Subversion Repositories HelenOS

Rev

Rev 4337 | Rev 4342 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2005 Martin Decky
  3.  * Copyright (c) 2006 Jakub Jermar
  4.  * All rights reserved.
  5.  *
  6.  * Redistribution and use in source and binary forms, with or without
  7.  * modification, are permitted provided that the following conditions
  8.  * are met:
  9.  *
  10.  * - Redistributions of source code must retain the above copyright
  11.  *   notice, this list of conditions and the following disclaimer.
  12.  * - Redistributions in binary form must reproduce the above copyright
  13.  *   notice, this list of conditions and the following disclaimer in the
  14.  *   documentation and/or other materials provided with the distribution.
  15.  * - The name of the author may not be used to endorse or promote products
  16.  *   derived from this software without specific prior written permission.
  17.  *
  18.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  19.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  20.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  21.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  22.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  23.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  24.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  25.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  27.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28.  */
  29.  
  30. #include "main.h"
  31. #include <printf.h>
  32. #include "asm.h"
  33. #include "_components.h"
  34. #include <balloc.h>
  35. #include <ofw.h>
  36. #include <ofw_tree.h>
  37. #include "ofwarch.h"
  38. #include <align.h>
  39.  
  40. bootinfo_t bootinfo;
  41.  
  42. component_t components[COMPONENTS];
  43.  
  44. char *release = RELEASE;
  45.  
  46. #ifdef REVISION
  47.     char *revision = ", revision " REVISION;
  48. #else
  49.     char *revision = "";
  50. #endif
  51.  
  52. #ifdef TIMESTAMP
  53.     char *timestamp = "\nBuilt on " TIMESTAMP;
  54. #else
  55.     char *timestamp = "";
  56. #endif
  57.  
  58. /** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
  59. uint8_t subarchitecture;
  60.  
  61. /**
  62.  * mask of the MID field inside the ICBUS_CONFIG register shifted by
  63.  * MID_SHIFT bits to the right
  64.  */
  65. uint16_t mid_mask;
  66.  
  67. /** Print version information. */
  68. static void version_print(void)
  69. {
  70.     printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
  71.         "Copyright (c) 2006 HelenOS project\n",
  72.         release, revision, timestamp);
  73. }
  74.  
  75. /* the lowest ID (read from the VER register) of some US3 CPU model */
  76. #define FIRST_US3_CPU   0x14
  77.  
  78. /* the greatest ID (read from the VER register) of some US3 CPU model */
  79. #define LAST_US3_CPU    0x19
  80.  
  81. /* UltraSPARC IIIi processor implementation code */
  82. #define US_IIIi_CODE    0x15
  83.  
  84. /**
  85.  * Sets the global variables "subarchitecture" and "mid_mask" to
  86.  * correct values.
  87.  */
  88. static void detect_subarchitecture(void)
  89. {
  90.     uint64_t v;
  91.     asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
  92.    
  93.     v = (v << 16) >> 48;
  94.     if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
  95.         subarchitecture = SUBARCH_US3;
  96.         if (v == US_IIIi_CODE)
  97.             mid_mask = (1 << 5) - 1;
  98.         else
  99.             mid_mask = (1 << 10) - 1;
  100.     } else if (v < FIRST_US3_CPU) {
  101.         subarchitecture = SUBARCH_US;
  102.         mid_mask = (1 << 5) - 1;
  103.     } else {
  104.         printf("\nThis CPU is not supported by HelenOS.");
  105.     }
  106. }
  107.  
  108. void bootstrap(void)
  109. {
  110.     void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
  111.     void *balloc_base;
  112.     unsigned int top = 0;
  113.     int i, j;
  114.  
  115.     version_print();
  116.    
  117.     detect_subarchitecture();
  118.     init_components(components);
  119.  
  120.     if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
  121.         printf("Error: unable to get start of physical memory.\n");
  122.         halt();
  123.     }
  124.  
  125.     if (!ofw_memmap(&bootinfo.memmap)) {
  126.         printf("Error: unable to get memory map, halting.\n");
  127.         halt();
  128.     }
  129.  
  130.     if (bootinfo.memmap.total == 0) {
  131.         printf("Error: no memory detected, halting.\n");
  132.         halt();
  133.     }
  134.  
  135.     /*
  136.      * SILO for some reason adds 0x400000 and subtracts
  137.      * bootinfo.physmem_start to/from silo_ramdisk_image.
  138.      * We just need plain physical address so we fix it up.
  139.      */
  140.     if (silo_ramdisk_image) {
  141.         silo_ramdisk_image += bootinfo.physmem_start;
  142.         silo_ramdisk_image -= 0x400000;
  143.         /* Install 1:1 mapping for the ramdisk. */
  144.         if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
  145.             (void *)((uintptr_t) silo_ramdisk_image),
  146.             silo_ramdisk_size, -1) != 0) {
  147.             printf("Failed to map ramdisk.\n");
  148.             halt();
  149.         }
  150.     }
  151.    
  152.     printf("\nSystem info\n");
  153.     printf(" memory: %dM starting at %P\n",
  154.         bootinfo.memmap.total >> 20, bootinfo.physmem_start);
  155.  
  156.     printf("\nMemory statistics\n");
  157.     printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
  158.     printf(" %P: boot info structure\n", &bootinfo);
  159.    
  160.     /*
  161.      * Figure out destination address for each component.
  162.      * In this phase, we don't copy the components yet because we want to
  163.      * to be careful not to overwrite anything, especially the components
  164.      * which haven't been copied yet.
  165.      */
  166.     bootinfo.taskmap.count = 0;
  167.     for (i = 0; i < COMPONENTS; i++) {
  168.         printf(" %P: %s image (size %d bytes)\n", components[i].start,
  169.             components[i].name, components[i].size);
  170.         top = ALIGN_UP(top, PAGE_SIZE);
  171.         if (i > 0) {
  172.             if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
  173.                 printf("Skipping superfluous components.\n");
  174.                 break;
  175.             }
  176.             bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
  177.                 base + top;
  178.             bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
  179.                 components[i].size;
  180.             bootinfo.taskmap.count++;
  181.         }
  182.         top += components[i].size;
  183.     }
  184.  
  185.     j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
  186.  
  187.     if (silo_ramdisk_image) {
  188.         /* Treat the ramdisk as the last bootinfo task. */
  189.         if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
  190.             printf("Skipping ramdisk.\n");
  191.             goto skip_ramdisk;
  192.         }
  193.         top = ALIGN_UP(top, PAGE_SIZE);
  194.         bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
  195.             base + top;
  196.         bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
  197.             silo_ramdisk_size;
  198.         bootinfo.taskmap.count++;
  199.         printf("\nCopying ramdisk...");
  200.         /*
  201.          * Claim and map the whole ramdisk as it may exceed the area
  202.          * given to us by SILO.
  203.          */
  204.         (void) ofw_claim_phys(base + top, silo_ramdisk_size);
  205.         (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
  206.             silo_ramdisk_size, -1);
  207.         /*
  208.          * FIXME If the source and destination overlap, it may be
  209.          * desirable to copy in reverse order, depending on how the two
  210.          * regions overlap.
  211.          */
  212.         memcpy(base + top, (void *)((uintptr_t)silo_ramdisk_image),
  213.             silo_ramdisk_size);
  214.         printf("done.\n");
  215.         top += silo_ramdisk_size;
  216.     }
  217. skip_ramdisk:
  218.  
  219.     /*
  220.      * Now we can proceed to copy the components. We do it in reverse order
  221.      * so that we don't overwrite anything even if the components overlap
  222.      * with base.
  223.      */
  224.     printf("\nCopying bootinfo tasks\n");
  225.     for (i = COMPONENTS - 1; i > 0; i--, j--) {
  226.         printf(" %s...", components[i].name);
  227.  
  228.         /*
  229.          * At this point, we claim the physical memory that we are
  230.          * going to use. We should be safe in case of the virtual
  231.          * address space because the OpenFirmware, according to its
  232.          * SPARC binding, should restrict its use of virtual memory
  233.          * to addresses from [0xffd00000; 0xffefffff] and
  234.          * [0xfe000000; 0xfeffffff].
  235.          *
  236.          * XXX We don't map this piece of memory. We simply rely on
  237.          *     SILO to have it done for us already in this case.
  238.          */
  239.         (void) ofw_claim_phys(bootinfo.physmem_start +
  240.             bootinfo.taskmap.tasks[j].addr,
  241.             ALIGN_UP(components[i].size, PAGE_SIZE));
  242.            
  243.         memcpy((void *)bootinfo.taskmap.tasks[j].addr,
  244.             components[i].start, components[i].size);
  245.         printf("done.\n");
  246.     }
  247.  
  248.     printf("\nCopying kernel...");
  249.     (void) ofw_claim_phys(bootinfo.physmem_start + base,
  250.         ALIGN_UP(components[0].size, PAGE_SIZE));
  251.     memcpy(base, components[0].start, components[0].size);
  252.     printf("done.\n");
  253.  
  254.     /*
  255.      * Claim and map the physical memory for the boot allocator.
  256.      * Initialize the boot allocator.
  257.      */
  258.     balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
  259.     (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
  260.         BALLOC_MAX_SIZE);
  261.     (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
  262.         BALLOC_MAX_SIZE, -1);
  263.     balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
  264.  
  265.     printf("\nCanonizing OpenFirmware device tree...");
  266.     bootinfo.ofw_root = ofw_tree_build();
  267.     printf("done.\n");
  268.  
  269. #ifdef CONFIG_AP
  270.     printf("\nChecking for secondary processors...");
  271.     if (!ofw_cpu())
  272.         printf("Error: unable to get CPU properties\n");
  273.     printf("done.\n");
  274. #endif
  275.  
  276.     setup_palette();
  277.  
  278.     printf("\nBooting the kernel...\n");
  279.     jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
  280.         bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
  281.         sizeof(bootinfo));
  282. }
  283.