Rev 731 | Rev 804 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
731 | cejka | 1 | /* |
2 | * Copyright (C) 2005 Josef Cejka |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include<sftypes.h> |
||
30 | #include<mul.h> |
||
31 | #include<comparison.h> |
||
32 | |||
33 | /** Multiply two 32 bit float numbers |
||
34 | * |
||
35 | */ |
||
36 | float32 mulFloat32(float32 a, float32 b) |
||
37 | { |
||
38 | float32 result; |
||
39 | __u64 mant1, mant2; |
||
40 | __s32 exp; |
||
41 | |||
42 | result.parts.sign = a.parts.sign ^ b.parts.sign; |
||
43 | |||
737 | cejka | 44 | if (isFloat32NaN(a) || isFloat32NaN(b) ) { |
731 | cejka | 45 | /* TODO: fix SigNaNs */ |
46 | if (isFloat32SigNaN(a)) { |
||
47 | result.parts.mantisa = a.parts.mantisa; |
||
48 | result.parts.exp = a.parts.exp; |
||
49 | return result; |
||
50 | }; |
||
51 | if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */ |
||
52 | result.parts.mantisa = b.parts.mantisa; |
||
53 | result.parts.exp = b.parts.exp; |
||
54 | return result; |
||
55 | }; |
||
56 | /* set NaN as result */ |
||
737 | cejka | 57 | result.binary = FLOAT32_NAN; |
731 | cejka | 58 | return result; |
59 | }; |
||
60 | |||
61 | if (isFloat32Infinity(a)) { |
||
62 | if (isFloat32Zero(b)) { |
||
63 | /* FIXME: zero * infinity */ |
||
737 | cejka | 64 | result.binary = FLOAT32_NAN; |
731 | cejka | 65 | return result; |
66 | } |
||
67 | result.parts.mantisa = a.parts.mantisa; |
||
68 | result.parts.exp = a.parts.exp; |
||
69 | return result; |
||
70 | } |
||
71 | |||
72 | if (isFloat32Infinity(b)) { |
||
73 | if (isFloat32Zero(a)) { |
||
74 | /* FIXME: zero * infinity */ |
||
737 | cejka | 75 | result.binary = FLOAT32_NAN; |
731 | cejka | 76 | return result; |
77 | } |
||
78 | result.parts.mantisa = b.parts.mantisa; |
||
79 | result.parts.exp = b.parts.exp; |
||
80 | return result; |
||
81 | } |
||
82 | |||
83 | /* exp is signed so we can easy detect underflow */ |
||
84 | exp = a.parts.exp + b.parts.exp; |
||
85 | exp -= FLOAT32_BIAS; |
||
86 | |||
737 | cejka | 87 | if (exp >= FLOAT32_MAX_EXPONENT) { |
731 | cejka | 88 | /* FIXME: overflow */ |
89 | /* set infinity as result */ |
||
737 | cejka | 90 | result.binary = FLOAT32_INF; |
91 | result.parts.sign = a.parts.sign ^ b.parts.sign; |
||
731 | cejka | 92 | return result; |
93 | }; |
||
94 | |||
95 | if (exp < 0) { |
||
96 | /* FIXME: underflow */ |
||
97 | /* return signed zero */ |
||
98 | result.parts.mantisa = 0x0; |
||
99 | result.parts.exp = 0x0; |
||
100 | return result; |
||
101 | }; |
||
102 | |||
103 | mant1 = a.parts.mantisa; |
||
737 | cejka | 104 | if (a.parts.exp > 0) { |
105 | mant1 |= FLOAT32_HIDDEN_BIT_MASK; |
||
731 | cejka | 106 | } else { |
107 | ++exp; |
||
108 | }; |
||
109 | |||
110 | mant2 = b.parts.mantisa; |
||
737 | cejka | 111 | |
112 | if (b.parts.exp > 0) { |
||
113 | mant2 |= FLOAT32_HIDDEN_BIT_MASK; |
||
731 | cejka | 114 | } else { |
115 | ++exp; |
||
116 | }; |
||
117 | |||
118 | mant1 <<= 1; /* one bit space for rounding */ |
||
119 | |||
120 | mant1 = mant1 * mant2; |
||
121 | /* round and return */ |
||
122 | |||
737 | cejka | 123 | while ((exp < FLOAT32_MAX_EXPONENT) && (mant1 >= ( 1 << (FLOAT32_MANTISA_SIZE + 2)))) { |
124 | /* 23 bits of mantisa + one more for hidden bit (all shifted 1 bit left)*/ |
||
731 | cejka | 125 | ++exp; |
126 | mant1 >>= 1; |
||
127 | }; |
||
128 | |||
129 | /* rounding */ |
||
130 | //++mant1; /* FIXME: not works - without it is ok */ |
||
131 | mant1 >>= 1; /* shift off rounding space */ |
||
132 | |||
737 | cejka | 133 | if ((exp < FLOAT32_MAX_EXPONENT) && (mant1 >= (1 << (FLOAT32_MANTISA_SIZE + 1)))) { |
731 | cejka | 134 | ++exp; |
135 | mant1 >>= 1; |
||
136 | }; |
||
137 | |||
737 | cejka | 138 | if (exp >= FLOAT32_MAX_EXPONENT ) { |
731 | cejka | 139 | /* TODO: fix overflow */ |
140 | /* return infinity*/ |
||
737 | cejka | 141 | result.parts.exp = FLOAT32_MAX_EXPONENT; |
731 | cejka | 142 | result.parts.mantisa = 0x0; |
143 | return result; |
||
144 | } |
||
145 | |||
146 | exp -= FLOAT32_MANTISA_SIZE; |
||
147 | |||
148 | if (exp <= FLOAT32_MANTISA_SIZE) { |
||
149 | /* denormalized number */ |
||
150 | mant1 >>= 1; /* denormalize */ |
||
151 | while ((mant1 > 0) && (exp < 0)) { |
||
152 | mant1 >>= 1; |
||
153 | ++exp; |
||
154 | }; |
||
155 | if (mant1 == 0) { |
||
156 | /* FIXME : underflow */ |
||
157 | result.parts.exp = 0; |
||
158 | result.parts.mantisa = 0; |
||
159 | return result; |
||
160 | }; |
||
161 | }; |
||
162 | result.parts.exp = exp; |
||
737 | cejka | 163 | result.parts.mantisa = mant1 & ( (1 << FLOAT32_MANTISA_SIZE) - 1); |
731 | cejka | 164 | |
165 | return result; |
||
166 | |||
167 | } |
||
168 | |||
737 | cejka | 169 | /** Multiply two 64 bit float numbers |
170 | * |
||
171 | */ |
||
172 | float64 mulFloat64(float64 a, float64 b) |
||
173 | { |
||
174 | float64 result; |
||
175 | __u64 mant1, mant2; |
||
176 | __s32 exp; |
||
731 | cejka | 177 | |
737 | cejka | 178 | result.parts.sign = a.parts.sign ^ b.parts.sign; |
179 | |||
180 | if (isFloat64NaN(a) || isFloat64NaN(b) ) { |
||
181 | /* TODO: fix SigNaNs */ |
||
182 | if (isFloat64SigNaN(a)) { |
||
183 | result.parts.mantisa = a.parts.mantisa; |
||
184 | result.parts.exp = a.parts.exp; |
||
185 | return result; |
||
186 | }; |
||
187 | if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */ |
||
188 | result.parts.mantisa = b.parts.mantisa; |
||
189 | result.parts.exp = b.parts.exp; |
||
190 | return result; |
||
191 | }; |
||
192 | /* set NaN as result */ |
||
193 | result.binary = FLOAT64_NAN; |
||
194 | return result; |
||
195 | }; |
||
196 | |||
197 | if (isFloat64Infinity(a)) { |
||
198 | if (isFloat64Zero(b)) { |
||
199 | /* FIXME: zero * infinity */ |
||
200 | result.binary = FLOAT64_NAN; |
||
201 | return result; |
||
202 | } |
||
203 | result.parts.mantisa = a.parts.mantisa; |
||
204 | result.parts.exp = a.parts.exp; |
||
205 | return result; |
||
206 | } |
||
731 | cejka | 207 | |
737 | cejka | 208 | if (isFloat64Infinity(b)) { |
209 | if (isFloat64Zero(a)) { |
||
210 | /* FIXME: zero * infinity */ |
||
211 | result.binary = FLOAT64_NAN; |
||
212 | return result; |
||
213 | } |
||
214 | result.parts.mantisa = b.parts.mantisa; |
||
215 | result.parts.exp = b.parts.exp; |
||
216 | return result; |
||
217 | } |
||
218 | |||
219 | /* exp is signed so we can easy detect underflow */ |
||
220 | exp = a.parts.exp + b.parts.exp; |
||
221 | exp -= FLOAT64_BIAS; |
||
222 | |||
223 | if (exp >= FLOAT64_MAX_EXPONENT) { |
||
224 | /* FIXME: overflow */ |
||
225 | /* set infinity as result */ |
||
226 | result.binary = FLOAT64_INF; |
||
227 | result.parts.sign = a.parts.sign ^ b.parts.sign; |
||
228 | return result; |
||
229 | }; |
||
230 | |||
231 | if (exp < 0) { |
||
232 | /* FIXME: underflow */ |
||
233 | /* return signed zero */ |
||
234 | result.parts.mantisa = 0x0; |
||
235 | result.parts.exp = 0x0; |
||
236 | return result; |
||
237 | }; |
||
238 | |||
239 | mant1 = a.parts.mantisa; |
||
240 | if (a.parts.exp > 0) { |
||
241 | mant1 |= FLOAT64_HIDDEN_BIT_MASK; |
||
242 | } else { |
||
243 | ++exp; |
||
244 | }; |
||
245 | |||
246 | mant2 = b.parts.mantisa; |
||
247 | |||
248 | if (b.parts.exp > 0) { |
||
249 | mant2 |= FLOAT64_HIDDEN_BIT_MASK; |
||
250 | } else { |
||
251 | ++exp; |
||
252 | }; |
||
253 | |||
254 | mant1 <<= 1; /* one bit space for rounding */ |
||
255 | |||
256 | mul64integers(mant1, mant2, &mant1, &mant2); |
||
257 | |||
258 | /* round and return */ |
||
259 | /* FIXME: ugly soulution is to shift whole mant2 >> as in 32bit version |
||
260 | * Here is is more slower because we have to shift two numbers with carry |
||
261 | * Better is find first nonzero bit and make only one shift |
||
262 | * Third version is to shift both numbers a bit to right and result will be then |
||
263 | * placed in higher part of result. Then lower part will be good only for rounding. |
||
264 | */ |
||
265 | |||
266 | while ((exp < FLOAT64_MAX_EXPONENT) && (mant2 > 0 )) { |
||
267 | mant1 >>= 1; |
||
268 | mant1 &= ((mant2 & 0x1) << 63); |
||
269 | mant2 >>= 1; |
||
270 | ++exp; |
||
271 | } |
||
272 | |||
273 | while ((exp < FLOAT64_MAX_EXPONENT) && (mant1 >= ( (__u64)1 << (FLOAT64_MANTISA_SIZE + 2)))) { |
||
274 | ++exp; |
||
275 | mant1 >>= 1; |
||
276 | }; |
||
277 | |||
278 | /* rounding */ |
||
279 | //++mant1; /* FIXME: not works - without it is ok */ |
||
280 | mant1 >>= 1; /* shift off rounding space */ |
||
281 | |||
282 | if ((exp < FLOAT64_MAX_EXPONENT) && (mant1 >= ((__u64)1 << (FLOAT64_MANTISA_SIZE + 1)))) { |
||
283 | ++exp; |
||
284 | mant1 >>= 1; |
||
285 | }; |
||
286 | |||
287 | if (exp >= FLOAT64_MAX_EXPONENT ) { |
||
288 | /* TODO: fix overflow */ |
||
289 | /* return infinity*/ |
||
290 | result.parts.exp = FLOAT64_MAX_EXPONENT; |
||
291 | result.parts.mantisa = 0x0; |
||
292 | return result; |
||
293 | } |
||
294 | |||
295 | exp -= FLOAT64_MANTISA_SIZE; |
||
296 | |||
297 | if (exp <= FLOAT64_MANTISA_SIZE) { |
||
298 | /* denormalized number */ |
||
299 | mant1 >>= 1; /* denormalize */ |
||
300 | while ((mant1 > 0) && (exp < 0)) { |
||
301 | mant1 >>= 1; |
||
302 | ++exp; |
||
303 | }; |
||
304 | if (mant1 == 0) { |
||
305 | /* FIXME : underflow */ |
||
306 | result.parts.exp = 0; |
||
307 | result.parts.mantisa = 0; |
||
308 | return result; |
||
309 | }; |
||
310 | }; |
||
311 | result.parts.exp = exp; |
||
312 | result.parts.mantisa = mant1 & ( ((__u64)1 << FLOAT64_MANTISA_SIZE) - 1); |
||
313 | |||
314 | return result; |
||
315 | |||
316 | } |
||
317 | |||
318 | /** Multiply two 64 bit numbers and return result in two parts |
||
319 | * @param a first operand |
||
320 | * @param b second operand |
||
321 | * @param lo lower part from result |
||
322 | * @param hi higher part of result |
||
323 | */ |
||
324 | void mul64integers(__u64 a,__u64 b, __u64 *lo, __u64 *hi) |
||
325 | { |
||
326 | __u64 low, high, middle1, middle2; |
||
327 | __u32 alow, blow; |
||
328 | |||
329 | alow = a & 0xFFFFFFFF; |
||
330 | blow = b & 0xFFFFFFFF; |
||
331 | |||
332 | a <<= 32; |
||
333 | b <<= 32; |
||
334 | |||
335 | low = (__u64)alow * blow; |
||
336 | middle1 = a * blow; |
||
337 | middle2 = alow * b; |
||
338 | high = a * b; |
||
339 | |||
340 | middle1 += middle2; |
||
341 | high += ((__u64)(middle1 < middle2) << 32) + middle1>>32; |
||
342 | middle1 << 32; |
||
343 | low += middle1; |
||
344 | high += (low < middle1); |
||
345 | *lo = low; |
||
346 | *hi = high; |
||
347 | return; |
||
348 | } |
||
349 | |||
350 |