Subversion Repositories HelenOS

Rev

Rev 2131 | Rev 2292 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2001-2007 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup genericproc
  30.  * @{
  31.  */
  32.  
  33. /**
  34.  * @file
  35.  * @brief   Scheduler and load balancing.
  36.  *
  37.  * This file contains the scheduler and kcpulb kernel thread which
  38.  * performs load-balancing of per-CPU run queues.
  39.  */
  40.  
  41. #include <proc/scheduler.h>
  42. #include <proc/thread.h>
  43. #include <proc/task.h>
  44. #include <mm/frame.h>
  45. #include <mm/page.h>
  46. #include <mm/as.h>
  47. #include <time/timeout.h>
  48. #include <time/delay.h>
  49. #include <arch/asm.h>
  50. #include <arch/faddr.h>
  51. #include <arch/cycle.h>
  52. #include <atomic.h>
  53. #include <synch/spinlock.h>
  54. #include <config.h>
  55. #include <context.h>
  56. #include <fpu_context.h>
  57. #include <func.h>
  58. #include <arch.h>
  59. #include <adt/list.h>
  60. #include <panic.h>
  61. #include <cpu.h>
  62. #include <print.h>
  63. #include <debug.h>
  64. #include <proc/tasklet.h>
  65.  
  66. static void before_task_runs(void);
  67. static void before_thread_runs(void);
  68. static void after_thread_ran(void);
  69. static void scheduler_separated_stack(void);
  70.  
  71. atomic_t nrdy;  /**< Number of ready threads in the system. */
  72.  
  73. /** Carry out actions before new task runs. */
  74. void before_task_runs(void)
  75. {
  76.     before_task_runs_arch();
  77. }
  78.  
  79. /** Take actions before new thread runs.
  80.  *
  81.  * Perform actions that need to be
  82.  * taken before the newly selected
  83.  * tread is passed control.
  84.  *
  85.  * THREAD->lock is locked on entry
  86.  *
  87.  */
  88. void before_thread_runs(void)
  89. {
  90.     before_thread_runs_arch();
  91. #ifdef CONFIG_FPU_LAZY
  92.     if(THREAD == CPU->fpu_owner)
  93.         fpu_enable();
  94.     else
  95.         fpu_disable();
  96. #else
  97.     fpu_enable();
  98.     if (THREAD->fpu_context_exists)
  99.         fpu_context_restore(THREAD->saved_fpu_context);
  100.     else {
  101.         fpu_init();
  102.         THREAD->fpu_context_exists = 1;
  103.     }
  104. #endif
  105. }
  106.  
  107. /** Take actions after THREAD had run.
  108.  *
  109.  * Perform actions that need to be
  110.  * taken after the running thread
  111.  * had been preempted by the scheduler.
  112.  *
  113.  * THREAD->lock is locked on entry
  114.  *
  115.  */
  116. void after_thread_ran(void)
  117. {
  118.     after_thread_ran_arch();
  119. }
  120.  
  121. #ifdef CONFIG_FPU_LAZY
  122. void scheduler_fpu_lazy_request(void)
  123. {
  124. restart:
  125.     fpu_enable();
  126.     spinlock_lock(&CPU->lock);
  127.  
  128.     /* Save old context */
  129.     if (CPU->fpu_owner != NULL) {  
  130.         spinlock_lock(&CPU->fpu_owner->lock);
  131.         fpu_context_save(CPU->fpu_owner->saved_fpu_context);
  132.         /* don't prevent migration */
  133.         CPU->fpu_owner->fpu_context_engaged = 0;
  134.         spinlock_unlock(&CPU->fpu_owner->lock);
  135.         CPU->fpu_owner = NULL;
  136.     }
  137.  
  138.     spinlock_lock(&THREAD->lock);
  139.     if (THREAD->fpu_context_exists) {
  140.         fpu_context_restore(THREAD->saved_fpu_context);
  141.     } else {
  142.         /* Allocate FPU context */
  143.         if (!THREAD->saved_fpu_context) {
  144.             /* Might sleep */
  145.             spinlock_unlock(&THREAD->lock);
  146.             spinlock_unlock(&CPU->lock);
  147.             THREAD->saved_fpu_context =
  148.                 (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
  149.             /* We may have switched CPUs during slab_alloc */
  150.             goto restart;
  151.         }
  152.         fpu_init();
  153.         THREAD->fpu_context_exists = 1;
  154.     }
  155.     CPU->fpu_owner = THREAD;
  156.     THREAD->fpu_context_engaged = 1;
  157.     spinlock_unlock(&THREAD->lock);
  158.  
  159.     spinlock_unlock(&CPU->lock);
  160. }
  161. #endif
  162.  
  163. /** Initialize scheduler
  164.  *
  165.  * Initialize kernel scheduler.
  166.  *
  167.  */
  168. void scheduler_init(void)
  169. {
  170. }
  171.  
  172. /** Get thread to be scheduled
  173.  *
  174.  * Get the optimal thread to be scheduled
  175.  * according to thread accounting and scheduler
  176.  * policy.
  177.  *
  178.  * @return Thread to be scheduled.
  179.  *
  180.  */
  181. static thread_t *find_best_thread(void)
  182. {
  183.     thread_t *t;
  184.     runq_t *r;
  185.     int i;
  186.  
  187.     ASSERT(CPU != NULL);
  188.  
  189. loop:
  190.     interrupts_enable();
  191.    
  192.     if (atomic_get(&CPU->nrdy) == 0) {
  193.         /*
  194.          * For there was nothing to run, the CPU goes to sleep
  195.          * until a hardware interrupt or an IPI comes.
  196.          * This improves energy saving and hyperthreading.
  197.          */
  198.  
  199.         /*
  200.          * An interrupt might occur right now and wake up a thread.
  201.          * In such case, the CPU will continue to go to sleep
  202.          * even though there is a runnable thread.
  203.          */
  204.  
  205.          cpu_sleep();
  206.          goto loop;
  207.     }
  208.  
  209.     interrupts_disable();
  210.    
  211.     for (i = 0; i<RQ_COUNT; i++) {
  212.         r = &CPU->rq[i];
  213.         spinlock_lock(&r->lock);
  214.         if (r->n == 0) {
  215.             /*
  216.              * If this queue is empty, try a lower-priority queue.
  217.              */
  218.             spinlock_unlock(&r->lock);
  219.             continue;
  220.         }
  221.  
  222.         atomic_dec(&CPU->nrdy);
  223.         atomic_dec(&nrdy);
  224.         r->n--;
  225.  
  226.         /*
  227.          * Take the first thread from the queue.
  228.          */
  229.         t = list_get_instance(r->rq_head.next, thread_t, rq_link);
  230.         if (verbose)
  231.             printf("cpu%d removing, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link);
  232.         list_remove(&t->rq_link);
  233.         if (verbose)
  234.             printf("cpu%d  removed, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link);
  235.  
  236.         spinlock_unlock(&r->lock);
  237.  
  238.         spinlock_lock(&t->lock);
  239.         t->cpu = CPU;
  240.  
  241.         t->ticks = us2ticks((i + 1) * 10000);
  242.         t->priority = i;    /* correct rq index */
  243.  
  244.         /*
  245.          * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
  246.          * when load balancing needs emerge.
  247.          */
  248.         t->flags &= ~THREAD_FLAG_STOLEN;
  249.         spinlock_unlock(&t->lock);
  250.  
  251.         return t;
  252.     }
  253.     goto loop;
  254.  
  255. }
  256.  
  257. /** Prevent rq starvation
  258.  *
  259.  * Prevent low priority threads from starving in rq's.
  260.  *
  261.  * When the function decides to relink rq's, it reconnects
  262.  * respective pointers so that in result threads with 'pri'
  263.  * greater or equal start are moved to a higher-priority queue.
  264.  *
  265.  * @param start Threshold priority.
  266.  *
  267.  */
  268. static void relink_rq(int start)
  269. {
  270.     link_t head;
  271.     runq_t *r;
  272.     int i, n;
  273.  
  274.     list_initialize(&head);
  275.     spinlock_lock(&CPU->lock);
  276.     if (CPU->needs_relink > NEEDS_RELINK_MAX) {
  277.         for (i = start; i < RQ_COUNT - 1; i++) {
  278.             /* remember and empty rq[i + 1] */
  279.             r = &CPU->rq[i + 1];
  280.             spinlock_lock(&r->lock);
  281.             list_concat(&head, &r->rq_head);
  282.             n = r->n;
  283.             r->n = 0;
  284.             spinlock_unlock(&r->lock);
  285.        
  286.             /* append rq[i + 1] to rq[i] */
  287.             r = &CPU->rq[i];
  288.             spinlock_lock(&r->lock);
  289.             list_concat(&r->rq_head, &head);
  290.             r->n += n;
  291.             spinlock_unlock(&r->lock);
  292.         }
  293.         CPU->needs_relink = 0;
  294.     }
  295.     spinlock_unlock(&CPU->lock);
  296.  
  297. }
  298.  
  299. /** The scheduler
  300.  *
  301.  * The thread scheduling procedure.
  302.  * Passes control directly to
  303.  * scheduler_separated_stack().
  304.  *
  305.  */
  306. void scheduler(void)
  307. {
  308.     volatile ipl_t ipl;
  309.  
  310.     ASSERT(CPU != NULL);
  311.  
  312.     ipl = interrupts_disable();
  313.  
  314.     if (atomic_get(&haltstate))
  315.         halt();
  316.    
  317.     if (THREAD) {
  318.         spinlock_lock(&THREAD->lock);
  319.        
  320.         /* Update thread accounting */
  321.         THREAD->cycles += get_cycle() - THREAD->last_cycle;
  322.        
  323. #ifndef CONFIG_FPU_LAZY
  324.         fpu_context_save(THREAD->saved_fpu_context);
  325. #endif
  326.         if (!context_save(&THREAD->saved_context)) {
  327.             /*
  328.              * This is the place where threads leave scheduler();
  329.              */
  330.            
  331.             /* Save current CPU cycle */
  332.             THREAD->last_cycle = get_cycle();
  333.            
  334.             spinlock_unlock(&THREAD->lock);
  335.             interrupts_restore(THREAD->saved_context.ipl);
  336.            
  337.             return;
  338.         }
  339.  
  340.         /*
  341.          * Interrupt priority level of preempted thread is recorded
  342.          * here to facilitate scheduler() invocations from
  343.          * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
  344.          */
  345.         THREAD->saved_context.ipl = ipl;
  346.     }
  347.  
  348.     /*
  349.      * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
  350.      * and preemption counter. At this point THE could be coming either
  351.      * from THREAD's or CPU's stack.
  352.      */
  353.     the_copy(THE, (the_t *) CPU->stack);
  354.  
  355.     /*
  356.      * We may not keep the old stack.
  357.      * Reason: If we kept the old stack and got blocked, for instance, in
  358.      * find_best_thread(), the old thread could get rescheduled by another
  359.      * CPU and overwrite the part of its own stack that was also used by
  360.      * the scheduler on this CPU.
  361.      *
  362.      * Moreover, we have to bypass the compiler-generated POP sequence
  363.      * which is fooled by SP being set to the very top of the stack.
  364.      * Therefore the scheduler() function continues in
  365.      * scheduler_separated_stack().
  366.      */
  367.     context_save(&CPU->saved_context);
  368.     context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
  369.         (uintptr_t) CPU->stack, CPU_STACK_SIZE);
  370.     context_restore(&CPU->saved_context);
  371.     /* not reached */
  372. }
  373.  
  374. /** Scheduler stack switch wrapper
  375.  *
  376.  * Second part of the scheduler() function
  377.  * using new stack. Handling the actual context
  378.  * switch to a new thread.
  379.  *
  380.  * Assume THREAD->lock is held.
  381.  */
  382. void scheduler_separated_stack(void)
  383. {
  384.     int priority;
  385.    
  386.     ASSERT(CPU != NULL);
  387.    
  388.     if (THREAD) {
  389.         /* must be run after the switch to scheduler stack */
  390.         after_thread_ran();
  391.  
  392.         switch (THREAD->state) {
  393.         case Running:
  394.             spinlock_unlock(&THREAD->lock);
  395.             thread_ready(THREAD);
  396.             break;
  397.  
  398.         case Exiting:
  399. repeat:
  400.             if (THREAD->detached) {
  401.                 thread_destroy(THREAD);
  402.             } else {
  403.                 /*
  404.                  * The thread structure is kept allocated until
  405.                  * somebody calls thread_detach() on it.
  406.                  */
  407.                 if (!spinlock_trylock(&THREAD->join_wq.lock)) {
  408.                     /*
  409.                      * Avoid deadlock.
  410.                      */
  411.                     spinlock_unlock(&THREAD->lock);
  412.                     delay(10);
  413.                     spinlock_lock(&THREAD->lock);
  414.                     goto repeat;
  415.                 }
  416.                 _waitq_wakeup_unsafe(&THREAD->join_wq, false);
  417.                 spinlock_unlock(&THREAD->join_wq.lock);
  418.                
  419.                 THREAD->state = Undead;
  420.                 spinlock_unlock(&THREAD->lock);
  421.             }
  422.             break;
  423.            
  424.         case Sleeping:
  425.             /*
  426.              * Prefer the thread after it's woken up.
  427.              */
  428.             THREAD->priority = -1;
  429.  
  430.             /*
  431.              * We need to release wq->lock which we locked in
  432.              * waitq_sleep(). Address of wq->lock is kept in
  433.              * THREAD->sleep_queue.
  434.              */
  435.             spinlock_unlock(&THREAD->sleep_queue->lock);
  436.  
  437.             /*
  438.              * Check for possible requests for out-of-context
  439.              * invocation.
  440.              */
  441.             if (THREAD->call_me) {
  442.                 THREAD->call_me(THREAD->call_me_with);
  443.                 THREAD->call_me = NULL;
  444.                 THREAD->call_me_with = NULL;
  445.             }
  446.             if (verbose)
  447.                 printf("cpu%d, Sleeping unlocking \n", CPU->id);
  448.             spinlock_unlock(&THREAD->lock);
  449.  
  450.             break;
  451.  
  452.         default:
  453.             /*
  454.              * Entering state is unexpected.
  455.              */
  456.             panic("tid%d: unexpected state %s\n", THREAD->tid,
  457.                 thread_states[THREAD->state]);
  458.             break;
  459.         }
  460.  
  461.         THREAD = NULL;
  462.     }
  463.     if (verbose)
  464.         printf("cpu%d looking for next thread\n", CPU->id);
  465.     THREAD = find_best_thread();
  466.    
  467.     if (verbose)
  468.         printf("cpu%d t locking  THREAD:%x \n", CPU->id, THREAD);
  469.     spinlock_lock(&THREAD->lock);
  470.     priority = THREAD->priority;
  471.     spinlock_unlock(&THREAD->lock);
  472.     if (verbose)
  473.         printf("cpu%d t unlocked after priority THREAD:%x \n", CPU->id, THREAD);
  474.  
  475.     relink_rq(priority);       
  476.  
  477.     /*
  478.      * If both the old and the new task are the same, lots of work is
  479.      * avoided.
  480.      */
  481.     if (TASK != THREAD->task) {
  482.         as_t *as1 = NULL;
  483.         as_t *as2;
  484.  
  485.         if (TASK) {
  486.             spinlock_lock(&TASK->lock);
  487.             as1 = TASK->as;
  488.             spinlock_unlock(&TASK->lock);
  489.         }
  490.  
  491.         spinlock_lock(&THREAD->task->lock);
  492.         as2 = THREAD->task->as;
  493.         spinlock_unlock(&THREAD->task->lock);
  494.        
  495.         /*
  496.          * Note that it is possible for two tasks to share one address
  497.          * space.
  498.          */
  499.         if (as1 != as2) {
  500.             /*
  501.              * Both tasks and address spaces are different.
  502.              * Replace the old one with the new one.
  503.              */
  504.             as_switch(as1, as2);
  505.         }
  506.         TASK = THREAD->task;
  507.         before_task_runs();
  508.     }
  509.  
  510.     spinlock_lock(&THREAD->lock);  
  511.     THREAD->state = Running;
  512.  
  513. #ifdef SCHEDULER_VERBOSE
  514.     printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
  515.         CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
  516.         atomic_get(&CPU->nrdy));
  517. #endif 
  518.  
  519.     /*
  520.      * Some architectures provide late kernel PA2KA(identity)
  521.      * mapping in a page fault handler. However, the page fault
  522.      * handler uses the kernel stack of the running thread and
  523.      * therefore cannot be used to map it. The kernel stack, if
  524.      * necessary, is to be mapped in before_thread_runs(). This
  525.      * function must be executed before the switch to the new stack.
  526.      */
  527.     before_thread_runs();
  528.  
  529.     /*
  530.      * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
  531.      * thread's stack.
  532.      */
  533.     the_copy(THE, (the_t *) THREAD->kstack);
  534.    
  535.     context_restore(&THREAD->saved_context);
  536.     /* not reached */
  537. }
  538.  
  539. #ifdef CONFIG_SMP
  540. /** Load balancing thread
  541.  *
  542.  * SMP load balancing thread, supervising thread supplies
  543.  * for the CPU it's wired to.
  544.  *
  545.  * @param arg Generic thread argument (unused).
  546.  *
  547.  */
  548. void kcpulb(void *arg)
  549. {
  550.     thread_t *t;
  551.     int count, average, j, k = 0;
  552.     unsigned int i;
  553.     ipl_t ipl;
  554.  
  555.     /*
  556.      * Detach kcpulb as nobody will call thread_join_timeout() on it.
  557.      */
  558.     thread_detach(THREAD);
  559.    
  560. loop:
  561.     /*
  562.      * Work in 1s intervals.
  563.      */
  564.     thread_sleep(1);
  565.  
  566. not_satisfied:
  567.     /*
  568.      * Calculate the number of threads that will be migrated/stolen from
  569.      * other CPU's. Note that situation can have changed between two
  570.      * passes. Each time get the most up to date counts.
  571.      */
  572.     average = atomic_get(&nrdy) / config.cpu_active + 1;
  573.     count = average - atomic_get(&CPU->nrdy);
  574.  
  575.     if (count <= 0)
  576.         goto satisfied;
  577.  
  578.     /*
  579.      * Searching least priority queues on all CPU's first and most priority
  580.      * queues on all CPU's last.
  581.      */
  582.     for (j= RQ_COUNT - 1; j >= 0; j--) {
  583.         for (i = 0; i < config.cpu_active; i++) {
  584.             link_t *l;
  585.             runq_t *r;
  586.             cpu_t *cpu;
  587.  
  588.             cpu = &cpus[(i + k) % config.cpu_active];
  589.  
  590.             /*
  591.              * Not interested in ourselves.
  592.              * Doesn't require interrupt disabling for kcpulb has
  593.              * THREAD_FLAG_WIRED.
  594.              */
  595.             if (CPU == cpu)
  596.                 continue;
  597.             if (atomic_get(&cpu->nrdy) <= average)
  598.                 continue;
  599.  
  600.             ipl = interrupts_disable();
  601.             r = &cpu->rq[j];
  602.             spinlock_lock(&r->lock);
  603.             if (r->n == 0) {
  604.                 spinlock_unlock(&r->lock);
  605.                 interrupts_restore(ipl);
  606.                 continue;
  607.             }
  608.        
  609.             t = NULL;
  610.             l = r->rq_head.prev;    /* search rq from the back */
  611.             while (l != &r->rq_head) {
  612.                 t = list_get_instance(l, thread_t, rq_link);
  613.                 /*
  614.                  * We don't want to steal CPU-wired threads
  615.                  * neither threads already stolen. The latter
  616.                  * prevents threads from migrating between CPU's
  617.                  * without ever being run. We don't want to
  618.                  * steal threads whose FPU context is still in
  619.                  * CPU.
  620.                  */
  621.                 spinlock_lock(&t->lock);
  622.                 if ((!(t->flags & (THREAD_FLAG_WIRED |
  623.                     THREAD_FLAG_STOLEN))) &&
  624.                     (!(t->fpu_context_engaged)) ) {
  625.                     /*
  626.                      * Remove t from r.
  627.                      */
  628.                     spinlock_unlock(&t->lock);
  629.                    
  630.                     atomic_dec(&cpu->nrdy);
  631.                     atomic_dec(&nrdy);
  632.  
  633.                     r->n--;
  634.                     list_remove(&t->rq_link);
  635.  
  636.                     break;
  637.                 }
  638.                 spinlock_unlock(&t->lock);
  639.                 l = l->prev;
  640.                 t = NULL;
  641.             }
  642.             spinlock_unlock(&r->lock);
  643.  
  644.             if (t) {
  645.                 /*
  646.                  * Ready t on local CPU
  647.                  */
  648.                 spinlock_lock(&t->lock);
  649. #ifdef KCPULB_VERBOSE
  650.                 printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
  651.                     "avg=%nd\n", CPU->id, t->tid, CPU->id,
  652.                     atomic_get(&CPU->nrdy),
  653.                     atomic_get(&nrdy) / config.cpu_active);
  654. #endif
  655.                 t->flags |= THREAD_FLAG_STOLEN;
  656.                 t->state = Entering;
  657.                 spinlock_unlock(&t->lock);
  658.    
  659.                 thread_ready(t);
  660.  
  661.                 interrupts_restore(ipl);
  662.    
  663.                 if (--count == 0)
  664.                     goto satisfied;
  665.                    
  666.                 /*
  667.                  * We are not satisfied yet, focus on another
  668.                  * CPU next time.
  669.                  */
  670.                 k++;
  671.                
  672.                 continue;
  673.             }
  674.             interrupts_restore(ipl);
  675.         }
  676.     }
  677.  
  678.     if (atomic_get(&CPU->nrdy)) {
  679.         /*
  680.          * Be a little bit light-weight and let migrated threads run.
  681.          */
  682.         scheduler();
  683.     } else {
  684.         /*
  685.          * We failed to migrate a single thread.
  686.          * Give up this turn.
  687.          */
  688.         goto loop;
  689.     }
  690.        
  691.     goto not_satisfied;
  692.  
  693. satisfied:
  694.     goto loop;
  695. }
  696.  
  697. #endif /* CONFIG_SMP */
  698.  
  699.  
  700. /** Print information about threads & scheduler queues */
  701. void sched_print_list(void)
  702. {
  703.     ipl_t ipl;
  704.     unsigned int cpu, i;
  705.     runq_t *r;
  706.     thread_t *t;
  707.     link_t *cur;
  708.  
  709.     /* We are going to mess with scheduler structures,
  710.      * let's not be interrupted */
  711.     ipl = interrupts_disable();
  712.     for (cpu = 0; cpu < config.cpu_count; cpu++) {
  713.  
  714.         if (!cpus[cpu].active)
  715.             continue;
  716.  
  717.         spinlock_lock(&cpus[cpu].lock);
  718.         printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
  719.             cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
  720.             cpus[cpu].needs_relink);
  721.        
  722.         for (i = 0; i < RQ_COUNT; i++) {
  723.             r = &cpus[cpu].rq[i];
  724.             spinlock_lock(&r->lock);
  725.             if (!r->n) {
  726.                 spinlock_unlock(&r->lock);
  727.                 continue;
  728.             }
  729.             printf("\trq[%d]: ", i);
  730.             for (cur = r->rq_head.next; cur != &r->rq_head;
  731.                 cur = cur->next) {
  732.                 t = list_get_instance(cur, thread_t, rq_link);
  733.                 printf("%d(%s) ", t->tid,
  734.                     thread_states[t->state]);
  735.             }
  736.             printf("\n");
  737.             spinlock_unlock(&r->lock);
  738.         }
  739.         spinlock_unlock(&cpus[cpu].lock);
  740.     }
  741.    
  742.     interrupts_restore(ipl);
  743. }
  744.  
  745. /** @}
  746.  */
  747.