/*
* Copyright (C) 2006 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch/kbd.h>
#include <ipc/ipc.h>
#include <sysinfo.h>
#define MSIM_KEY_F1 0x504f1bL
#define MSIM_KEY_F2 0x514f1bL
#define MSIM_KEY_F3 0x524f1bL
#define MSIM_KEY_F4 0x534f1bL
#define MSIM_KEY_F5 0x35315b1bL
#define MSIM_KEY_F6 0x37315b1bL
#define MSIM_KEY_F7 0x38315b1bL
#define MSIM_KEY_F8 0x39315b1bL
#define MSIM_KEY_F9 0x30325b1bL
#define MSIM_KEY_F10 0x31325b1bL
#define MSIM_KEY_F11 0x33325b1bL
#define MSIM_KEY_F12 0x34325b1bL
#define GXEMUL_KEY_F1 0x504f5b1bL
#define GXEMUL_KEY_F2 0x514f5b1bL
#define GXEMUL_KEY_F3 0x524f5b1bL
#define GXEMUL_KEY_F4 0x534f5b1bL
#define GXEMUL_KEY_F5 0x35315b1bL
#define GXEMUL_KEY_F6 0x37315b1bL
#define GXEMUL_KEY_F7 0x38315b1bL
#define GXEMUL_KEY_F8 0x39315b1bL
#define GXEMUL_KEY_F9 0x38325b1bL
#define GXEMUL_KEY_F10 0x39325b1bL
#define GXEMUL_KEY_F11 0x33325b1bL
#define GXEMUL_KEY_F12 0x34325b1bL
#define FUNCTION_KEYS 0x100
irq_cmd_t msim_cmds[1] = {
{ CMD_MEM_READ_1, (void *)0xB0000000, 0 }
};
irq_code_t msim_kbd = {
1,
msim_cmds
};
static int msim,gxemul;
int kbd_arch_init(void)
{
ipc_register_irq(2, &msim_kbd);
msim=sysinfo_value("machine.msim");
gxemul=sysinfo_value("machine.lgxemul");
return 1;
}
//*
//*
//* Please preserve this code (it can be used to determine scancodes)
//*
int to_hex(int v)
{
return "0123456789ABCDEF"[v];
}
//*/
static int kbd_arch_process_msim(keybuffer_t *keybuffer, int scan_code)
{
static unsigned long buf=0;
static int count=0;
//* Please preserve this code (it can be used to determine scancodes)
//*
//keybuffer_push(keybuffer, to_hex((scan_code>>4)&0xf));
//keybuffer_push(keybuffer, to_hex(scan_code&0xf));
//keybuffer_push(keybuffer, ' ');
//keybuffer_push(keybuffer, ' ');
//*/
//return 1;
if(scan_code==0x7e)
{
switch (buf){
case MSIM_KEY_F5:
keybuffer_push(keybuffer,FUNCTION_KEYS | 5 );
buf=count=0;
return 1;
case MSIM_KEY_F6:
keybuffer_push(keybuffer,FUNCTION_KEYS | 6 );
buf=count=0;
return 1;
case MSIM_KEY_F7:
keybuffer_push(keybuffer,FUNCTION_KEYS | 7 );
buf=count=0;
return 1;
case MSIM_KEY_F8:
keybuffer_push(keybuffer,FUNCTION_KEYS | 8 );
buf=count=0;
return 1;
case MSIM_KEY_F9:
keybuffer_push(keybuffer,FUNCTION_KEYS | 9 );
buf=count=0;
return 1;
case MSIM_KEY_F10:
keybuffer_push(keybuffer,FUNCTION_KEYS | 10 );
buf=count=0;
return 1;
case MSIM_KEY_F11:
keybuffer_push(keybuffer,FUNCTION_KEYS | 11 );
buf=count=0;
return 1;
case MSIM_KEY_F12:
keybuffer_push(keybuffer,FUNCTION_KEYS | 12 );
buf=count=0;
return 1;
default:
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
keybuffer_push(keybuffer, (buf >> 16) &0xff );
keybuffer_push(keybuffer, (buf >> 24) &0xff );
keybuffer_push(keybuffer, scan_code );
buf=count=0;
return 1;
}
}
buf|=((unsigned long) scan_code)<<(8*(count++));
if((buf & 0xff)!= (MSIM_KEY_F1 & 0xff)) {
keybuffer_push(keybuffer,buf );
buf=count=0;
return 1;
}
if ( count <= 1 )
return 1;
if( (buf & 0xffff) != (MSIM_KEY_F1 & 0xffff)
&& (buf & 0xffff) != (MSIM_KEY_F5 & 0xffff) ) {
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
buf=count=0;
return 1;
}
if ( count <= 2)
return 1;
switch (buf){
case MSIM_KEY_F1:
keybuffer_push(keybuffer,FUNCTION_KEYS | 1 );
buf=count=0;
return 1;
case MSIM_KEY_F2:
keybuffer_push(keybuffer,FUNCTION_KEYS | 2 );
buf=count=0;
return 1;
case MSIM_KEY_F3:
keybuffer_push(keybuffer,FUNCTION_KEYS | 3 );
buf=count=0;
return 1;
case MSIM_KEY_F4:
keybuffer_push(keybuffer,FUNCTION_KEYS | 4 );
buf=count=0;
return 1;
}
if( (buf & 0xffffff) != (MSIM_KEY_F5 & 0xffffff)
&& (buf & 0xffffff) != (MSIM_KEY_F9 & 0xffffff) ) {
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
keybuffer_push(keybuffer, (buf >> 16) &0xff );
buf=count=0;
return 1;
}
if ( count <= 3 )
return 1;
switch (buf){
case MSIM_KEY_F5:
case MSIM_KEY_F6:
case MSIM_KEY_F7:
case MSIM_KEY_F8:
case MSIM_KEY_F9:
case MSIM_KEY_F10:
case MSIM_KEY_F11:
case MSIM_KEY_F12:
return 1;
default:
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
keybuffer_push(keybuffer, (buf >> 16) &0xff );
keybuffer_push(keybuffer, (buf >> 24) &0xff );
buf=count=0;
return 1;
}
return 1;
}
static int kbd_arch_process_gxemul(keybuffer_t *keybuffer, int scan_code)
{
static unsigned long buf=0;
static int count=0;
//* Please preserve this code (it can be used to determine scancodes)
//*
//keybuffer_push(keybuffer, to_hex((scan_code>>4)&0xf));
//keybuffer_push(keybuffer, to_hex(scan_code&0xf));
//keybuffer_push(keybuffer, ' ');
//keybuffer_push(keybuffer, ' ');
//*/
//return 1;
buf|=((unsigned long) scan_code)<<(8*(count++));
if((buf & 0xff)!= (GXEMUL_KEY_F1 & 0xff)) {
keybuffer_push(keybuffer,buf );
buf=count=0;
return 1;
}
if ( count <= 1 )
return 1;
if( (buf & 0xffff) != (GXEMUL_KEY_F1 & 0xffff) ) {
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
buf=count=0;
return 1;
}
if ( count <= 2)
return 1;
if( (buf & 0xffffff) != (GXEMUL_KEY_F1 & 0xffffff)
&& (buf & 0xffffff) != (GXEMUL_KEY_F5 & 0xffffff)
&& (buf & 0xffffff) != (GXEMUL_KEY_F9 & 0xffffff) ) {
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
keybuffer_push(keybuffer, (buf >> 16) &0xff );
buf=count=0;
return 1;
}
if ( count <= 3 )
return 1;
switch (buf){
case GXEMUL_KEY_F1:
keybuffer_push(keybuffer,FUNCTION_KEYS | 1 );
buf=count=0;
return 1;
case GXEMUL_KEY_F2:
keybuffer_push(keybuffer,FUNCTION_KEYS | 2 );
buf=count=0;
return 1;
case GXEMUL_KEY_F3:
keybuffer_push(keybuffer,FUNCTION_KEYS | 3 );
buf=count=0;
return 1;
case GXEMUL_KEY_F4:
keybuffer_push(keybuffer,FUNCTION_KEYS | 4 );
buf=count=0;
return 1;
case GXEMUL_KEY_F5:
keybuffer_push(keybuffer,FUNCTION_KEYS | 5 );
buf=count=0;
return 1;
case GXEMUL_KEY_F6:
keybuffer_push(keybuffer,FUNCTION_KEYS | 6 );
buf=count=0;
return 1;
case GXEMUL_KEY_F7:
keybuffer_push(keybuffer,FUNCTION_KEYS | 7 );
buf=count=0;
return 1;
case GXEMUL_KEY_F8:
keybuffer_push(keybuffer,FUNCTION_KEYS | 8 );
buf=count=0;
return 1;
case GXEMUL_KEY_F9:
keybuffer_push(keybuffer,FUNCTION_KEYS | 9 );
buf=count=0;
return 1;
case GXEMUL_KEY_F10:
keybuffer_push(keybuffer,FUNCTION_KEYS | 10 );
buf=count=0;
return 1;
case GXEMUL_KEY_F11:
keybuffer_push(keybuffer,FUNCTION_KEYS | 11 );
buf=count=0;
return 1;
case GXEMUL_KEY_F12:
keybuffer_push(keybuffer,FUNCTION_KEYS | 12 );
buf=count=0;
return 1;
default:
keybuffer_push(keybuffer, buf & 0xff );
keybuffer_push(keybuffer, (buf >> 8) &0xff );
keybuffer_push(keybuffer, (buf >> 16) &0xff );
keybuffer_push(keybuffer, (buf >> 24) &0xff );
buf=count=0;
return 1;
}
return 1;
}
int kbd_arch_process(keybuffer_t *keybuffer, int scan_code)
{
if(msim) return kbd_arch_process_msim(keybuffer, scan_code);
if(gxemul) return kbd_arch_process_gxemul(keybuffer, scan_code);
return 0;
}