Rev 3022 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
| Rev 3022 | Rev 4055 | ||
|---|---|---|---|
| Line 34... | Line 34... | ||
| 34 | #include <balloc.h> |
34 | #include <balloc.h> |
| 35 | #include <ofw.h> |
35 | #include <ofw.h> |
| 36 | #include <ofw_tree.h> |
36 | #include <ofw_tree.h> |
| 37 | #include "ofwarch.h" |
37 | #include "ofwarch.h" |
| 38 | #include <align.h> |
38 | #include <align.h> |
| - | 39 | #include <macros.h> |
|
| - | 40 | #include <string.h> |
|
| 39 | 41 | ||
| 40 | bootinfo_t bootinfo; |
42 | bootinfo_t bootinfo; |
| - | 43 | ||
| 41 | component_t components[COMPONENTS]; |
44 | component_t components[COMPONENTS]; |
| 42 | 45 | ||
| 43 | char *release = RELEASE; |
46 | char *release = STRING(RELEASE); |
| 44 | 47 | ||
| 45 | #ifdef REVISION |
48 | #ifdef REVISION |
| 46 | char *revision = ", revision " REVISION; |
49 | char *revision = ", revision " STRING(REVISION); |
| 47 | #else |
50 | #else |
| 48 | char *revision = ""; |
51 | char *revision = ""; |
| 49 | #endif |
52 | #endif |
| 50 | 53 | ||
| 51 | #ifdef TIMESTAMP |
54 | #ifdef TIMESTAMP |
| 52 | char *timestamp = "\nBuilt on " TIMESTAMP; |
55 | char *timestamp = "\nBuilt on " STRING(TIMESTAMP); |
| 53 | #else |
56 | #else |
| 54 | char *timestamp = ""; |
57 | char *timestamp = ""; |
| 55 | #endif |
58 | #endif |
| 56 | 59 | ||
| - | 60 | /** UltraSPARC subarchitecture - 1 for US, 3 for US3 */ |
|
| - | 61 | uint8_t subarchitecture; |
|
| - | 62 | ||
| - | 63 | /** |
|
| - | 64 | * mask of the MID field inside the ICBUS_CONFIG register shifted by |
|
| - | 65 | * MID_SHIFT bits to the right |
|
| - | 66 | */ |
|
| - | 67 | uint16_t mid_mask; |
|
| - | 68 | ||
| 57 | /** Print version information. */ |
69 | /** Print version information. */ |
| 58 | static void version_print(void) |
70 | static void version_print(void) |
| 59 | { |
71 | { |
| 60 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\nCopyright (c) 2006 HelenOS project\n", release, revision, timestamp); |
72 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n" |
| - | 73 | "Copyright (c) 2006 HelenOS project\n", |
|
| - | 74 | release, revision, timestamp); |
|
| - | 75 | } |
|
| - | 76 | ||
| - | 77 | /* the lowest ID (read from the VER register) of some US3 CPU model */ |
|
| - | 78 | #define FIRST_US3_CPU 0x14 |
|
| - | 79 | ||
| - | 80 | /* the greatest ID (read from the VER register) of some US3 CPU model */ |
|
| - | 81 | #define LAST_US3_CPU 0x19 |
|
| - | 82 | ||
| - | 83 | /* UltraSPARC IIIi processor implementation code */ |
|
| - | 84 | #define US_IIIi_CODE 0x15 |
|
| - | 85 | ||
| - | 86 | /** |
|
| - | 87 | * Sets the global variables "subarchitecture" and "mid_mask" to |
|
| - | 88 | * correct values. |
|
| - | 89 | */ |
|
| - | 90 | static void detect_subarchitecture(void) |
|
| - | 91 | { |
|
| - | 92 | uint64_t v; |
|
| - | 93 | asm volatile ("rdpr %%ver, %0\n" : "=r" (v)); |
|
| - | 94 | ||
| - | 95 | v = (v << 16) >> 48; |
|
| - | 96 | if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) { |
|
| - | 97 | subarchitecture = SUBARCH_US3; |
|
| - | 98 | if (v == US_IIIi_CODE) |
|
| - | 99 | mid_mask = (1 << 5) - 1; |
|
| - | 100 | else |
|
| - | 101 | mid_mask = (1 << 10) - 1; |
|
| - | 102 | } else if (v < FIRST_US3_CPU) { |
|
| - | 103 | subarchitecture = SUBARCH_US; |
|
| - | 104 | mid_mask = (1 << 5) - 1; |
|
| - | 105 | } else { |
|
| - | 106 | printf("\nThis CPU is not supported by HelenOS."); |
|
| - | 107 | } |
|
| 61 | } |
108 | } |
| 62 | 109 | ||
| 63 | void bootstrap(void) |
110 | void bootstrap(void) |
| 64 | { |
111 | { |
| - | 112 | void *base = (void *) KERNEL_VIRTUAL_ADDRESS; |
|
| - | 113 | void *balloc_base; |
|
| - | 114 | unsigned int top = 0; |
|
| - | 115 | int i, j; |
|
| - | 116 | ||
| 65 | version_print(); |
117 | version_print(); |
| 66 | 118 | ||
| - | 119 | detect_subarchitecture(); |
|
| 67 | init_components(components); |
120 | init_components(components); |
| 68 | 121 | ||
| 69 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { |
122 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { |
| 70 | printf("Error: unable to get start of physical memory.\n"); |
123 | printf("Error: unable to get start of physical memory.\n"); |
| 71 | halt(); |
124 | halt(); |
| Line 73... | Line 126... | ||
| 73 | 126 | ||
| 74 | if (!ofw_memmap(&bootinfo.memmap)) { |
127 | if (!ofw_memmap(&bootinfo.memmap)) { |
| 75 | printf("Error: unable to get memory map, halting.\n"); |
128 | printf("Error: unable to get memory map, halting.\n"); |
| 76 | halt(); |
129 | halt(); |
| 77 | } |
130 | } |
| 78 | 131 | ||
| 79 | if (bootinfo.memmap.total == 0) { |
132 | if (bootinfo.memmap.total == 0) { |
| 80 | printf("Error: no memory detected, halting.\n"); |
133 | printf("Error: no memory detected, halting.\n"); |
| 81 | halt(); |
134 | halt(); |
| 82 | } |
135 | } |
| - | 136 | ||
| - | 137 | /* |
|
| - | 138 | * SILO for some reason adds 0x400000 and subtracts |
|
| - | 139 | * bootinfo.physmem_start to/from silo_ramdisk_image. |
|
| - | 140 | * We just need plain physical address so we fix it up. |
|
| - | 141 | */ |
|
| - | 142 | if (silo_ramdisk_image) { |
|
| - | 143 | silo_ramdisk_image += bootinfo.physmem_start; |
|
| - | 144 | silo_ramdisk_image -= 0x400000; |
|
| - | 145 | /* Install 1:1 mapping for the ramdisk. */ |
|
| - | 146 | if (ofw_map((void *)((uintptr_t) silo_ramdisk_image), |
|
| - | 147 | (void *)((uintptr_t) silo_ramdisk_image), |
|
| - | 148 | silo_ramdisk_size, -1) != 0) { |
|
| - | 149 | printf("Failed to map ramdisk.\n"); |
|
| - | 150 | halt(); |
|
| - | 151 | } |
|
| - | 152 | } |
|
| 83 | 153 | ||
| 84 | printf("\nSystem info\n"); |
154 | printf("\nSystem info\n"); |
| 85 | printf(" memory: %dM starting at %P\n", |
155 | printf(" memory: %dM starting at %P\n", |
| 86 | bootinfo.memmap.total >> 20, bootinfo.physmem_start); |
156 | bootinfo.memmap.total >> 20, bootinfo.physmem_start); |
| 87 | 157 | ||
| 88 | printf("\nMemory statistics\n"); |
158 | printf("\nMemory statistics\n"); |
| 89 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); |
159 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); |
| 90 | printf(" %P: boot info structure\n", &bootinfo); |
160 | printf(" %P: boot info structure\n", &bootinfo); |
| 91 | 161 | ||
| - | 162 | /* |
|
| - | 163 | * Figure out destination address for each component. |
|
| - | 164 | * In this phase, we don't copy the components yet because we want to |
|
| - | 165 | * to be careful not to overwrite anything, especially the components |
|
| - | 166 | * which haven't been copied yet. |
|
| - | 167 | */ |
|
| 92 | unsigned int i; |
168 | bootinfo.taskmap.count = 0; |
| 93 | for (i = 0; i < COMPONENTS; i++) |
169 | for (i = 0; i < COMPONENTS; i++) { |
| 94 | printf(" %P: %s image (size %d bytes)\n", components[i].start, |
170 | printf(" %P: %s image (size %d bytes)\n", components[i].start, |
| 95 | components[i].name, components[i].size); |
171 | components[i].name, components[i].size); |
| - | 172 | top = ALIGN_UP(top, PAGE_SIZE); |
|
| - | 173 | if (i > 0) { |
|
| - | 174 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
|
| - | 175 | printf("Skipping superfluous components.\n"); |
|
| - | 176 | break; |
|
| - | 177 | } |
|
| - | 178 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
|
| - | 179 | base + top; |
|
| - | 180 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
|
| - | 181 | components[i].size; |
|
| - | 182 | strncpy(bootinfo.taskmap.tasks[ |
|
| - | 183 | bootinfo.taskmap.count].name, components[i].name, |
|
| - | 184 | BOOTINFO_TASK_NAME_BUFLEN); |
|
| - | 185 | bootinfo.taskmap.count++; |
|
| - | 186 | } |
|
| - | 187 | top += components[i].size; |
|
| - | 188 | } |
|
| 96 | 189 | ||
| 97 | void * base = (void *) KERNEL_VIRTUAL_ADDRESS; |
190 | j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */ |
| 98 | unsigned int top = 0; |
- | |
| 99 | 191 | ||
| 100 | printf("\nCopying components\n"); |
192 | if (silo_ramdisk_image) { |
| - | 193 | /* Treat the ramdisk as the last bootinfo task. */ |
|
| 101 | bootinfo.taskmap.count = 0; |
194 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
| 102 | for (i = 0; i < COMPONENTS; i++) { |
195 | printf("Skipping ramdisk.\n"); |
| 103 | printf(" %s...", components[i].name); |
196 | goto skip_ramdisk; |
| - | 197 | } |
|
| 104 | top = ALIGN_UP(top, PAGE_SIZE); |
198 | top = ALIGN_UP(top, PAGE_SIZE); |
| - | 199 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
|
| - | 200 | base + top; |
|
| - | 201 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
|
| - | 202 | silo_ramdisk_size; |
|
| - | 203 | bootinfo.taskmap.count++; |
|
| - | 204 | printf("\nCopying ramdisk..."); |
|
| - | 205 | /* |
|
| - | 206 | * Claim and map the whole ramdisk as it may exceed the area |
|
| - | 207 | * given to us by SILO. |
|
| - | 208 | */ |
|
| - | 209 | (void) ofw_claim_phys(base + top, silo_ramdisk_size); |
|
| - | 210 | (void) ofw_map(bootinfo.physmem_start + base + top, base + top, |
|
| - | 211 | silo_ramdisk_size, -1); |
|
| - | 212 | memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image), |
|
| - | 213 | silo_ramdisk_size); |
|
| - | 214 | printf("done.\n"); |
|
| - | 215 | top += silo_ramdisk_size; |
|
| - | 216 | } |
|
| - | 217 | skip_ramdisk: |
|
| - | 218 | ||
| - | 219 | /* |
|
| - | 220 | * Now we can proceed to copy the components. We do it in reverse order |
|
| - | 221 | * so that we don't overwrite anything even if the components overlap |
|
| - | 222 | * with base. |
|
| - | 223 | */ |
|
| - | 224 | printf("\nCopying bootinfo tasks\n"); |
|
| - | 225 | for (i = COMPONENTS - 1; i > 0; i--, j--) { |
|
| - | 226 | printf(" %s...", components[i].name); |
|
| 105 | 227 | ||
| 106 | /* |
228 | /* |
| 107 | * At this point, we claim the physical memory that we are |
229 | * At this point, we claim the physical memory that we are |
| 108 | * going to use. We should be safe in case of the virtual |
230 | * going to use. We should be safe in case of the virtual |
| 109 | * address space because the OpenFirmware, according to its |
231 | * address space because the OpenFirmware, according to its |
| 110 | * SPARC binding, should restrict its use of virtual memory |
232 | * SPARC binding, should restrict its use of virtual memory |
| 111 | * to addresses from [0xffd00000; 0xffefffff] and |
233 | * to addresses from [0xffd00000; 0xffefffff] and |
| 112 | * [0xfe000000; 0xfeffffff]. |
234 | * [0xfe000000; 0xfeffffff]. |
| - | 235 | * |
|
| - | 236 | * XXX We don't map this piece of memory. We simply rely on |
|
| - | 237 | * SILO to have it done for us already in this case. |
|
| 113 | */ |
238 | */ |
| 114 | (void) ofw_claim_phys(bootinfo.physmem_start + base + top, |
239 | (void) ofw_claim_phys(bootinfo.physmem_start + |
| - | 240 | bootinfo.taskmap.tasks[j].addr, |
|
| 115 | ALIGN_UP(components[i].size, PAGE_SIZE)); |
241 | ALIGN_UP(components[i].size, PAGE_SIZE)); |
| 116 | 242 | ||
| 117 | memcpy(base + top, components[i].start, components[i].size); |
- | |
| 118 | if (i > 0) { |
- | |
| 119 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
243 | memcpy((void *)bootinfo.taskmap.tasks[j].addr, |
| 120 | base + top; |
- | |
| 121 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
- | |
| 122 | components[i].size; |
244 | components[i].start, components[i].size); |
| 123 | bootinfo.taskmap.count++; |
- | |
| 124 | } |
- | |
| 125 | top += components[i].size; |
- | |
| 126 | printf("done.\n"); |
245 | printf("done.\n"); |
| 127 | } |
246 | } |
| 128 | 247 | ||
| - | 248 | printf("\nCopying kernel..."); |
|
| - | 249 | (void) ofw_claim_phys(bootinfo.physmem_start + base, |
|
| - | 250 | ALIGN_UP(components[0].size, PAGE_SIZE)); |
|
| - | 251 | memcpy(base, components[0].start, components[0].size); |
|
| - | 252 | printf("done.\n"); |
|
| - | 253 | ||
| 129 | /* |
254 | /* |
| 130 | * Claim the physical memory for the boot allocator. |
255 | * Claim and map the physical memory for the boot allocator. |
| 131 | * Initialize the boot allocator. |
256 | * Initialize the boot allocator. |
| 132 | */ |
257 | */ |
| - | 258 | balloc_base = base + ALIGN_UP(top, PAGE_SIZE); |
|
| 133 | (void) ofw_claim_phys(bootinfo.physmem_start + |
259 | (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base, |
| 134 | base + ALIGN_UP(top, PAGE_SIZE), BALLOC_MAX_SIZE); |
260 | BALLOC_MAX_SIZE); |
| 135 | balloc_init(&bootinfo.ballocs, ALIGN_UP(((uintptr_t) base) + top, |
261 | (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base, |
| 136 | PAGE_SIZE)); |
262 | BALLOC_MAX_SIZE, -1); |
| - | 263 | balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base); |
|
| 137 | 264 | ||
| 138 | printf("\nCanonizing OpenFirmware device tree..."); |
265 | printf("\nCanonizing OpenFirmware device tree..."); |
| 139 | bootinfo.ofw_root = ofw_tree_build(); |
266 | bootinfo.ofw_root = ofw_tree_build(); |
| 140 | printf("done.\n"); |
267 | printf("done.\n"); |
| 141 | 268 | ||
| 142 | #ifdef CONFIG_SMP |
269 | #ifdef CONFIG_AP |
| 143 | printf("\nChecking for secondary processors..."); |
270 | printf("\nChecking for secondary processors..."); |
| 144 | if (!ofw_cpu()) |
271 | if (!ofw_cpu()) |
| 145 | printf("Error: unable to get CPU properties\n"); |
272 | printf("Error: unable to get CPU properties\n"); |
| 146 | printf("done.\n"); |
273 | printf("done.\n"); |
| 147 | #endif |
274 | #endif |
| 148 | 275 | ||
| - | 276 | ofw_setup_palette(); |
|
| - | 277 | ||
| 149 | printf("\nBooting the kernel...\n"); |
278 | printf("\nBooting the kernel...\n"); |
| 150 | jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS, |
279 | jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS, |
| 151 | bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo, |
280 | bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo, |
| 152 | sizeof(bootinfo)); |
281 | sizeof(bootinfo)); |
| 153 | } |
282 | } |
| 154 | - | ||