Rev 2927 | Rev 3674 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 2927 | Rev 3403 | ||
---|---|---|---|
Line 55... | Line 55... | ||
55 | #endif |
55 | #endif |
56 | 56 | ||
57 | /** Print version information. */ |
57 | /** Print version information. */ |
58 | static void version_print(void) |
58 | static void version_print(void) |
59 | { |
59 | { |
60 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\nCopyright (c) 2006 HelenOS project\n", release, revision, timestamp); |
60 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n" |
- | 61 | "Copyright (c) 2006 HelenOS project\n", |
|
- | 62 | release, revision, timestamp); |
|
61 | } |
63 | } |
62 | 64 | ||
63 | void bootstrap(void) |
65 | void bootstrap(void) |
64 | { |
66 | { |
- | 67 | void *base = (void *) KERNEL_VIRTUAL_ADDRESS; |
|
- | 68 | void *balloc_base; |
|
- | 69 | unsigned int top = 0; |
|
- | 70 | int i, j; |
|
- | 71 | ||
65 | version_print(); |
72 | version_print(); |
66 | 73 | ||
67 | init_components(components); |
74 | init_components(components); |
68 | 75 | ||
69 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { |
76 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { |
Line 78... | Line 85... | ||
78 | 85 | ||
79 | if (bootinfo.memmap.total == 0) { |
86 | if (bootinfo.memmap.total == 0) { |
80 | printf("Error: no memory detected, halting.\n"); |
87 | printf("Error: no memory detected, halting.\n"); |
81 | halt(); |
88 | halt(); |
82 | } |
89 | } |
- | 90 | ||
- | 91 | /* |
|
- | 92 | * SILO for some reason adds 0x400000 and subtracts |
|
- | 93 | * bootinfo.physmem_start to/from silo_ramdisk_image. |
|
- | 94 | * We just need plain physical address so we fix it up. |
|
- | 95 | */ |
|
- | 96 | if (silo_ramdisk_image) { |
|
- | 97 | silo_ramdisk_image += bootinfo.physmem_start; |
|
- | 98 | silo_ramdisk_image -= 0x400000; |
|
- | 99 | /* Install 1:1 mapping for the ramdisk. */ |
|
- | 100 | if (ofw_map((void *)((uintptr_t)silo_ramdisk_image), |
|
- | 101 | (void *)((uintptr_t)silo_ramdisk_image), |
|
- | 102 | silo_ramdisk_size, -1) != 0) { |
|
- | 103 | printf("Failed to map ramdisk.\n"); |
|
- | 104 | halt(); |
|
- | 105 | } |
|
- | 106 | } |
|
83 | 107 | ||
84 | printf("\nSystem info\n"); |
108 | printf("\nSystem info\n"); |
85 | printf(" memory: %dM starting at %P\n", |
109 | printf(" memory: %dM starting at %P\n", |
86 | bootinfo.memmap.total >> 20, bootinfo.physmem_start); |
110 | bootinfo.memmap.total >> 20, bootinfo.physmem_start); |
87 | 111 | ||
88 | printf("\nMemory statistics\n"); |
112 | printf("\nMemory statistics\n"); |
89 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); |
113 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); |
90 | printf(" %P: boot info structure\n", &bootinfo); |
114 | printf(" %P: boot info structure\n", &bootinfo); |
91 | 115 | ||
- | 116 | /* |
|
- | 117 | * Figure out destination address for each component. |
|
- | 118 | * In this phase, we don't copy the components yet because we want to |
|
- | 119 | * to be careful not to overwrite anything, especially the components |
|
- | 120 | * which haven't been copied yet. |
|
- | 121 | */ |
|
92 | unsigned int i; |
122 | bootinfo.taskmap.count = 0; |
93 | for (i = 0; i < COMPONENTS; i++) |
123 | for (i = 0; i < COMPONENTS; i++) { |
94 | printf(" %P: %s image (size %d bytes)\n", components[i].start, |
124 | printf(" %P: %s image (size %d bytes)\n", components[i].start, |
95 | components[i].name, components[i].size); |
125 | components[i].name, components[i].size); |
- | 126 | top = ALIGN_UP(top, PAGE_SIZE); |
|
- | 127 | if (i > 0) { |
|
- | 128 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
|
- | 129 | printf("Skipping superfluous components.\n"); |
|
- | 130 | break; |
|
- | 131 | } |
|
- | 132 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
|
- | 133 | base + top; |
|
- | 134 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
|
- | 135 | components[i].size; |
|
- | 136 | bootinfo.taskmap.count++; |
|
- | 137 | } |
|
- | 138 | top += components[i].size; |
|
- | 139 | } |
|
96 | 140 | ||
97 | void * base = (void *) KERNEL_VIRTUAL_ADDRESS; |
141 | j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */ |
98 | unsigned int top = 0; |
- | |
99 | 142 | ||
100 | printf("\nCopying components\n"); |
143 | if (silo_ramdisk_image) { |
- | 144 | /* Treat the ramdisk as the last bootinfo task. */ |
|
101 | bootinfo.taskmap.count = 0; |
145 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
102 | for (i = 0; i < COMPONENTS; i++) { |
146 | printf("Skipping ramdisk.\n"); |
103 | printf(" %s...", components[i].name); |
147 | goto skip_ramdisk; |
- | 148 | } |
|
104 | top = ALIGN_UP(top, PAGE_SIZE); |
149 | top = ALIGN_UP(top, PAGE_SIZE); |
- | 150 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
|
- | 151 | base + top; |
|
- | 152 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
|
- | 153 | silo_ramdisk_size; |
|
- | 154 | bootinfo.taskmap.count++; |
|
- | 155 | printf("\nCopying ramdisk..."); |
|
- | 156 | /* |
|
- | 157 | * Claim and map the whole ramdisk as it may exceed the area |
|
- | 158 | * given to us by SILO. |
|
- | 159 | */ |
|
- | 160 | (void) ofw_claim_phys(base + top, silo_ramdisk_size); |
|
- | 161 | (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1); |
|
- | 162 | /* |
|
- | 163 | * FIXME If the source and destination overlap, it may be |
|
- | 164 | * desirable to copy in reverse order, depending on how the two |
|
- | 165 | * regions overlap. |
|
- | 166 | */ |
|
- | 167 | memcpy(base + top, (void *)((uintptr_t)silo_ramdisk_image), |
|
- | 168 | silo_ramdisk_size); |
|
- | 169 | printf("done.\n"); |
|
- | 170 | top += silo_ramdisk_size; |
|
- | 171 | } |
|
- | 172 | skip_ramdisk: |
|
- | 173 | ||
- | 174 | /* |
|
- | 175 | * Now we can proceed to copy the components. We do it in reverse order |
|
- | 176 | * so that we don't overwrite anything even if the components overlap |
|
- | 177 | * with base. |
|
- | 178 | */ |
|
- | 179 | printf("\nCopying bootinfo tasks\n"); |
|
- | 180 | for (i = COMPONENTS - 1; i > 0; i--, j--) { |
|
- | 181 | printf(" %s...", components[i].name); |
|
105 | 182 | ||
106 | /* |
183 | /* |
107 | * At this point, we claim the physical memory that we are |
184 | * At this point, we claim the physical memory that we are |
108 | * going to use. We should be safe in case of the virtual |
185 | * going to use. We should be safe in case of the virtual |
109 | * address space because the OpenFirmware, according to its |
186 | * address space because the OpenFirmware, according to its |
110 | * SPARC binding, should restrict its use of virtual memory |
187 | * SPARC binding, should restrict its use of virtual memory |
111 | * to addresses from [0xffd00000; 0xffefffff] and |
188 | * to addresses from [0xffd00000; 0xffefffff] and |
112 | * [0xfe000000; 0xfeffffff]. |
189 | * [0xfe000000; 0xfeffffff]. |
- | 190 | * |
|
- | 191 | * XXX We don't map this piece of memory. We simply rely on |
|
- | 192 | * SILO to have it done for us already in this case. |
|
113 | */ |
193 | */ |
114 | (void) ofw_claim_phys(bootinfo.physmem_start + base + top, |
194 | (void) ofw_claim_phys(bootinfo.physmem_start + |
- | 195 | bootinfo.taskmap.tasks[j].addr, |
|
115 | ALIGN_UP(components[i].size, PAGE_SIZE)); |
196 | ALIGN_UP(components[i].size, PAGE_SIZE)); |
116 | 197 | ||
117 | memcpy(base + top, components[i].start, components[i].size); |
- | |
118 | if (i > 0) { |
- | |
119 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
198 | memcpy((void *)bootinfo.taskmap.tasks[j].addr, |
120 | base + top; |
- | |
121 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
- | |
122 | components[i].size; |
199 | components[i].start, components[i].size); |
123 | bootinfo.taskmap.count++; |
- | |
124 | } |
- | |
125 | top += components[i].size; |
- | |
126 | printf("done.\n"); |
200 | printf("done.\n"); |
127 | } |
201 | } |
128 | 202 | ||
- | 203 | printf("\nCopying kernel..."); |
|
- | 204 | (void) ofw_claim_phys(bootinfo.physmem_start + base, |
|
- | 205 | ALIGN_UP(components[0].size, PAGE_SIZE)); |
|
- | 206 | memcpy(base, components[0].start, components[0].size); |
|
- | 207 | printf("done.\n"); |
|
- | 208 | ||
129 | /* |
209 | /* |
130 | * Claim the physical memory for the boot allocator. |
210 | * Claim and map the physical memory for the boot allocator. |
131 | * Initialize the boot allocator. |
211 | * Initialize the boot allocator. |
132 | */ |
212 | */ |
- | 213 | balloc_base = base + ALIGN_UP(top, PAGE_SIZE); |
|
133 | (void) ofw_claim_phys(bootinfo.physmem_start + |
214 | (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base, |
- | 215 | BALLOC_MAX_SIZE); |
|
134 | base + ALIGN_UP(top, PAGE_SIZE), BALLOC_MAX_SIZE); |
216 | (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1); |
135 | balloc_init(&bootinfo.ballocs, ALIGN_UP(((uintptr_t) base) + top, |
217 | balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base); |
136 | PAGE_SIZE)); |
- | |
137 | 218 | ||
138 | printf("\nCanonizing OpenFirmware device tree..."); |
219 | printf("\nCanonizing OpenFirmware device tree..."); |
139 | bootinfo.ofw_root = ofw_tree_build(); |
220 | bootinfo.ofw_root = ofw_tree_build(); |
140 | printf("done.\n"); |
221 | printf("done.\n"); |
141 | 222 |