Rev 875 | Rev 1035 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
647 | cejka | 1 | /* |
2 | * Copyright (C) 2005 Josef Cejka |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
697 | cejka | 29 | #include "sftypes.h" |
30 | #include "conversion.h" |
||
857 | cejka | 31 | #include "comparison.h" |
874 | cejka | 32 | #include "common.h" |
697 | cejka | 33 | |
34 | float64 convertFloat32ToFloat64(float32 a) |
||
35 | { |
||
36 | float64 result; |
||
804 | cejka | 37 | __u64 frac; |
697 | cejka | 38 | |
39 | result.parts.sign = a.parts.sign; |
||
804 | cejka | 40 | result.parts.fraction = a.parts.fraction; |
41 | result.parts.fraction <<= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE ); |
||
697 | cejka | 42 | |
43 | if ((isFloat32Infinity(a))||(isFloat32NaN(a))) { |
||
44 | result.parts.exp = 0x7FF; |
||
45 | /* TODO; check if its correct for SigNaNs*/ |
||
46 | return result; |
||
47 | }; |
||
48 | |||
49 | result.parts.exp = a.parts.exp + ( (int)FLOAT64_BIAS - FLOAT32_BIAS ); |
||
50 | if (a.parts.exp == 0) { |
||
51 | /* normalize denormalized numbers */ |
||
52 | |||
804 | cejka | 53 | if (result.parts.fraction == 0ll) { /* fix zero */ |
697 | cejka | 54 | result.parts.exp = 0ll; |
55 | return result; |
||
56 | } |
||
57 | |||
804 | cejka | 58 | frac = result.parts.fraction; |
697 | cejka | 59 | |
804 | cejka | 60 | while (!(frac & (0x10000000000000ll))) { |
61 | frac <<= 1; |
||
697 | cejka | 62 | --result.parts.exp; |
63 | }; |
||
698 | cejka | 64 | |
65 | ++result.parts.exp; |
||
804 | cejka | 66 | result.parts.fraction = frac; |
697 | cejka | 67 | }; |
68 | |||
69 | return result; |
||
70 | |||
857 | cejka | 71 | } |
697 | cejka | 72 | |
73 | float32 convertFloat64ToFloat32(float64 a) |
||
74 | { |
||
75 | float32 result; |
||
76 | __s32 exp; |
||
804 | cejka | 77 | __u64 frac; |
697 | cejka | 78 | |
79 | result.parts.sign = a.parts.sign; |
||
80 | |||
81 | if (isFloat64NaN(a)) { |
||
82 | |||
83 | result.parts.exp = 0xFF; |
||
84 | |||
85 | if (isFloat64SigNaN(a)) { |
||
804 | cejka | 86 | result.parts.fraction = 0x800000; /* set first bit of fraction nonzero */ |
697 | cejka | 87 | return result; |
88 | } |
||
89 | |||
804 | cejka | 90 | result.parts.fraction = 0x1; /* fraction nonzero but its first bit is zero */ |
697 | cejka | 91 | return result; |
92 | }; |
||
93 | |||
94 | if (isFloat64Infinity(a)) { |
||
804 | cejka | 95 | result.parts.fraction = 0; |
697 | cejka | 96 | result.parts.exp = 0xFF; |
97 | return result; |
||
98 | }; |
||
99 | |||
100 | exp = (int)a.parts.exp - FLOAT64_BIAS + FLOAT32_BIAS; |
||
101 | |||
102 | if (exp >= 0xFF) { |
||
103 | /*FIXME: overflow*/ |
||
804 | cejka | 104 | result.parts.fraction = 0; |
697 | cejka | 105 | result.parts.exp = 0xFF; |
106 | return result; |
||
107 | |||
108 | } else if (exp <= 0 ) { |
||
109 | |||
110 | /* underflow or denormalized */ |
||
111 | |||
112 | result.parts.exp = 0; |
||
113 | |||
114 | exp *= -1; |
||
804 | cejka | 115 | if (exp > FLOAT32_FRACTION_SIZE ) { |
697 | cejka | 116 | /* FIXME: underflow */ |
804 | cejka | 117 | result.parts.fraction = 0; |
697 | cejka | 118 | return result; |
119 | }; |
||
120 | |||
121 | /* denormalized */ |
||
122 | |||
804 | cejka | 123 | frac = a.parts.fraction; |
124 | frac |= 0x10000000000000ll; /* denormalize and set hidden bit */ |
||
697 | cejka | 125 | |
804 | cejka | 126 | frac >>= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1); |
698 | cejka | 127 | |
697 | cejka | 128 | while (exp > 0) { |
129 | --exp; |
||
804 | cejka | 130 | frac >>= 1; |
697 | cejka | 131 | }; |
804 | cejka | 132 | result.parts.fraction = frac; |
697 | cejka | 133 | |
134 | return result; |
||
135 | }; |
||
136 | |||
137 | result.parts.exp = exp; |
||
804 | cejka | 138 | result.parts.fraction = a.parts.fraction >> (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE); |
697 | cejka | 139 | return result; |
857 | cejka | 140 | } |
697 | cejka | 141 | |
857 | cejka | 142 | |
143 | /** Helping procedure for converting float32 to uint32 |
||
144 | * @param a floating point number in normalized form (no NaNs or Inf are checked ) |
||
145 | * @return unsigned integer |
||
146 | */ |
||
147 | static __u32 _float32_to_uint32_helper(float32 a) |
||
148 | { |
||
149 | __u32 frac; |
||
150 | |||
151 | if (a.parts.exp < FLOAT32_BIAS) { |
||
152 | /*TODO: rounding*/ |
||
153 | return 0; |
||
154 | } |
||
155 | |||
156 | frac = a.parts.fraction; |
||
157 | |||
158 | frac |= FLOAT32_HIDDEN_BIT_MASK; |
||
159 | /* shift fraction to left so hidden bit will be the most significant bit */ |
||
160 | frac <<= 32 - FLOAT32_FRACTION_SIZE - 1; |
||
161 | |||
162 | frac >>= 32 - (a.parts.exp - FLOAT32_BIAS) - 1; |
||
163 | if ((a.parts.sign == 1) && (frac != 0)) { |
||
164 | frac = ~frac; |
||
165 | ++frac; |
||
166 | } |
||
167 | |||
168 | return frac; |
||
169 | } |
||
170 | |||
171 | /* Convert float to unsigned int32 |
||
172 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
173 | * - now its the biggest or the smallest int |
||
174 | */ |
||
175 | __u32 float32_to_uint32(float32 a) |
||
176 | { |
||
177 | if (isFloat32NaN(a)) { |
||
178 | return MAX_UINT32; |
||
179 | } |
||
180 | |||
181 | if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) { |
||
182 | if (a.parts.sign) { |
||
183 | return MIN_UINT32; |
||
184 | } |
||
185 | return MAX_UINT32; |
||
186 | } |
||
187 | |||
188 | return _float32_to_uint32_helper(a); |
||
189 | } |
||
190 | |||
191 | /* Convert float to signed int32 |
||
192 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
193 | * - now its the biggest or the smallest int |
||
194 | */ |
||
195 | __s32 float32_to_int32(float32 a) |
||
196 | { |
||
197 | if (isFloat32NaN(a)) { |
||
198 | return MAX_INT32; |
||
199 | } |
||
200 | |||
201 | if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) { |
||
202 | if (a.parts.sign) { |
||
203 | return MIN_INT32; |
||
204 | } |
||
205 | return MAX_INT32; |
||
206 | } |
||
207 | return _float32_to_uint32_helper(a); |
||
208 | } |
||
209 | |||
210 | |||
865 | cejka | 211 | /** Helping procedure for converting float64 to uint64 |
212 | * @param a floating point number in normalized form (no NaNs or Inf are checked ) |
||
213 | * @return unsigned integer |
||
214 | */ |
||
215 | static __u64 _float64_to_uint64_helper(float64 a) |
||
216 | { |
||
217 | __u64 frac; |
||
218 | |||
219 | if (a.parts.exp < FLOAT64_BIAS) { |
||
220 | /*TODO: rounding*/ |
||
221 | return 0; |
||
222 | } |
||
223 | |||
224 | frac = a.parts.fraction; |
||
225 | |||
226 | frac |= FLOAT64_HIDDEN_BIT_MASK; |
||
227 | /* shift fraction to left so hidden bit will be the most significant bit */ |
||
228 | frac <<= 64 - FLOAT64_FRACTION_SIZE - 1; |
||
857 | cejka | 229 | |
865 | cejka | 230 | frac >>= 64 - (a.parts.exp - FLOAT64_BIAS) - 1; |
231 | if ((a.parts.sign == 1) && (frac != 0)) { |
||
232 | frac = ~frac; |
||
233 | ++frac; |
||
234 | } |
||
235 | |||
236 | return frac; |
||
237 | } |
||
238 | |||
239 | /* Convert float to unsigned int64 |
||
240 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
241 | * - now its the biggest or the smallest int |
||
242 | */ |
||
243 | __u64 float64_to_uint64(float64 a) |
||
244 | { |
||
245 | if (isFloat64NaN(a)) { |
||
246 | return MAX_UINT64; |
||
247 | } |
||
248 | |||
249 | if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) { |
||
250 | if (a.parts.sign) { |
||
251 | return MIN_UINT64; |
||
252 | } |
||
253 | return MAX_UINT64; |
||
254 | } |
||
255 | |||
256 | return _float64_to_uint64_helper(a); |
||
257 | } |
||
258 | |||
259 | /* Convert float to signed int64 |
||
260 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
261 | * - now its the biggest or the smallest int |
||
262 | */ |
||
263 | __s64 float64_to_int64(float64 a) |
||
264 | { |
||
265 | if (isFloat64NaN(a)) { |
||
266 | return MAX_INT64; |
||
267 | } |
||
268 | |||
269 | if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) { |
||
270 | if (a.parts.sign) { |
||
271 | return MIN_INT64; |
||
272 | } |
||
273 | return MAX_INT64; |
||
274 | } |
||
275 | return _float64_to_uint64_helper(a); |
||
276 | } |
||
277 | |||
278 | |||
279 | |||
280 | |||
281 | |||
282 | /** Helping procedure for converting float32 to uint64 |
||
283 | * @param a floating point number in normalized form (no NaNs or Inf are checked ) |
||
284 | * @return unsigned integer |
||
285 | */ |
||
286 | static __u64 _float32_to_uint64_helper(float32 a) |
||
287 | { |
||
288 | __u64 frac; |
||
289 | |||
290 | if (a.parts.exp < FLOAT32_BIAS) { |
||
291 | /*TODO: rounding*/ |
||
292 | return 0; |
||
293 | } |
||
294 | |||
295 | frac = a.parts.fraction; |
||
296 | |||
297 | frac |= FLOAT32_HIDDEN_BIT_MASK; |
||
298 | /* shift fraction to left so hidden bit will be the most significant bit */ |
||
299 | frac <<= 64 - FLOAT32_FRACTION_SIZE - 1; |
||
300 | |||
301 | frac >>= 64 - (a.parts.exp - FLOAT32_BIAS) - 1; |
||
302 | if ((a.parts.sign == 1) && (frac != 0)) { |
||
303 | frac = ~frac; |
||
304 | ++frac; |
||
305 | } |
||
306 | |||
307 | return frac; |
||
308 | } |
||
309 | |||
310 | /* Convert float to unsigned int64 |
||
311 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
312 | * - now its the biggest or the smallest int |
||
313 | */ |
||
314 | __u64 float32_to_uint64(float32 a) |
||
315 | { |
||
316 | if (isFloat32NaN(a)) { |
||
317 | return MAX_UINT64; |
||
318 | } |
||
319 | |||
320 | if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) { |
||
321 | if (a.parts.sign) { |
||
322 | return MIN_UINT64; |
||
323 | } |
||
324 | return MAX_UINT64; |
||
325 | } |
||
326 | |||
327 | return _float32_to_uint64_helper(a); |
||
328 | } |
||
329 | |||
330 | /* Convert float to signed int64 |
||
331 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
332 | * - now its the biggest or the smallest int |
||
333 | */ |
||
334 | __s64 float32_to_int64(float32 a) |
||
335 | { |
||
336 | if (isFloat32NaN(a)) { |
||
337 | return MAX_INT64; |
||
338 | } |
||
339 | |||
340 | if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) { |
||
341 | if (a.parts.sign) { |
||
342 | return (MIN_INT64); |
||
343 | } |
||
344 | return MAX_INT64; |
||
345 | } |
||
346 | return _float32_to_uint64_helper(a); |
||
347 | } |
||
348 | |||
349 | |||
350 | /* Convert float64 to unsigned int32 |
||
351 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
352 | * - now its the biggest or the smallest int |
||
353 | */ |
||
354 | __u32 float64_to_uint32(float64 a) |
||
355 | { |
||
356 | if (isFloat64NaN(a)) { |
||
357 | return MAX_UINT32; |
||
358 | } |
||
359 | |||
360 | if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) { |
||
361 | if (a.parts.sign) { |
||
362 | return MIN_UINT32; |
||
363 | } |
||
364 | return MAX_UINT32; |
||
365 | } |
||
366 | |||
367 | return (__u32)_float64_to_uint64_helper(a); |
||
368 | } |
||
369 | |||
370 | /* Convert float64 to signed int32 |
||
371 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
372 | * - now its the biggest or the smallest int |
||
373 | */ |
||
374 | __s32 float64_to_int32(float64 a) |
||
375 | { |
||
376 | if (isFloat64NaN(a)) { |
||
377 | return MAX_INT32; |
||
378 | } |
||
379 | |||
380 | if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) { |
||
381 | if (a.parts.sign) { |
||
382 | return MIN_INT32; |
||
383 | } |
||
384 | return MAX_INT32; |
||
385 | } |
||
386 | return (__s32)_float64_to_uint64_helper(a); |
||
387 | } |
||
388 | |||
874 | cejka | 389 | /** Convert unsigned integer to float32 |
390 | * |
||
391 | * |
||
392 | */ |
||
393 | float32 uint32_to_float32(__u32 i) |
||
394 | { |
||
395 | int counter; |
||
396 | __s32 exp; |
||
397 | float32 result; |
||
398 | |||
399 | result.parts.sign = 0; |
||
400 | result.parts.fraction = 0; |
||
865 | cejka | 401 | |
874 | cejka | 402 | counter = countZeroes32(i); |
403 | |||
404 | exp = FLOAT32_BIAS + 32 - counter - 1; |
||
405 | |||
406 | if (counter == 32) { |
||
407 | result.binary = 0; |
||
408 | return result; |
||
409 | } |
||
410 | |||
411 | if (counter > 0) { |
||
412 | i <<= counter - 1; |
||
413 | } else { |
||
414 | i >>= 1; |
||
415 | } |
||
416 | |||
417 | roundFloat32(&exp, &i); |
||
418 | |||
419 | result.parts.fraction = i >> 7; |
||
420 | result.parts.exp = exp; |
||
421 | |||
422 | return result; |
||
423 | } |
||
424 | |||
425 | float32 int32_to_float32(__s32 i) |
||
426 | { |
||
427 | float32 result; |
||
428 | |||
429 | if (i < 0) { |
||
430 | result = uint32_to_float32((__u32)(-i)); |
||
431 | } else { |
||
432 | result = uint32_to_float32((__u32)i); |
||
433 | } |
||
434 | |||
435 | result.parts.sign = i < 0; |
||
436 | |||
437 | return result; |
||
438 | } |
||
439 | |||
440 | |||
441 | float32 uint64_to_float32(__u64 i) |
||
442 | { |
||
875 | cejka | 443 | int counter; |
444 | __s32 exp; |
||
445 | float32 result; |
||
446 | |||
447 | result.parts.sign = 0; |
||
448 | result.parts.fraction = 0; |
||
449 | |||
450 | counter = countZeroes64(i); |
||
451 | |||
452 | exp = FLOAT32_BIAS + 64 - counter - 1; |
||
453 | |||
454 | if (counter == 64) { |
||
455 | result.binary = 0; |
||
456 | return result; |
||
457 | } |
||
458 | |||
459 | /* Shift all to the first 31 bits (31. will be hidden 1)*/ |
||
460 | if (counter > 33) { |
||
461 | i <<= counter - 1 - 32; |
||
462 | } else { |
||
463 | i >>= 1 + 32 - counter; |
||
464 | } |
||
465 | |||
466 | roundFloat32(&exp, &i); |
||
467 | |||
468 | result.parts.fraction = i >> 7; |
||
469 | result.parts.exp = exp; |
||
470 | return result; |
||
874 | cejka | 471 | } |
472 | |||
473 | float32 int64_to_float32(__s64 i) |
||
474 | { |
||
475 | float32 result; |
||
476 | |||
477 | if (i < 0) { |
||
478 | result = uint64_to_float32((__u64)(-i)); |
||
479 | } else { |
||
480 | result = uint64_to_float32((__u64)i); |
||
481 | } |
||
482 | |||
483 | result.parts.sign = i < 0; |
||
484 | |||
485 | return result; |
||
486 | } |
||
876 | cejka | 487 | |
488 | /** Convert unsigned integer to float64 |
||
489 | * |
||
490 | * |
||
491 | */ |
||
492 | float64 uint32_to_float64(__u32 i) |
||
493 | { |
||
494 | int counter; |
||
495 | __s32 exp; |
||
496 | float64 result; |
||
497 | __u64 frac; |
||
498 | |||
499 | result.parts.sign = 0; |
||
500 | result.parts.fraction = 0; |
||
501 | |||
502 | counter = countZeroes32(i); |
||
503 | |||
504 | exp = FLOAT64_BIAS + 32 - counter - 1; |
||
505 | |||
506 | if (counter == 32) { |
||
507 | result.binary = 0; |
||
508 | return result; |
||
509 | } |
||
510 | |||
511 | frac = i; |
||
512 | frac <<= counter + 32 - 1; |
||
513 | |||
514 | roundFloat64(&exp, &frac); |
||
515 | |||
516 | result.parts.fraction = frac >> 10; |
||
517 | result.parts.exp = exp; |
||
518 | |||
519 | return result; |
||
520 | } |
||
521 | |||
522 | float64 int32_to_float64(__s32 i) |
||
523 | { |
||
524 | float64 result; |
||
525 | |||
526 | if (i < 0) { |
||
527 | result = uint32_to_float64((__u32)(-i)); |
||
528 | } else { |
||
529 | result = uint32_to_float64((__u32)i); |
||
530 | } |
||
531 | |||
532 | result.parts.sign = i < 0; |
||
533 | |||
534 | return result; |
||
535 | } |
||
536 | |||
537 | |||
538 | float64 uint64_to_float64(__u64 i) |
||
539 | { |
||
540 | int counter; |
||
541 | __s32 exp; |
||
542 | float64 result; |
||
543 | |||
544 | result.parts.sign = 0; |
||
545 | result.parts.fraction = 0; |
||
546 | |||
547 | counter = countZeroes64(i); |
||
548 | |||
549 | exp = FLOAT64_BIAS + 64 - counter - 1; |
||
550 | |||
551 | if (counter == 64) { |
||
552 | result.binary = 0; |
||
553 | return result; |
||
554 | } |
||
555 | |||
556 | if (counter > 0) { |
||
557 | i <<= counter - 1; |
||
558 | } else { |
||
559 | i >>= 1; |
||
560 | } |
||
561 | |||
562 | roundFloat64(&exp, &i); |
||
563 | |||
564 | result.parts.fraction = i >> 10; |
||
565 | result.parts.exp = exp; |
||
566 | return result; |
||
567 | } |
||
568 | |||
569 | float64 int64_to_float64(__s64 i) |
||
570 | { |
||
571 | float64 result; |
||
572 | |||
573 | if (i < 0) { |
||
574 | result = uint64_to_float64((__u64)(-i)); |
||
575 | } else { |
||
576 | result = uint64_to_float64((__u64)i); |
||
577 | } |
||
578 | |||
579 | result.parts.sign = i < 0; |
||
580 | |||
581 | return result; |
||
582 | } |
||
583 | |||
584 |