Subversion Repositories HelenOS

Rev

Rev 3240 | Rev 3384 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2001-2006 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup genericmm
  30.  * @{
  31.  */
  32.  
  33. /**
  34.  * @file
  35.  * @brief   Address space related functions.
  36.  *
  37.  * This file contains address space manipulation functions.
  38.  * Roughly speaking, this is a higher-level client of
  39.  * Virtual Address Translation (VAT) subsystem.
  40.  *
  41.  * Functionality provided by this file allows one to
  42.  * create address spaces and create, resize and share
  43.  * address space areas.
  44.  *
  45.  * @see page.c
  46.  *
  47.  */
  48.  
  49. #include <mm/as.h>
  50. #include <arch/mm/as.h>
  51. #include <mm/page.h>
  52. #include <mm/frame.h>
  53. #include <mm/slab.h>
  54. #include <mm/tlb.h>
  55. #include <arch/mm/page.h>
  56. #include <genarch/mm/page_pt.h>
  57. #include <genarch/mm/page_ht.h>
  58. #include <mm/asid.h>
  59. #include <arch/mm/asid.h>
  60. #include <preemption.h>
  61. #include <synch/spinlock.h>
  62. #include <synch/mutex.h>
  63. #include <adt/list.h>
  64. #include <adt/btree.h>
  65. #include <proc/task.h>
  66. #include <proc/thread.h>
  67. #include <arch/asm.h>
  68. #include <panic.h>
  69. #include <debug.h>
  70. #include <print.h>
  71. #include <memstr.h>
  72. #include <macros.h>
  73. #include <arch.h>
  74. #include <errno.h>
  75. #include <config.h>
  76. #include <align.h>
  77. #include <arch/types.h>
  78. #include <syscall/copy.h>
  79. #include <arch/interrupt.h>
  80.  
  81. #ifdef CONFIG_VIRT_IDX_DCACHE
  82. #include <arch/mm/cache.h>
  83. #endif /* CONFIG_VIRT_IDX_DCACHE */
  84.  
  85. /**
  86.  * Each architecture decides what functions will be used to carry out
  87.  * address space operations such as creating or locking page tables.
  88.  */
  89. as_operations_t *as_operations = NULL;
  90.  
  91. /**
  92.  * Slab for as_t objects.
  93.  */
  94. static slab_cache_t *as_slab;
  95.  
  96. /**
  97.  * This lock serializes access to the ASID subsystem.
  98.  * It protects:
  99.  * - inactive_as_with_asid_head list
  100.  * - as->asid for each as of the as_t type
  101.  * - asids_allocated counter
  102.  */
  103. SPINLOCK_INITIALIZE(asidlock);
  104.  
  105. /**
  106.  * This list contains address spaces that are not active on any
  107.  * processor and that have valid ASID.
  108.  */
  109. LIST_INITIALIZE(inactive_as_with_asid_head);
  110.  
  111. /** Kernel address space. */
  112. as_t *AS_KERNEL = NULL;
  113.  
  114. static int area_flags_to_page_flags(int aflags);
  115. static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
  116. static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
  117.     as_area_t *avoid_area);
  118. static void sh_info_remove_reference(share_info_t *sh_info);
  119.  
  120. static int as_constructor(void *obj, int flags)
  121. {
  122.     as_t *as = (as_t *) obj;
  123.     int rc;
  124.  
  125.     link_initialize(&as->inactive_as_with_asid_link);
  126.     mutex_initialize(&as->lock, MUTEX_PASSIVE);
  127.    
  128.     rc = as_constructor_arch(as, flags);
  129.    
  130.     return rc;
  131. }
  132.  
  133. static int as_destructor(void *obj)
  134. {
  135.     as_t *as = (as_t *) obj;
  136.  
  137.     return as_destructor_arch(as);
  138. }
  139.  
  140. /** Initialize address space subsystem. */
  141. void as_init(void)
  142. {
  143.     as_arch_init();
  144.  
  145.     as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
  146.         as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
  147.    
  148.     AS_KERNEL = as_create(FLAG_AS_KERNEL);
  149.     if (!AS_KERNEL)
  150.         panic("can't create kernel address space\n");
  151.    
  152. }
  153.  
  154. /** Create address space.
  155.  *
  156.  * @param flags Flags that influence way in wich the address space is created.
  157.  */
  158. as_t *as_create(int flags)
  159. {
  160.     as_t *as;
  161.  
  162.     as = (as_t *) slab_alloc(as_slab, 0);
  163.     (void) as_create_arch(as, 0);
  164.    
  165.     btree_create(&as->as_area_btree);
  166.    
  167.     if (flags & FLAG_AS_KERNEL)
  168.         as->asid = ASID_KERNEL;
  169.     else
  170.         as->asid = ASID_INVALID;
  171.    
  172.     atomic_set(&as->refcount, 0);
  173.     as->cpu_refcount = 0;
  174. #ifdef AS_PAGE_TABLE
  175.     as->genarch.page_table = page_table_create(flags);
  176. #else
  177.     page_table_create(flags);
  178. #endif
  179.  
  180.     return as;
  181. }
  182.  
  183. /** Destroy adress space.
  184.  *
  185.  * When there are no tasks referencing this address space (i.e. its refcount is
  186.  * zero), the address space can be destroyed.
  187.  *
  188.  * We know that we don't hold any spinlock.
  189.  */
  190. void as_destroy(as_t *as)
  191. {
  192.     ipl_t ipl;
  193.     bool cond;
  194.     DEADLOCK_PROBE_INIT(p_asidlock);
  195.  
  196.     ASSERT(atomic_get(&as->refcount) == 0);
  197.    
  198.     /*
  199.      * Since there is no reference to this area,
  200.      * it is safe not to lock its mutex.
  201.      */
  202.  
  203.     /*
  204.      * We need to avoid deadlock between TLB shootdown and asidlock.
  205.      * We therefore try to take asid conditionally and if we don't succeed,
  206.      * we enable interrupts and try again. This is done while preemption is
  207.      * disabled to prevent nested context switches. We also depend on the
  208.      * fact that so far no spinlocks are held.
  209.      */
  210.     preemption_disable();
  211.     ipl = interrupts_read();
  212. retry:
  213.     interrupts_disable();
  214.     if (!spinlock_trylock(&asidlock)) {
  215.         interrupts_enable();
  216.         DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
  217.         goto retry;
  218.     }
  219.     preemption_enable();    /* Interrupts disabled, enable preemption */
  220.     if (as->asid != ASID_INVALID && as != AS_KERNEL) {
  221.         if (as != AS && as->cpu_refcount == 0)
  222.             list_remove(&as->inactive_as_with_asid_link);
  223.         asid_put(as->asid);
  224.     }
  225.     spinlock_unlock(&asidlock);
  226.  
  227.     /*
  228.      * Destroy address space areas of the address space.
  229.      * The B+tree must be walked carefully because it is
  230.      * also being destroyed.
  231.      */
  232.     for (cond = true; cond; ) {
  233.         btree_node_t *node;
  234.  
  235.         ASSERT(!list_empty(&as->as_area_btree.leaf_head));
  236.         node = list_get_instance(as->as_area_btree.leaf_head.next,
  237.             btree_node_t, leaf_link);
  238.  
  239.         if ((cond = node->keys)) {
  240.             as_area_destroy(as, node->key[0]);
  241.         }
  242.     }
  243.  
  244.     btree_destroy(&as->as_area_btree);
  245. #ifdef AS_PAGE_TABLE
  246.     page_table_destroy(as->genarch.page_table);
  247. #else
  248.     page_table_destroy(NULL);
  249. #endif
  250.  
  251.     interrupts_restore(ipl);
  252.  
  253.     slab_free(as_slab, as);
  254. }
  255.  
  256. /** Create address space area of common attributes.
  257.  *
  258.  * The created address space area is added to the target address space.
  259.  *
  260.  * @param as Target address space.
  261.  * @param flags Flags of the area memory.
  262.  * @param size Size of area.
  263.  * @param base Base address of area.
  264.  * @param attrs Attributes of the area.
  265.  * @param backend Address space area backend. NULL if no backend is used.
  266.  * @param backend_data NULL or a pointer to an array holding two void *.
  267.  *
  268.  * @return Address space area on success or NULL on failure.
  269.  */
  270. as_area_t *
  271. as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
  272.            mem_backend_t *backend, mem_backend_data_t *backend_data)
  273. {
  274.     ipl_t ipl;
  275.     as_area_t *a;
  276.    
  277.     if (base % PAGE_SIZE)
  278.         return NULL;
  279.  
  280.     if (!size)
  281.         return NULL;
  282.  
  283.     /* Writeable executable areas are not supported. */
  284.     if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
  285.         return NULL;
  286.    
  287.     ipl = interrupts_disable();
  288.     mutex_lock(&as->lock);
  289.    
  290.     if (!check_area_conflicts(as, base, size, NULL)) {
  291.         mutex_unlock(&as->lock);
  292.         interrupts_restore(ipl);
  293.         return NULL;
  294.     }
  295.    
  296.     a = (as_area_t *) malloc(sizeof(as_area_t), 0);
  297.  
  298.     mutex_initialize(&a->lock, MUTEX_PASSIVE);
  299.    
  300.     a->as = as;
  301.     a->flags = flags;
  302.     a->attributes = attrs;
  303.     a->pages = SIZE2FRAMES(size);
  304.     a->base = base;
  305.     a->sh_info = NULL;
  306.     a->backend = backend;
  307.     if (backend_data)
  308.         a->backend_data = *backend_data;
  309.     else
  310.         memsetb(&a->backend_data, sizeof(a->backend_data), 0);
  311.  
  312.     btree_create(&a->used_space);
  313.    
  314.     btree_insert(&as->as_area_btree, base, (void *) a, NULL);
  315.  
  316.     mutex_unlock(&as->lock);
  317.     interrupts_restore(ipl);
  318.  
  319.     return a;
  320. }
  321.  
  322. /** Find address space area and change it.
  323.  *
  324.  * @param as Address space.
  325.  * @param address Virtual address belonging to the area to be changed. Must be
  326.  *     page-aligned.
  327.  * @param size New size of the virtual memory block starting at address.
  328.  * @param flags Flags influencing the remap operation. Currently unused.
  329.  *
  330.  * @return Zero on success or a value from @ref errno.h otherwise.
  331.  */
  332. int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
  333. {
  334.     as_area_t *area;
  335.     ipl_t ipl;
  336.     size_t pages;
  337.    
  338.     ipl = interrupts_disable();
  339.     mutex_lock(&as->lock);
  340.    
  341.     /*
  342.      * Locate the area.
  343.      */
  344.     area = find_area_and_lock(as, address);
  345.     if (!area) {
  346.         mutex_unlock(&as->lock);
  347.         interrupts_restore(ipl);
  348.         return ENOENT;
  349.     }
  350.  
  351.     if (area->backend == &phys_backend) {
  352.         /*
  353.          * Remapping of address space areas associated
  354.          * with memory mapped devices is not supported.
  355.          */
  356.         mutex_unlock(&area->lock);
  357.         mutex_unlock(&as->lock);
  358.         interrupts_restore(ipl);
  359.         return ENOTSUP;
  360.     }
  361.     if (area->sh_info) {
  362.         /*
  363.          * Remapping of shared address space areas
  364.          * is not supported.
  365.          */
  366.         mutex_unlock(&area->lock);
  367.         mutex_unlock(&as->lock);
  368.         interrupts_restore(ipl);
  369.         return ENOTSUP;
  370.     }
  371.  
  372.     pages = SIZE2FRAMES((address - area->base) + size);
  373.     if (!pages) {
  374.         /*
  375.          * Zero size address space areas are not allowed.
  376.          */
  377.         mutex_unlock(&area->lock);
  378.         mutex_unlock(&as->lock);
  379.         interrupts_restore(ipl);
  380.         return EPERM;
  381.     }
  382.    
  383.     if (pages < area->pages) {
  384.         bool cond;
  385.         uintptr_t start_free = area->base + pages*PAGE_SIZE;
  386.  
  387.         /*
  388.          * Shrinking the area.
  389.          * No need to check for overlaps.
  390.          */
  391.  
  392.         /*
  393.          * Start TLB shootdown sequence.
  394.          */
  395.         tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
  396.             pages * PAGE_SIZE, area->pages - pages);
  397.  
  398.         /*
  399.          * Remove frames belonging to used space starting from
  400.          * the highest addresses downwards until an overlap with
  401.          * the resized address space area is found. Note that this
  402.          * is also the right way to remove part of the used_space
  403.          * B+tree leaf list.
  404.          */    
  405.         for (cond = true; cond;) {
  406.             btree_node_t *node;
  407.        
  408.             ASSERT(!list_empty(&area->used_space.leaf_head));
  409.             node =
  410.                 list_get_instance(area->used_space.leaf_head.prev,
  411.                 btree_node_t, leaf_link);
  412.             if ((cond = (bool) node->keys)) {
  413.                 uintptr_t b = node->key[node->keys - 1];
  414.                 count_t c =
  415.                     (count_t) node->value[node->keys - 1];
  416.                 unsigned int i = 0;
  417.            
  418.                 if (overlaps(b, c * PAGE_SIZE, area->base,
  419.                     pages * PAGE_SIZE)) {
  420.                    
  421.                     if (b + c * PAGE_SIZE <= start_free) {
  422.                         /*
  423.                          * The whole interval fits
  424.                          * completely in the resized
  425.                          * address space area.
  426.                          */
  427.                         break;
  428.                     }
  429.        
  430.                     /*
  431.                      * Part of the interval corresponding
  432.                      * to b and c overlaps with the resized
  433.                      * address space area.
  434.                      */
  435.        
  436.                     cond = false;   /* we are almost done */
  437.                     i = (start_free - b) >> PAGE_WIDTH;
  438.                     if (!used_space_remove(area, start_free, c - i))
  439.                         panic("Could not remove used space.\n");
  440.                 } else {
  441.                     /*
  442.                      * The interval of used space can be
  443.                      * completely removed.
  444.                      */
  445.                     if (!used_space_remove(area, b, c))
  446.                         panic("Could not remove used space.\n");
  447.                 }
  448.            
  449.                 for (; i < c; i++) {
  450.                     pte_t *pte;
  451.            
  452.                     page_table_lock(as, false);
  453.                     pte = page_mapping_find(as, b +
  454.                         i * PAGE_SIZE);
  455.                     ASSERT(pte && PTE_VALID(pte) &&
  456.                         PTE_PRESENT(pte));
  457.                     if (area->backend &&
  458.                         area->backend->frame_free) {
  459.                         area->backend->frame_free(area,
  460.                             b + i * PAGE_SIZE,
  461.                             PTE_GET_FRAME(pte));
  462.                     }
  463.                     page_mapping_remove(as, b +
  464.                         i * PAGE_SIZE);
  465.                     page_table_unlock(as, false);
  466.                 }
  467.             }
  468.         }
  469.  
  470.         /*
  471.          * Finish TLB shootdown sequence.
  472.          */
  473.  
  474.         tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
  475.             area->pages - pages);
  476.         /*
  477.          * Invalidate software translation caches (e.g. TSB on sparc64).
  478.          */
  479.         as_invalidate_translation_cache(as, area->base +
  480.             pages * PAGE_SIZE, area->pages - pages);
  481.         tlb_shootdown_finalize();
  482.        
  483.     } else {
  484.         /*
  485.          * Growing the area.
  486.          * Check for overlaps with other address space areas.
  487.          */
  488.         if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
  489.             area)) {
  490.             mutex_unlock(&area->lock);
  491.             mutex_unlock(&as->lock);       
  492.             interrupts_restore(ipl);
  493.             return EADDRNOTAVAIL;
  494.         }
  495.     }
  496.  
  497.     area->pages = pages;
  498.    
  499.     mutex_unlock(&area->lock);
  500.     mutex_unlock(&as->lock);
  501.     interrupts_restore(ipl);
  502.  
  503.     return 0;
  504. }
  505.  
  506. /** Destroy address space area.
  507.  *
  508.  * @param as Address space.
  509.  * @param address Address withing the area to be deleted.
  510.  *
  511.  * @return Zero on success or a value from @ref errno.h on failure.
  512.  */
  513. int as_area_destroy(as_t *as, uintptr_t address)
  514. {
  515.     as_area_t *area;
  516.     uintptr_t base;
  517.     link_t *cur;
  518.     ipl_t ipl;
  519.  
  520.     ipl = interrupts_disable();
  521.     mutex_lock(&as->lock);
  522.  
  523.     area = find_area_and_lock(as, address);
  524.     if (!area) {
  525.         mutex_unlock(&as->lock);
  526.         interrupts_restore(ipl);
  527.         return ENOENT;
  528.     }
  529.  
  530.     base = area->base;
  531.  
  532.     /*
  533.      * Start TLB shootdown sequence.
  534.      */
  535.     tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
  536.  
  537.     /*
  538.      * Visit only the pages mapped by used_space B+tree.
  539.      */
  540.     for (cur = area->used_space.leaf_head.next;
  541.         cur != &area->used_space.leaf_head; cur = cur->next) {
  542.         btree_node_t *node;
  543.         unsigned int i;
  544.        
  545.         node = list_get_instance(cur, btree_node_t, leaf_link);
  546.         for (i = 0; i < node->keys; i++) {
  547.             uintptr_t b = node->key[i];
  548.             count_t j;
  549.             pte_t *pte;
  550.            
  551.             for (j = 0; j < (count_t) node->value[i]; j++) {
  552.                 page_table_lock(as, false);
  553.                 pte = page_mapping_find(as, b + j * PAGE_SIZE);
  554.                 ASSERT(pte && PTE_VALID(pte) &&
  555.                     PTE_PRESENT(pte));
  556.                 if (area->backend &&
  557.                     area->backend->frame_free) {
  558.                     area->backend->frame_free(area, b +
  559.                         j * PAGE_SIZE, PTE_GET_FRAME(pte));
  560.                 }
  561.                 page_mapping_remove(as, b + j * PAGE_SIZE);            
  562.                 page_table_unlock(as, false);
  563.             }
  564.         }
  565.     }
  566.  
  567.     /*
  568.      * Finish TLB shootdown sequence.
  569.      */
  570.  
  571.     tlb_invalidate_pages(as->asid, area->base, area->pages);
  572.     /*
  573.      * Invalidate potential software translation caches (e.g. TSB on
  574.      * sparc64).
  575.      */
  576.     as_invalidate_translation_cache(as, area->base, area->pages);
  577.     tlb_shootdown_finalize();
  578.    
  579.     btree_destroy(&area->used_space);
  580.  
  581.     area->attributes |= AS_AREA_ATTR_PARTIAL;
  582.    
  583.     if (area->sh_info)
  584.         sh_info_remove_reference(area->sh_info);
  585.        
  586.     mutex_unlock(&area->lock);
  587.  
  588.     /*
  589.      * Remove the empty area from address space.
  590.      */
  591.     btree_remove(&as->as_area_btree, base, NULL);
  592.    
  593.     free(area);
  594.    
  595.     mutex_unlock(&as->lock);
  596.     interrupts_restore(ipl);
  597.     return 0;
  598. }
  599.  
  600. /** Share address space area with another or the same address space.
  601.  *
  602.  * Address space area mapping is shared with a new address space area.
  603.  * If the source address space area has not been shared so far,
  604.  * a new sh_info is created. The new address space area simply gets the
  605.  * sh_info of the source area. The process of duplicating the
  606.  * mapping is done through the backend share function.
  607.  *
  608.  * @param src_as Pointer to source address space.
  609.  * @param src_base Base address of the source address space area.
  610.  * @param acc_size Expected size of the source area.
  611.  * @param dst_as Pointer to destination address space.
  612.  * @param dst_base Target base address.
  613.  * @param dst_flags_mask Destination address space area flags mask.
  614.  *
  615.  * @return Zero on success or ENOENT if there is no such task or if there is no
  616.  * such address space area, EPERM if there was a problem in accepting the area
  617.  * or ENOMEM if there was a problem in allocating destination address space
  618.  * area. ENOTSUP is returned if the address space area backend does not support
  619.  * sharing.
  620.  */
  621. int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
  622.     as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
  623. {
  624.     ipl_t ipl;
  625.     int src_flags;
  626.     size_t src_size;
  627.     as_area_t *src_area, *dst_area;
  628.     share_info_t *sh_info;
  629.     mem_backend_t *src_backend;
  630.     mem_backend_data_t src_backend_data;
  631.    
  632.     ipl = interrupts_disable();
  633.     mutex_lock(&src_as->lock);
  634.     src_area = find_area_and_lock(src_as, src_base);
  635.     if (!src_area) {
  636.         /*
  637.          * Could not find the source address space area.
  638.          */
  639.         mutex_unlock(&src_as->lock);
  640.         interrupts_restore(ipl);
  641.         return ENOENT;
  642.     }
  643.  
  644.     if (!src_area->backend || !src_area->backend->share) {
  645.         /*
  646.          * There is no backend or the backend does not
  647.          * know how to share the area.
  648.          */
  649.         mutex_unlock(&src_area->lock);
  650.         mutex_unlock(&src_as->lock);
  651.         interrupts_restore(ipl);
  652.         return ENOTSUP;
  653.     }
  654.    
  655.     src_size = src_area->pages * PAGE_SIZE;
  656.     src_flags = src_area->flags;
  657.     src_backend = src_area->backend;
  658.     src_backend_data = src_area->backend_data;
  659.  
  660.     /* Share the cacheable flag from the original mapping */
  661.     if (src_flags & AS_AREA_CACHEABLE)
  662.         dst_flags_mask |= AS_AREA_CACHEABLE;
  663.  
  664.     if (src_size != acc_size ||
  665.         (src_flags & dst_flags_mask) != dst_flags_mask) {
  666.         mutex_unlock(&src_area->lock);
  667.         mutex_unlock(&src_as->lock);
  668.         interrupts_restore(ipl);
  669.         return EPERM;
  670.     }
  671.  
  672.     /*
  673.      * Now we are committed to sharing the area.
  674.      * First, prepare the area for sharing.
  675.      * Then it will be safe to unlock it.
  676.      */
  677.     sh_info = src_area->sh_info;
  678.     if (!sh_info) {
  679.         sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
  680.         mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
  681.         sh_info->refcount = 2;
  682.         btree_create(&sh_info->pagemap);
  683.         src_area->sh_info = sh_info;
  684.         /*
  685.          * Call the backend to setup sharing.
  686.          */
  687.         src_area->backend->share(src_area);
  688.     } else {
  689.         mutex_lock(&sh_info->lock);
  690.         sh_info->refcount++;
  691.         mutex_unlock(&sh_info->lock);
  692.     }
  693.  
  694.     mutex_unlock(&src_area->lock);
  695.     mutex_unlock(&src_as->lock);
  696.  
  697.     /*
  698.      * Create copy of the source address space area.
  699.      * The destination area is created with AS_AREA_ATTR_PARTIAL
  700.      * attribute set which prevents race condition with
  701.      * preliminary as_page_fault() calls.
  702.      * The flags of the source area are masked against dst_flags_mask
  703.      * to support sharing in less privileged mode.
  704.      */
  705.     dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
  706.         AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
  707.     if (!dst_area) {
  708.         /*
  709.          * Destination address space area could not be created.
  710.          */
  711.         sh_info_remove_reference(sh_info);
  712.        
  713.         interrupts_restore(ipl);
  714.         return ENOMEM;
  715.     }
  716.  
  717.     /*
  718.      * Now the destination address space area has been
  719.      * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
  720.      * attribute and set the sh_info.
  721.      */
  722.     mutex_lock(&dst_as->lock); 
  723.     mutex_lock(&dst_area->lock);
  724.     dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
  725.     dst_area->sh_info = sh_info;
  726.     mutex_unlock(&dst_area->lock);
  727.     mutex_unlock(&dst_as->lock);   
  728.  
  729.     interrupts_restore(ipl);
  730.    
  731.     return 0;
  732. }
  733.  
  734. /** Check access mode for address space area.
  735.  *
  736.  * The address space area must be locked prior to this call.
  737.  *
  738.  * @param area Address space area.
  739.  * @param access Access mode.
  740.  *
  741.  * @return False if access violates area's permissions, true otherwise.
  742.  */
  743. bool as_area_check_access(as_area_t *area, pf_access_t access)
  744. {
  745.     int flagmap[] = {
  746.         [PF_ACCESS_READ] = AS_AREA_READ,
  747.         [PF_ACCESS_WRITE] = AS_AREA_WRITE,
  748.         [PF_ACCESS_EXEC] = AS_AREA_EXEC
  749.     };
  750.  
  751.     if (!(area->flags & flagmap[access]))
  752.         return false;
  753.    
  754.     return true;
  755. }
  756.  
  757. /** Change adress area flags.
  758.  *
  759.  * The idea is to have the same data, but with a different access mode.
  760.  * This is needed e.g. for writing code into memory and then executing it.
  761.  * In order for this to work properly, this may copy the data
  762.  * into private anonymous memory (unless it's already there).
  763.  *
  764.  * @param as Address space.
  765.  * @param flags Flags of the area memory.
  766.  * @param address Address withing the area to be changed.
  767.  *
  768.  * @return Zero on success or a value from @ref errno.h on failure.
  769.  */
  770. int as_area_change_flags(as_t *as, int flags, uintptr_t address)
  771. {
  772.     as_area_t *area;
  773.     uintptr_t base;
  774.     link_t *cur;
  775.     ipl_t ipl;
  776.     int page_flags;
  777.     uintptr_t *old_frame;
  778.     index_t frame_idx;
  779.     count_t used_pages;
  780.  
  781.     /* Flags for the new memory mapping */
  782.     page_flags = area_flags_to_page_flags(flags);
  783.  
  784.     ipl = interrupts_disable();
  785.     mutex_lock(&as->lock);
  786.  
  787.     area = find_area_and_lock(as, address);
  788.     if (!area) {
  789.         mutex_unlock(&as->lock);
  790.         interrupts_restore(ipl);
  791.         return ENOENT;
  792.     }
  793.  
  794.     if (area->sh_info || area->backend != &anon_backend) {
  795.         /* Copying shared areas not supported yet */
  796.         /* Copying non-anonymous memory not supported yet */
  797.         mutex_unlock(&area->lock);
  798.         mutex_unlock(&as->lock);
  799.         interrupts_restore(ipl);
  800.         return ENOTSUP;
  801.     }
  802.  
  803.     base = area->base;
  804.  
  805.     /*
  806.      * Compute total number of used pages in the used_space B+tree
  807.      */
  808.     used_pages = 0;
  809.  
  810.     for (cur = area->used_space.leaf_head.next;
  811.         cur != &area->used_space.leaf_head; cur = cur->next) {
  812.         btree_node_t *node;
  813.         unsigned int i;
  814.        
  815.         node = list_get_instance(cur, btree_node_t, leaf_link);
  816.         for (i = 0; i < node->keys; i++) {
  817.             used_pages += (count_t) node->value[i];
  818.         }
  819.     }
  820.  
  821.     /* An array for storing frame numbers */
  822.     old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
  823.  
  824.     /*
  825.      * Start TLB shootdown sequence.
  826.      */
  827.     tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
  828.  
  829.     /*
  830.      * Remove used pages from page tables and remember their frame
  831.      * numbers.
  832.      */
  833.     frame_idx = 0;
  834.  
  835.     for (cur = area->used_space.leaf_head.next;
  836.         cur != &area->used_space.leaf_head; cur = cur->next) {
  837.         btree_node_t *node;
  838.         unsigned int i;
  839.        
  840.         node = list_get_instance(cur, btree_node_t, leaf_link);
  841.         for (i = 0; i < node->keys; i++) {
  842.             uintptr_t b = node->key[i];
  843.             count_t j;
  844.             pte_t *pte;
  845.            
  846.             for (j = 0; j < (count_t) node->value[i]; j++) {
  847.                 page_table_lock(as, false);
  848.                 pte = page_mapping_find(as, b + j * PAGE_SIZE);
  849.                 ASSERT(pte && PTE_VALID(pte) &&
  850.                     PTE_PRESENT(pte));
  851.                 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
  852.  
  853.                 /* Remove old mapping */
  854.                 page_mapping_remove(as, b + j * PAGE_SIZE);
  855.                 page_table_unlock(as, false);
  856.             }
  857.         }
  858.     }
  859.  
  860.     /*
  861.      * Finish TLB shootdown sequence.
  862.      */
  863.  
  864.     tlb_invalidate_pages(as->asid, area->base, area->pages);
  865.     /*
  866.      * Invalidate potential software translation caches (e.g. TSB on
  867.      * sparc64).
  868.      */
  869.     as_invalidate_translation_cache(as, area->base, area->pages);
  870.     tlb_shootdown_finalize();
  871.  
  872.     /*
  873.      * Set the new flags.
  874.      */
  875.     area->flags = flags;
  876.  
  877.     /*
  878.      * Map pages back in with new flags. This step is kept separate
  879.      * so that there's no instant when the memory area could be
  880.      * accesed with both the old and the new flags at once.
  881.      */
  882.     frame_idx = 0;
  883.  
  884.     for (cur = area->used_space.leaf_head.next;
  885.         cur != &area->used_space.leaf_head; cur = cur->next) {
  886.         btree_node_t *node;
  887.         unsigned int i;
  888.        
  889.         node = list_get_instance(cur, btree_node_t, leaf_link);
  890.         for (i = 0; i < node->keys; i++) {
  891.             uintptr_t b = node->key[i];
  892.             count_t j;
  893.            
  894.             for (j = 0; j < (count_t) node->value[i]; j++) {
  895.                 page_table_lock(as, false);
  896.  
  897.                 /* Insert the new mapping */
  898.                 page_mapping_insert(as, b + j * PAGE_SIZE,
  899.                     old_frame[frame_idx++], page_flags);
  900.  
  901.                 page_table_unlock(as, false);
  902.             }
  903.         }
  904.     }
  905.  
  906.     free(old_frame);
  907.  
  908.     mutex_unlock(&area->lock);
  909.     mutex_unlock(&as->lock);
  910.     interrupts_restore(ipl);
  911.  
  912.     return 0;
  913. }
  914.  
  915.  
  916. /** Handle page fault within the current address space.
  917.  *
  918.  * This is the high-level page fault handler. It decides
  919.  * whether the page fault can be resolved by any backend
  920.  * and if so, it invokes the backend to resolve the page
  921.  * fault.
  922.  *
  923.  * Interrupts are assumed disabled.
  924.  *
  925.  * @param page Faulting page.
  926.  * @param access Access mode that caused the fault (i.e. read/write/exec).
  927.  * @param istate Pointer to interrupted state.
  928.  *
  929.  * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
  930.  *     fault was caused by copy_to_uspace() or copy_from_uspace().
  931.  */
  932. int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
  933. {
  934.     pte_t *pte;
  935.     as_area_t *area;
  936.    
  937.     if (!THREAD)
  938.         return AS_PF_FAULT;
  939.        
  940.     ASSERT(AS);
  941.  
  942.     mutex_lock(&AS->lock);
  943.     area = find_area_and_lock(AS, page);   
  944.     if (!area) {
  945.         /*
  946.          * No area contained mapping for 'page'.
  947.          * Signal page fault to low-level handler.
  948.          */
  949.         mutex_unlock(&AS->lock);
  950.         goto page_fault;
  951.     }
  952.  
  953.     if (area->attributes & AS_AREA_ATTR_PARTIAL) {
  954.         /*
  955.          * The address space area is not fully initialized.
  956.          * Avoid possible race by returning error.
  957.          */
  958.         mutex_unlock(&area->lock);
  959.         mutex_unlock(&AS->lock);
  960.         goto page_fault;       
  961.     }
  962.  
  963.     if (!area->backend || !area->backend->page_fault) {
  964.         /*
  965.          * The address space area is not backed by any backend
  966.          * or the backend cannot handle page faults.
  967.          */
  968.         mutex_unlock(&area->lock);
  969.         mutex_unlock(&AS->lock);
  970.         goto page_fault;       
  971.     }
  972.  
  973.     page_table_lock(AS, false);
  974.    
  975.     /*
  976.      * To avoid race condition between two page faults
  977.      * on the same address, we need to make sure
  978.      * the mapping has not been already inserted.
  979.      */
  980.     if ((pte = page_mapping_find(AS, page))) {
  981.         if (PTE_PRESENT(pte)) {
  982.             if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
  983.                 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
  984.                 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
  985.                 page_table_unlock(AS, false);
  986.                 mutex_unlock(&area->lock);
  987.                 mutex_unlock(&AS->lock);
  988.                 return AS_PF_OK;
  989.             }
  990.         }
  991.     }
  992.    
  993.     /*
  994.      * Resort to the backend page fault handler.
  995.      */
  996.     if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
  997.         page_table_unlock(AS, false);
  998.         mutex_unlock(&area->lock);
  999.         mutex_unlock(&AS->lock);
  1000.         goto page_fault;
  1001.     }
  1002.    
  1003.     page_table_unlock(AS, false);
  1004.     mutex_unlock(&area->lock);
  1005.     mutex_unlock(&AS->lock);
  1006.     return AS_PF_OK;
  1007.  
  1008. page_fault:
  1009.     if (THREAD->in_copy_from_uspace) {
  1010.         THREAD->in_copy_from_uspace = false;
  1011.         istate_set_retaddr(istate,
  1012.             (uintptr_t) &memcpy_from_uspace_failover_address);
  1013.     } else if (THREAD->in_copy_to_uspace) {
  1014.         THREAD->in_copy_to_uspace = false;
  1015.         istate_set_retaddr(istate,
  1016.             (uintptr_t) &memcpy_to_uspace_failover_address);
  1017.     } else {
  1018.         return AS_PF_FAULT;
  1019.     }
  1020.  
  1021.     return AS_PF_DEFER;
  1022. }
  1023.  
  1024. /** Switch address spaces.
  1025.  *
  1026.  * Note that this function cannot sleep as it is essentially a part of
  1027.  * scheduling. Sleeping here would lead to deadlock on wakeup. Another
  1028.  * thing which is forbidden in this context is locking the address space.
  1029.  *
  1030.  * When this function is enetered, no spinlocks may be held.
  1031.  *
  1032.  * @param old Old address space or NULL.
  1033.  * @param new New address space.
  1034.  */
  1035. void as_switch(as_t *old_as, as_t *new_as)
  1036. {
  1037.     DEADLOCK_PROBE_INIT(p_asidlock);
  1038.     preemption_disable();
  1039. retry:
  1040.     (void) interrupts_disable();
  1041.     if (!spinlock_trylock(&asidlock)) {
  1042.         /*
  1043.          * Avoid deadlock with TLB shootdown.
  1044.          * We can enable interrupts here because
  1045.          * preemption is disabled. We should not be
  1046.          * holding any other lock.
  1047.          */
  1048.         (void) interrupts_enable();
  1049.         DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
  1050.         goto retry;
  1051.     }
  1052.     preemption_enable();
  1053.  
  1054.     /*
  1055.      * First, take care of the old address space.
  1056.      */
  1057.     if (old_as) {
  1058.         ASSERT(old_as->cpu_refcount);
  1059.         if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
  1060.             /*
  1061.              * The old address space is no longer active on
  1062.              * any processor. It can be appended to the
  1063.              * list of inactive address spaces with assigned
  1064.              * ASID.
  1065.              */
  1066.             ASSERT(old_as->asid != ASID_INVALID);
  1067.             list_append(&old_as->inactive_as_with_asid_link,
  1068.                 &inactive_as_with_asid_head);
  1069.         }
  1070.  
  1071.         /*
  1072.          * Perform architecture-specific tasks when the address space
  1073.          * is being removed from the CPU.
  1074.          */
  1075.         as_deinstall_arch(old_as);
  1076.     }
  1077.  
  1078.     /*
  1079.      * Second, prepare the new address space.
  1080.      */
  1081.     if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
  1082.         if (new_as->asid != ASID_INVALID)
  1083.             list_remove(&new_as->inactive_as_with_asid_link);
  1084.         else
  1085.             new_as->asid = asid_get();
  1086.     }
  1087. #ifdef AS_PAGE_TABLE
  1088.     SET_PTL0_ADDRESS(new_as->genarch.page_table);
  1089. #endif
  1090.    
  1091.     /*
  1092.      * Perform architecture-specific steps.
  1093.      * (e.g. write ASID to hardware register etc.)
  1094.      */
  1095.     as_install_arch(new_as);
  1096.  
  1097.     spinlock_unlock(&asidlock);
  1098.    
  1099.     AS = new_as;
  1100. }
  1101.  
  1102. /** Convert address space area flags to page flags.
  1103.  *
  1104.  * @param aflags Flags of some address space area.
  1105.  *
  1106.  * @return Flags to be passed to page_mapping_insert().
  1107.  */
  1108. int area_flags_to_page_flags(int aflags)
  1109. {
  1110.     int flags;
  1111.  
  1112.     flags = PAGE_USER | PAGE_PRESENT;
  1113.    
  1114.     if (aflags & AS_AREA_READ)
  1115.         flags |= PAGE_READ;
  1116.        
  1117.     if (aflags & AS_AREA_WRITE)
  1118.         flags |= PAGE_WRITE;
  1119.    
  1120.     if (aflags & AS_AREA_EXEC)
  1121.         flags |= PAGE_EXEC;
  1122.    
  1123.     if (aflags & AS_AREA_CACHEABLE)
  1124.         flags |= PAGE_CACHEABLE;
  1125.        
  1126.     return flags;
  1127. }
  1128.  
  1129. /** Compute flags for virtual address translation subsytem.
  1130.  *
  1131.  * The address space area must be locked.
  1132.  * Interrupts must be disabled.
  1133.  *
  1134.  * @param a Address space area.
  1135.  *
  1136.  * @return Flags to be used in page_mapping_insert().
  1137.  */
  1138. int as_area_get_flags(as_area_t *a)
  1139. {
  1140.     return area_flags_to_page_flags(a->flags);
  1141. }
  1142.  
  1143. /** Create page table.
  1144.  *
  1145.  * Depending on architecture, create either address space
  1146.  * private or global page table.
  1147.  *
  1148.  * @param flags Flags saying whether the page table is for kernel address space.
  1149.  *
  1150.  * @return First entry of the page table.
  1151.  */
  1152. pte_t *page_table_create(int flags)
  1153. {
  1154.     ASSERT(as_operations);
  1155.     ASSERT(as_operations->page_table_create);
  1156.    
  1157.     return as_operations->page_table_create(flags);
  1158. }
  1159.  
  1160. /** Destroy page table.
  1161.  *
  1162.  * Destroy page table in architecture specific way.
  1163.  *
  1164.  * @param page_table Physical address of PTL0.
  1165.  */
  1166. void page_table_destroy(pte_t *page_table)
  1167. {
  1168.     ASSERT(as_operations);
  1169.     ASSERT(as_operations->page_table_destroy);
  1170.    
  1171.     as_operations->page_table_destroy(page_table);
  1172. }
  1173.  
  1174. /** Lock page table.
  1175.  *
  1176.  * This function should be called before any page_mapping_insert(),
  1177.  * page_mapping_remove() and page_mapping_find().
  1178.  *
  1179.  * Locking order is such that address space areas must be locked
  1180.  * prior to this call. Address space can be locked prior to this
  1181.  * call in which case the lock argument is false.
  1182.  *
  1183.  * @param as Address space.
  1184.  * @param lock If false, do not attempt to lock as->lock.
  1185.  */
  1186. void page_table_lock(as_t *as, bool lock)
  1187. {
  1188.     ASSERT(as_operations);
  1189.     ASSERT(as_operations->page_table_lock);
  1190.    
  1191.     as_operations->page_table_lock(as, lock);
  1192. }
  1193.  
  1194. /** Unlock page table.
  1195.  *
  1196.  * @param as Address space.
  1197.  * @param unlock If false, do not attempt to unlock as->lock.
  1198.  */
  1199. void page_table_unlock(as_t *as, bool unlock)
  1200. {
  1201.     ASSERT(as_operations);
  1202.     ASSERT(as_operations->page_table_unlock);
  1203.    
  1204.     as_operations->page_table_unlock(as, unlock);
  1205. }
  1206.  
  1207.  
  1208. /** Find address space area and lock it.
  1209.  *
  1210.  * The address space must be locked and interrupts must be disabled.
  1211.  *
  1212.  * @param as Address space.
  1213.  * @param va Virtual address.
  1214.  *
  1215.  * @return Locked address space area containing va on success or NULL on
  1216.  *     failure.
  1217.  */
  1218. as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
  1219. {
  1220.     as_area_t *a;
  1221.     btree_node_t *leaf, *lnode;
  1222.     unsigned int i;
  1223.    
  1224.     a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
  1225.     if (a) {
  1226.         /* va is the base address of an address space area */
  1227.         mutex_lock(&a->lock);
  1228.         return a;
  1229.     }
  1230.    
  1231.     /*
  1232.      * Search the leaf node and the righmost record of its left neighbour
  1233.      * to find out whether this is a miss or va belongs to an address
  1234.      * space area found there.
  1235.      */
  1236.    
  1237.     /* First, search the leaf node itself. */
  1238.     for (i = 0; i < leaf->keys; i++) {
  1239.         a = (as_area_t *) leaf->value[i];
  1240.         mutex_lock(&a->lock);
  1241.         if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
  1242.             return a;
  1243.         }
  1244.         mutex_unlock(&a->lock);
  1245.     }
  1246.  
  1247.     /*
  1248.      * Second, locate the left neighbour and test its last record.
  1249.      * Because of its position in the B+tree, it must have base < va.
  1250.      */
  1251.     lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
  1252.     if (lnode) {
  1253.         a = (as_area_t *) lnode->value[lnode->keys - 1];
  1254.         mutex_lock(&a->lock);
  1255.         if (va < a->base + a->pages * PAGE_SIZE) {
  1256.             return a;
  1257.         }
  1258.         mutex_unlock(&a->lock);
  1259.     }
  1260.  
  1261.     return NULL;
  1262. }
  1263.  
  1264. /** Check area conflicts with other areas.
  1265.  *
  1266.  * The address space must be locked and interrupts must be disabled.
  1267.  *
  1268.  * @param as Address space.
  1269.  * @param va Starting virtual address of the area being tested.
  1270.  * @param size Size of the area being tested.
  1271.  * @param avoid_area Do not touch this area.
  1272.  *
  1273.  * @return True if there is no conflict, false otherwise.
  1274.  */
  1275. bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
  1276.               as_area_t *avoid_area)
  1277. {
  1278.     as_area_t *a;
  1279.     btree_node_t *leaf, *node;
  1280.     unsigned int i;
  1281.    
  1282.     /*
  1283.      * We don't want any area to have conflicts with NULL page.
  1284.      */
  1285.     if (overlaps(va, size, NULL, PAGE_SIZE))
  1286.         return false;
  1287.    
  1288.     /*
  1289.      * The leaf node is found in O(log n), where n is proportional to
  1290.      * the number of address space areas belonging to as.
  1291.      * The check for conflicts is then attempted on the rightmost
  1292.      * record in the left neighbour, the leftmost record in the right
  1293.      * neighbour and all records in the leaf node itself.
  1294.      */
  1295.    
  1296.     if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
  1297.         if (a != avoid_area)
  1298.             return false;
  1299.     }
  1300.    
  1301.     /* First, check the two border cases. */
  1302.     if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
  1303.         a = (as_area_t *) node->value[node->keys - 1];
  1304.         mutex_lock(&a->lock);
  1305.         if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
  1306.             mutex_unlock(&a->lock);
  1307.             return false;
  1308.         }
  1309.         mutex_unlock(&a->lock);
  1310.     }
  1311.     node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
  1312.     if (node) {
  1313.         a = (as_area_t *) node->value[0];
  1314.         mutex_lock(&a->lock);
  1315.         if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
  1316.             mutex_unlock(&a->lock);
  1317.             return false;
  1318.         }
  1319.         mutex_unlock(&a->lock);
  1320.     }
  1321.    
  1322.     /* Second, check the leaf node. */
  1323.     for (i = 0; i < leaf->keys; i++) {
  1324.         a = (as_area_t *) leaf->value[i];
  1325.    
  1326.         if (a == avoid_area)
  1327.             continue;
  1328.    
  1329.         mutex_lock(&a->lock);
  1330.         if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
  1331.             mutex_unlock(&a->lock);
  1332.             return false;
  1333.         }
  1334.         mutex_unlock(&a->lock);
  1335.     }
  1336.  
  1337.     /*
  1338.      * So far, the area does not conflict with other areas.
  1339.      * Check if it doesn't conflict with kernel address space.
  1340.      */  
  1341.     if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
  1342.         return !overlaps(va, size,
  1343.             KERNEL_ADDRESS_SPACE_START,
  1344.             KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
  1345.     }
  1346.  
  1347.     return true;
  1348. }
  1349.  
  1350. /** Return size of the address space area with given base.
  1351.  *
  1352.  * @param base      Arbitrary address insede the address space area.
  1353.  *
  1354.  * @return      Size of the address space area in bytes or zero if it
  1355.  *          does not exist.
  1356.  */
  1357. size_t as_area_get_size(uintptr_t base)
  1358. {
  1359.     ipl_t ipl;
  1360.     as_area_t *src_area;
  1361.     size_t size;
  1362.  
  1363.     ipl = interrupts_disable();
  1364.     src_area = find_area_and_lock(AS, base);
  1365.     if (src_area){
  1366.         size = src_area->pages * PAGE_SIZE;
  1367.         mutex_unlock(&src_area->lock);
  1368.     } else {
  1369.         size = 0;
  1370.     }
  1371.     interrupts_restore(ipl);
  1372.     return size;
  1373. }
  1374.  
  1375. /** Mark portion of address space area as used.
  1376.  *
  1377.  * The address space area must be already locked.
  1378.  *
  1379.  * @param a Address space area.
  1380.  * @param page First page to be marked.
  1381.  * @param count Number of page to be marked.
  1382.  *
  1383.  * @return 0 on failure and 1 on success.
  1384.  */
  1385. int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
  1386. {
  1387.     btree_node_t *leaf, *node;
  1388.     count_t pages;
  1389.     unsigned int i;
  1390.  
  1391.     ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
  1392.     ASSERT(count);
  1393.  
  1394.     pages = (count_t) btree_search(&a->used_space, page, &leaf);
  1395.     if (pages) {
  1396.         /*
  1397.          * We hit the beginning of some used space.
  1398.          */
  1399.         return 0;
  1400.     }
  1401.  
  1402.     if (!leaf->keys) {
  1403.         btree_insert(&a->used_space, page, (void *) count, leaf);
  1404.         return 1;
  1405.     }
  1406.  
  1407.     node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
  1408.     if (node) {
  1409.         uintptr_t left_pg = node->key[node->keys - 1];
  1410.         uintptr_t right_pg = leaf->key[0];
  1411.         count_t left_cnt = (count_t) node->value[node->keys - 1];
  1412.         count_t right_cnt = (count_t) leaf->value[0];
  1413.        
  1414.         /*
  1415.          * Examine the possibility that the interval fits
  1416.          * somewhere between the rightmost interval of
  1417.          * the left neigbour and the first interval of the leaf.
  1418.          */
  1419.          
  1420.         if (page >= right_pg) {
  1421.             /* Do nothing. */
  1422.         } else if (overlaps(page, count * PAGE_SIZE, left_pg,
  1423.             left_cnt * PAGE_SIZE)) {
  1424.             /* The interval intersects with the left interval. */
  1425.             return 0;
  1426.         } else if (overlaps(page, count * PAGE_SIZE, right_pg,
  1427.             right_cnt * PAGE_SIZE)) {
  1428.             /* The interval intersects with the right interval. */
  1429.             return 0;          
  1430.         } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
  1431.             (page + count * PAGE_SIZE == right_pg)) {
  1432.             /*
  1433.              * The interval can be added by merging the two already
  1434.              * present intervals.
  1435.              */
  1436.             node->value[node->keys - 1] += count + right_cnt;
  1437.             btree_remove(&a->used_space, right_pg, leaf);
  1438.             return 1;
  1439.         } else if (page == left_pg + left_cnt * PAGE_SIZE) {
  1440.             /*
  1441.              * The interval can be added by simply growing the left
  1442.              * interval.
  1443.              */
  1444.             node->value[node->keys - 1] += count;
  1445.             return 1;
  1446.         } else if (page + count * PAGE_SIZE == right_pg) {
  1447.             /*
  1448.              * The interval can be addded by simply moving base of
  1449.              * the right interval down and increasing its size
  1450.              * accordingly.
  1451.              */
  1452.             leaf->value[0] += count;
  1453.             leaf->key[0] = page;
  1454.             return 1;
  1455.         } else {
  1456.             /*
  1457.              * The interval is between both neigbouring intervals,
  1458.              * but cannot be merged with any of them.
  1459.              */
  1460.             btree_insert(&a->used_space, page, (void *) count,
  1461.                 leaf);
  1462.             return 1;
  1463.         }
  1464.     } else if (page < leaf->key[0]) {
  1465.         uintptr_t right_pg = leaf->key[0];
  1466.         count_t right_cnt = (count_t) leaf->value[0];
  1467.    
  1468.         /*
  1469.          * Investigate the border case in which the left neighbour does
  1470.          * not exist but the interval fits from the left.
  1471.          */
  1472.          
  1473.         if (overlaps(page, count * PAGE_SIZE, right_pg,
  1474.             right_cnt * PAGE_SIZE)) {
  1475.             /* The interval intersects with the right interval. */
  1476.             return 0;
  1477.         } else if (page + count * PAGE_SIZE == right_pg) {
  1478.             /*
  1479.              * The interval can be added by moving the base of the
  1480.              * right interval down and increasing its size
  1481.              * accordingly.
  1482.              */
  1483.             leaf->key[0] = page;
  1484.             leaf->value[0] += count;
  1485.             return 1;
  1486.         } else {
  1487.             /*
  1488.              * The interval doesn't adjoin with the right interval.
  1489.              * It must be added individually.
  1490.              */
  1491.             btree_insert(&a->used_space, page, (void *) count,
  1492.                 leaf);
  1493.             return 1;
  1494.         }
  1495.     }
  1496.  
  1497.     node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
  1498.     if (node) {
  1499.         uintptr_t left_pg = leaf->key[leaf->keys - 1];
  1500.         uintptr_t right_pg = node->key[0];
  1501.         count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
  1502.         count_t right_cnt = (count_t) node->value[0];
  1503.        
  1504.         /*
  1505.          * Examine the possibility that the interval fits
  1506.          * somewhere between the leftmost interval of
  1507.          * the right neigbour and the last interval of the leaf.
  1508.          */
  1509.  
  1510.         if (page < left_pg) {
  1511.             /* Do nothing. */
  1512.         } else if (overlaps(page, count * PAGE_SIZE, left_pg,
  1513.             left_cnt * PAGE_SIZE)) {
  1514.             /* The interval intersects with the left interval. */
  1515.             return 0;
  1516.         } else if (overlaps(page, count * PAGE_SIZE, right_pg,
  1517.             right_cnt * PAGE_SIZE)) {
  1518.             /* The interval intersects with the right interval. */
  1519.             return 0;          
  1520.         } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
  1521.             (page + count * PAGE_SIZE == right_pg)) {
  1522.             /*
  1523.              * The interval can be added by merging the two already
  1524.              * present intervals.
  1525.              * */
  1526.             leaf->value[leaf->keys - 1] += count + right_cnt;
  1527.             btree_remove(&a->used_space, right_pg, node);
  1528.             return 1;
  1529.         } else if (page == left_pg + left_cnt * PAGE_SIZE) {
  1530.             /*
  1531.              * The interval can be added by simply growing the left
  1532.              * interval.
  1533.              * */
  1534.             leaf->value[leaf->keys - 1] +=  count;
  1535.             return 1;
  1536.         } else if (page + count * PAGE_SIZE == right_pg) {
  1537.             /*
  1538.              * The interval can be addded by simply moving base of
  1539.              * the right interval down and increasing its size
  1540.              * accordingly.
  1541.              */
  1542.             node->value[0] += count;
  1543.             node->key[0] = page;
  1544.             return 1;
  1545.         } else {
  1546.             /*
  1547.              * The interval is between both neigbouring intervals,
  1548.              * but cannot be merged with any of them.
  1549.              */
  1550.             btree_insert(&a->used_space, page, (void *) count,
  1551.                 leaf);
  1552.             return 1;
  1553.         }
  1554.     } else if (page >= leaf->key[leaf->keys - 1]) {
  1555.         uintptr_t left_pg = leaf->key[leaf->keys - 1];
  1556.         count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
  1557.    
  1558.         /*
  1559.          * Investigate the border case in which the right neighbour
  1560.          * does not exist but the interval fits from the right.
  1561.          */
  1562.          
  1563.         if (overlaps(page, count * PAGE_SIZE, left_pg,
  1564.             left_cnt * PAGE_SIZE)) {
  1565.             /* The interval intersects with the left interval. */
  1566.             return 0;
  1567.         } else if (left_pg + left_cnt * PAGE_SIZE == page) {
  1568.             /*
  1569.              * The interval can be added by growing the left
  1570.              * interval.
  1571.              */
  1572.             leaf->value[leaf->keys - 1] += count;
  1573.             return 1;
  1574.         } else {
  1575.             /*
  1576.              * The interval doesn't adjoin with the left interval.
  1577.              * It must be added individually.
  1578.              */
  1579.             btree_insert(&a->used_space, page, (void *) count,
  1580.                 leaf);
  1581.             return 1;
  1582.         }
  1583.     }
  1584.    
  1585.     /*
  1586.      * Note that if the algorithm made it thus far, the interval can fit
  1587.      * only between two other intervals of the leaf. The two border cases
  1588.      * were already resolved.
  1589.      */
  1590.     for (i = 1; i < leaf->keys; i++) {
  1591.         if (page < leaf->key[i]) {
  1592.             uintptr_t left_pg = leaf->key[i - 1];
  1593.             uintptr_t right_pg = leaf->key[i];
  1594.             count_t left_cnt = (count_t) leaf->value[i - 1];
  1595.             count_t right_cnt = (count_t) leaf->value[i];
  1596.  
  1597.             /*
  1598.              * The interval fits between left_pg and right_pg.
  1599.              */
  1600.  
  1601.             if (overlaps(page, count * PAGE_SIZE, left_pg,
  1602.                 left_cnt * PAGE_SIZE)) {
  1603.                 /*
  1604.                  * The interval intersects with the left
  1605.                  * interval.
  1606.                  */
  1607.                 return 0;
  1608.             } else if (overlaps(page, count * PAGE_SIZE, right_pg,
  1609.                 right_cnt * PAGE_SIZE)) {
  1610.                 /*
  1611.                  * The interval intersects with the right
  1612.                  * interval.
  1613.                  */
  1614.                 return 0;          
  1615.             } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
  1616.                 (page + count * PAGE_SIZE == right_pg)) {
  1617.                 /*
  1618.                  * The interval can be added by merging the two
  1619.                  * already present intervals.
  1620.                  */
  1621.                 leaf->value[i - 1] += count + right_cnt;
  1622.                 btree_remove(&a->used_space, right_pg, leaf);
  1623.                 return 1;
  1624.             } else if (page == left_pg + left_cnt * PAGE_SIZE) {
  1625.                 /*
  1626.                  * The interval can be added by simply growing
  1627.                  * the left interval.
  1628.                  */
  1629.                 leaf->value[i - 1] += count;
  1630.                 return 1;
  1631.             } else if (page + count * PAGE_SIZE == right_pg) {
  1632.                 /*
  1633.                      * The interval can be addded by simply moving
  1634.                  * base of the right interval down and
  1635.                  * increasing its size accordingly.
  1636.                  */
  1637.                 leaf->value[i] += count;
  1638.                 leaf->key[i] = page;
  1639.                 return 1;
  1640.             } else {
  1641.                 /*
  1642.                  * The interval is between both neigbouring
  1643.                  * intervals, but cannot be merged with any of
  1644.                  * them.
  1645.                  */
  1646.                 btree_insert(&a->used_space, page,
  1647.                     (void *) count, leaf);
  1648.                 return 1;
  1649.             }
  1650.         }
  1651.     }
  1652.  
  1653.     panic("Inconsistency detected while adding %" PRIc " pages of used space at "
  1654.         "%p.\n", count, page);
  1655. }
  1656.  
  1657. /** Mark portion of address space area as unused.
  1658.  *
  1659.  * The address space area must be already locked.
  1660.  *
  1661.  * @param a Address space area.
  1662.  * @param page First page to be marked.
  1663.  * @param count Number of page to be marked.
  1664.  *
  1665.  * @return 0 on failure and 1 on success.
  1666.  */
  1667. int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
  1668. {
  1669.     btree_node_t *leaf, *node;
  1670.     count_t pages;
  1671.     unsigned int i;
  1672.  
  1673.     ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
  1674.     ASSERT(count);
  1675.  
  1676.     pages = (count_t) btree_search(&a->used_space, page, &leaf);
  1677.     if (pages) {
  1678.         /*
  1679.          * We are lucky, page is the beginning of some interval.
  1680.          */
  1681.         if (count > pages) {
  1682.             return 0;
  1683.         } else if (count == pages) {
  1684.             btree_remove(&a->used_space, page, leaf);
  1685.             return 1;
  1686.         } else {
  1687.             /*
  1688.              * Find the respective interval.
  1689.              * Decrease its size and relocate its start address.
  1690.              */
  1691.             for (i = 0; i < leaf->keys; i++) {
  1692.                 if (leaf->key[i] == page) {
  1693.                     leaf->key[i] += count * PAGE_SIZE;
  1694.                     leaf->value[i] -= count;
  1695.                     return 1;
  1696.                 }
  1697.             }
  1698.             goto error;
  1699.         }
  1700.     }
  1701.  
  1702.     node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
  1703.     if (node && page < leaf->key[0]) {
  1704.         uintptr_t left_pg = node->key[node->keys - 1];
  1705.         count_t left_cnt = (count_t) node->value[node->keys - 1];
  1706.  
  1707.         if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
  1708.             count * PAGE_SIZE)) {
  1709.             if (page + count * PAGE_SIZE ==
  1710.                 left_pg + left_cnt * PAGE_SIZE) {
  1711.                 /*
  1712.                  * The interval is contained in the rightmost
  1713.                  * interval of the left neighbour and can be
  1714.                  * removed by updating the size of the bigger
  1715.                  * interval.
  1716.                  */
  1717.                 node->value[node->keys - 1] -= count;
  1718.                 return 1;
  1719.             } else if (page + count * PAGE_SIZE <
  1720.                 left_pg + left_cnt*PAGE_SIZE) {
  1721.                 count_t new_cnt;
  1722.                
  1723.                 /*
  1724.                  * The interval is contained in the rightmost
  1725.                  * interval of the left neighbour but its
  1726.                  * removal requires both updating the size of
  1727.                  * the original interval and also inserting a
  1728.                  * new interval.
  1729.                  */
  1730.                 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
  1731.                     (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
  1732.                 node->value[node->keys - 1] -= count + new_cnt;
  1733.                 btree_insert(&a->used_space, page +
  1734.                     count * PAGE_SIZE, (void *) new_cnt, leaf);
  1735.                 return 1;
  1736.             }
  1737.         }
  1738.         return 0;
  1739.     } else if (page < leaf->key[0]) {
  1740.         return 0;
  1741.     }
  1742.    
  1743.     if (page > leaf->key[leaf->keys - 1]) {
  1744.         uintptr_t left_pg = leaf->key[leaf->keys - 1];
  1745.         count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
  1746.  
  1747.         if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
  1748.             count * PAGE_SIZE)) {
  1749.             if (page + count * PAGE_SIZE ==
  1750.                 left_pg + left_cnt * PAGE_SIZE) {
  1751.                 /*
  1752.                  * The interval is contained in the rightmost
  1753.                  * interval of the leaf and can be removed by
  1754.                  * updating the size of the bigger interval.
  1755.                  */
  1756.                 leaf->value[leaf->keys - 1] -= count;
  1757.                 return 1;
  1758.             } else if (page + count * PAGE_SIZE < left_pg +
  1759.                 left_cnt * PAGE_SIZE) {
  1760.                 count_t new_cnt;
  1761.                
  1762.                 /*
  1763.                  * The interval is contained in the rightmost
  1764.                  * interval of the leaf but its removal
  1765.                  * requires both updating the size of the
  1766.                  * original interval and also inserting a new
  1767.                  * interval.
  1768.                  */
  1769.                 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
  1770.                     (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
  1771.                 leaf->value[leaf->keys - 1] -= count + new_cnt;
  1772.                 btree_insert(&a->used_space, page +
  1773.                     count * PAGE_SIZE, (void *) new_cnt, leaf);
  1774.                 return 1;
  1775.             }
  1776.         }
  1777.         return 0;
  1778.     }  
  1779.    
  1780.     /*
  1781.      * The border cases have been already resolved.
  1782.      * Now the interval can be only between intervals of the leaf.
  1783.      */
  1784.     for (i = 1; i < leaf->keys - 1; i++) {
  1785.         if (page < leaf->key[i]) {
  1786.             uintptr_t left_pg = leaf->key[i - 1];
  1787.             count_t left_cnt = (count_t) leaf->value[i - 1];
  1788.  
  1789.             /*
  1790.              * Now the interval is between intervals corresponding
  1791.              * to (i - 1) and i.
  1792.              */
  1793.             if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
  1794.                 count * PAGE_SIZE)) {
  1795.                 if (page + count * PAGE_SIZE ==
  1796.                     left_pg + left_cnt*PAGE_SIZE) {
  1797.                     /*
  1798.                      * The interval is contained in the
  1799.                      * interval (i - 1) of the leaf and can
  1800.                      * be removed by updating the size of
  1801.                      * the bigger interval.
  1802.                      */
  1803.                     leaf->value[i - 1] -= count;
  1804.                     return 1;
  1805.                 } else if (page + count * PAGE_SIZE <
  1806.                     left_pg + left_cnt * PAGE_SIZE) {
  1807.                     count_t new_cnt;
  1808.                
  1809.                     /*
  1810.                      * The interval is contained in the
  1811.                      * interval (i - 1) of the leaf but its
  1812.                      * removal requires both updating the
  1813.                      * size of the original interval and
  1814.                      * also inserting a new interval.
  1815.                      */
  1816.                     new_cnt = ((left_pg +
  1817.                         left_cnt * PAGE_SIZE) -
  1818.                         (page + count * PAGE_SIZE)) >>
  1819.                         PAGE_WIDTH;
  1820.                     leaf->value[i - 1] -= count + new_cnt;
  1821.                     btree_insert(&a->used_space, page +
  1822.                         count * PAGE_SIZE, (void *) new_cnt,
  1823.                         leaf);
  1824.                     return 1;
  1825.                 }
  1826.             }
  1827.             return 0;
  1828.         }
  1829.     }
  1830.  
  1831. error:
  1832.     panic("Inconsistency detected while removing %" PRIc " pages of used space "
  1833.         "from %p.\n", count, page);
  1834. }
  1835.  
  1836. /** Remove reference to address space area share info.
  1837.  *
  1838.  * If the reference count drops to 0, the sh_info is deallocated.
  1839.  *
  1840.  * @param sh_info Pointer to address space area share info.
  1841.  */
  1842. void sh_info_remove_reference(share_info_t *sh_info)
  1843. {
  1844.     bool dealloc = false;
  1845.  
  1846.     mutex_lock(&sh_info->lock);
  1847.     ASSERT(sh_info->refcount);
  1848.     if (--sh_info->refcount == 0) {
  1849.         dealloc = true;
  1850.         link_t *cur;
  1851.        
  1852.         /*
  1853.          * Now walk carefully the pagemap B+tree and free/remove
  1854.          * reference from all frames found there.
  1855.          */
  1856.         for (cur = sh_info->pagemap.leaf_head.next;
  1857.             cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
  1858.             btree_node_t *node;
  1859.             unsigned int i;
  1860.            
  1861.             node = list_get_instance(cur, btree_node_t, leaf_link);
  1862.             for (i = 0; i < node->keys; i++)
  1863.                 frame_free((uintptr_t) node->value[i]);
  1864.         }
  1865.        
  1866.     }
  1867.     mutex_unlock(&sh_info->lock);
  1868.    
  1869.     if (dealloc) {
  1870.         btree_destroy(&sh_info->pagemap);
  1871.         free(sh_info);
  1872.     }
  1873. }
  1874.  
  1875. /*
  1876.  * Address space related syscalls.
  1877.  */
  1878.  
  1879. /** Wrapper for as_area_create(). */
  1880. unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
  1881. {
  1882.     if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
  1883.         AS_AREA_ATTR_NONE, &anon_backend, NULL))
  1884.         return (unative_t) address;
  1885.     else
  1886.         return (unative_t) -1;
  1887. }
  1888.  
  1889. /** Wrapper for as_area_resize(). */
  1890. unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
  1891. {
  1892.     return (unative_t) as_area_resize(AS, address, size, 0);
  1893. }
  1894.  
  1895. /** Wrapper for as_area_change_flags(). */
  1896. unative_t sys_as_area_change_flags(uintptr_t address, int flags)
  1897. {
  1898.     return (unative_t) as_area_change_flags(AS, flags, address);
  1899. }
  1900.  
  1901. /** Wrapper for as_area_destroy(). */
  1902. unative_t sys_as_area_destroy(uintptr_t address)
  1903. {
  1904.     return (unative_t) as_area_destroy(AS, address);
  1905. }
  1906.  
  1907. /** Print out information about address space.
  1908.  *
  1909.  * @param as Address space.
  1910.  */
  1911. void as_print(as_t *as)
  1912. {
  1913.     ipl_t ipl;
  1914.    
  1915.     ipl = interrupts_disable();
  1916.     mutex_lock(&as->lock);
  1917.    
  1918.     /* print out info about address space areas */
  1919.     link_t *cur;
  1920.     for (cur = as->as_area_btree.leaf_head.next;
  1921.         cur != &as->as_area_btree.leaf_head; cur = cur->next) {
  1922.         btree_node_t *node;
  1923.        
  1924.         node = list_get_instance(cur, btree_node_t, leaf_link);
  1925.        
  1926.         unsigned int i;
  1927.         for (i = 0; i < node->keys; i++) {
  1928.             as_area_t *area = node->value[i];
  1929.        
  1930.             mutex_lock(&area->lock);
  1931.             printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
  1932.                 area, area->base, area->pages, area->base,
  1933.                 area->base + FRAMES2SIZE(area->pages));
  1934.             mutex_unlock(&area->lock);
  1935.         }
  1936.     }
  1937.    
  1938.     mutex_unlock(&as->lock);
  1939.     interrupts_restore(ipl);
  1940. }
  1941.  
  1942. /** @}
  1943.  */
  1944.