEMUL_KEY_F5:
case GXEMUL_KEY_F6:
case GXEMUL_KEY_F7:
case GXEMUL_KEY_F8:
case GXEMUL_KEY_F9:
case GXEMUL_KEY_F10:
case GXEMUL_KEY_F11:
case GXEMUL_KEY_F12:
return 1;
default:
keybuffer_push(keybuffer, buf & 0xff);
keybuffer_push(keybuffer, (buf >> 8) &0xff);
keybuffer_push(keybuffer, (buf >> 16) &0xff);
keybuffer_push(keybuffer, (buf >> 24) &0xff);
buf = count = 0;
return 1;
}
return 1;
}
/** Process data sent when a key is pressed (in framebuffer mode).
*
* @param keybuffer Buffer of scan codes.
* @param scan_code Scan code.
*
* @return Code of the pressed key.
*/
static int gxemul_process_fb(keybuffer_t *keybuffer, int scan_code)
{
static unsigned long buf = 0;
static int count = 0;
/* Please preserve this code (it can be used to determine scancodes)
keybuffer_push(keybuffer, to_hex((scan_code>>4)&0xf));
keybuffer_push(keybuffer, to_hex(scan_code&0xf));
keybuffer_push(keybuffer, ' ');
keybuffer_push(keybuffer, ' ');
return 1;
*/
if (scan_code == '\r')
scan_code = '\n';
buf |= ((unsigned long) scan_code)<<(8*(count++));
if ((buf & 0xff) != (GXEMUL_FB_KEY_F1 & 0xff)) {
keybuffer_push(keybuffer, buf);
buf = count = 0;
return 1;
}
if (count <= 1)
return 1;
if ((buf & 0xffff) != (GXEMUL_FB_KEY_F1 & 0xffff)) {
keybuffer_push(keybuffer, buf & 0xff);
keybuffer_push(keybuffer, (buf >> 8) &0xff);
buf = count = 0;
return 1;
}
if (count <= 2)
return 1;
if ((buf & 0xffffff) != (GXEMUL_FB_KEY_F1 & 0xffffff)
&& (buf & 0xffffff) != (GXEMUL_FB_KEY_F5 & 0xffffff)
&& (buf & 0xffffff) != (GXEMUL_FB_KEY_F9 & 0xffffff)) {
keybuffer_push(keybuffer, buf & 0xff);
keybuffer_push(keybuffer, (buf >> 8) & 0xff);
keybuffer_push(keybuffer, (buf >> 16) & 0xff);
buf = count = 0;
return 1;
}
if ( count <= 3 )
return 1;
switch (buf) {
case GXEMUL_FB_KEY_F1:
keybuffer_push(keybuffer,FUNCTION_KEYS | 1 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F2:
keybuffer_push(keybuffer,FUNCTION_KEYS | 2 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F3:
keybuffer_push(keybuffer,FUNCTION_KEYS | 3 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F4:
keybuffer_push(keybuffer,FUNCTION_KEYS | 4 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F5:
keybuffer_push(keybuffer,FUNCTION_KEYS | 5 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F6:
keybuffer_push(keybuffer,FUNCTION_KEYS | 6 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F7:
keybuffer_push(keybuffer,FUNCTION_KEYS | 7 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F8:
keybuffer_push(keybuffer,FUNCTION_KEYS | 8 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F9:
keybuffer_push(keybuffer,FUNCTION_KEYS | 9 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F10:
keybuffer_push(keybuffer,FUNCTION_KEYS | 10 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F11:
keybuffer_push(keybuffer,FUNCTION_KEYS | 11 );
buf=count=0;
return 1;
case GXEMUL_FB_KEY_F12:
keybuffer_push(keybuffer,FUNCTION_KEYS | 12 );
buf=count=0;
return 1;
default:
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
keybuffer_push(keybuffer, (buf >> 16) &0xff );
keybuffer_push(keybuffer, (buf >> 24) &0xff );
buf=count=0;
return 1;
}
return 1;
}
/** Initializes keyboard handler. */
int kbd_arch_init(void)
{
fb = (sysinfo_value("fb.kind") == 1);
gxemul_cmds[0].addr = (void *) sysinfo_value("kbd.address.virtual");
ipc_register_irq(sysinfo_value("kbd.inr"), sysinfo_value("kbd.devno"), 0, &gxemul_kbd);
return 0;
}
/** Process data sent when a key is pressed.
*
* @param keybuffer Buffer of scan codes.
* @param call IPC call.
*
* @return Code of the pressed key.
*/
int kbd_arch_process(keybuffer_t *keybuffer, ipc_call_t *call)
{
int scan_code = IPC_GET_ARG2(*call);
static int esc_count = 0;
if (scan_code == 0x1b) {
esc_count++;
if (esc_count == 3) {
__SYSCALL0(SYS_DEBUG_ENABLE_CONSOLE);
}
} else {
esc_count = 0;
}
if (fb) {
return gxemul_process_fb(keybuffer, scan_code);
} else {
return gxemul_process_no_fb(keybuffer, scan_code);
}
}
/** @}
*/