Subversion Repositories HelenOS

Rev

Rev 2030 | Rev 2067 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericproc
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Scheduler and load balancing.
36
 *
1264 jermar 37
 * This file contains the scheduler and kcpulb kernel thread which
1248 jermar 38
 * performs load-balancing of per-CPU run queues.
39
 */
40
 
1 jermar 41
#include <proc/scheduler.h>
42
#include <proc/thread.h>
43
#include <proc/task.h>
378 jermar 44
#include <mm/frame.h>
45
#include <mm/page.h>
703 jermar 46
#include <mm/as.h>
1571 jermar 47
#include <time/delay.h>
378 jermar 48
#include <arch/asm.h>
49
#include <arch/faddr.h>
2030 decky 50
#include <arch/cycle.h>
1104 jermar 51
#include <atomic.h>
378 jermar 52
#include <synch/spinlock.h>
1 jermar 53
#include <config.h>
54
#include <context.h>
55
#include <func.h>
56
#include <arch.h>
788 jermar 57
#include <adt/list.h>
68 decky 58
#include <panic.h>
1 jermar 59
#include <typedefs.h>
378 jermar 60
#include <cpu.h>
195 vana 61
#include <print.h>
227 jermar 62
#include <debug.h>
1 jermar 63
 
1187 jermar 64
static void before_task_runs(void);
65
static void before_thread_runs(void);
66
static void after_thread_ran(void);
898 jermar 67
static void scheduler_separated_stack(void);
195 vana 68
 
898 jermar 69
atomic_t nrdy;	/**< Number of ready threads in the system. */
70
 
1187 jermar 71
/** Carry out actions before new task runs. */
72
void before_task_runs(void)
73
{
74
	before_task_runs_arch();
75
}
76
 
897 jermar 77
/** Take actions before new thread runs.
107 decky 78
 *
118 jermar 79
 * Perform actions that need to be
80
 * taken before the newly selected
81
 * tread is passed control.
107 decky 82
 *
827 palkovsky 83
 * THREAD->lock is locked on entry
84
 *
107 decky 85
 */
52 vana 86
void before_thread_runs(void)
87
{
309 palkovsky 88
	before_thread_runs_arch();
906 palkovsky 89
#ifdef CONFIG_FPU_LAZY
1882 jermar 90
	if(THREAD == CPU->fpu_owner) 
309 palkovsky 91
		fpu_enable();
92
	else
93
		fpu_disable(); 
906 palkovsky 94
#else
309 palkovsky 95
	fpu_enable();
96
	if (THREAD->fpu_context_exists)
906 palkovsky 97
		fpu_context_restore(THREAD->saved_fpu_context);
309 palkovsky 98
	else {
906 palkovsky 99
		fpu_init();
1882 jermar 100
		THREAD->fpu_context_exists = 1;
309 palkovsky 101
	}
906 palkovsky 102
#endif
52 vana 103
}
104
 
898 jermar 105
/** Take actions after THREAD had run.
897 jermar 106
 *
107
 * Perform actions that need to be
108
 * taken after the running thread
898 jermar 109
 * had been preempted by the scheduler.
897 jermar 110
 *
111
 * THREAD->lock is locked on entry
112
 *
113
 */
114
void after_thread_ran(void)
115
{
116
	after_thread_ran_arch();
117
}
118
 
458 decky 119
#ifdef CONFIG_FPU_LAZY
309 palkovsky 120
void scheduler_fpu_lazy_request(void)
121
{
907 palkovsky 122
restart:
309 palkovsky 123
	fpu_enable();
827 palkovsky 124
	spinlock_lock(&CPU->lock);
125
 
126
	/* Save old context */
309 palkovsky 127
	if (CPU->fpu_owner != NULL) {  
827 palkovsky 128
		spinlock_lock(&CPU->fpu_owner->lock);
906 palkovsky 129
		fpu_context_save(CPU->fpu_owner->saved_fpu_context);
309 palkovsky 130
		/* don't prevent migration */
1882 jermar 131
		CPU->fpu_owner->fpu_context_engaged = 0;
827 palkovsky 132
		spinlock_unlock(&CPU->fpu_owner->lock);
907 palkovsky 133
		CPU->fpu_owner = NULL;
309 palkovsky 134
	}
827 palkovsky 135
 
136
	spinlock_lock(&THREAD->lock);
898 jermar 137
	if (THREAD->fpu_context_exists) {
906 palkovsky 138
		fpu_context_restore(THREAD->saved_fpu_context);
898 jermar 139
	} else {
906 palkovsky 140
		/* Allocate FPU context */
141
		if (!THREAD->saved_fpu_context) {
142
			/* Might sleep */
143
			spinlock_unlock(&THREAD->lock);
907 palkovsky 144
			spinlock_unlock(&CPU->lock);
1854 jermar 145
			THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0);
907 palkovsky 146
			/* We may have switched CPUs during slab_alloc */
147
			goto restart; 
906 palkovsky 148
		}
149
		fpu_init();
1882 jermar 150
		THREAD->fpu_context_exists = 1;
309 palkovsky 151
	}
1882 jermar 152
	CPU->fpu_owner = THREAD;
309 palkovsky 153
	THREAD->fpu_context_engaged = 1;
898 jermar 154
	spinlock_unlock(&THREAD->lock);
827 palkovsky 155
 
156
	spinlock_unlock(&CPU->lock);
309 palkovsky 157
}
158
#endif
52 vana 159
 
107 decky 160
/** Initialize scheduler
161
 *
162
 * Initialize kernel scheduler.
163
 *
164
 */
1 jermar 165
void scheduler_init(void)
166
{
167
}
168
 
107 decky 169
/** Get thread to be scheduled
170
 *
171
 * Get the optimal thread to be scheduled
109 jermar 172
 * according to thread accounting and scheduler
107 decky 173
 * policy.
174
 *
175
 * @return Thread to be scheduled.
176
 *
177
 */
483 jermar 178
static thread_t *find_best_thread(void)
1 jermar 179
{
180
	thread_t *t;
181
	runq_t *r;
783 palkovsky 182
	int i;
1 jermar 183
 
227 jermar 184
	ASSERT(CPU != NULL);
185
 
1 jermar 186
loop:
413 jermar 187
	interrupts_enable();
1 jermar 188
 
783 palkovsky 189
	if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 190
		/*
191
		 * For there was nothing to run, the CPU goes to sleep
192
		 * until a hardware interrupt or an IPI comes.
193
		 * This improves energy saving and hyperthreading.
194
		 */
785 jermar 195
 
196
		/*
197
		 * An interrupt might occur right now and wake up a thread.
198
		 * In such case, the CPU will continue to go to sleep
199
		 * even though there is a runnable thread.
200
		 */
201
 
1 jermar 202
		 cpu_sleep();
203
		 goto loop;
204
	}
205
 
413 jermar 206
	interrupts_disable();
114 jermar 207
 
898 jermar 208
	for (i = 0; i<RQ_COUNT; i++) {
15 jermar 209
		r = &CPU->rq[i];
1 jermar 210
		spinlock_lock(&r->lock);
211
		if (r->n == 0) {
212
			/*
213
			 * If this queue is empty, try a lower-priority queue.
214
			 */
215
			spinlock_unlock(&r->lock);
216
			continue;
217
		}
213 jermar 218
 
783 palkovsky 219
		atomic_dec(&CPU->nrdy);
475 jermar 220
		atomic_dec(&nrdy);
1 jermar 221
		r->n--;
222
 
223
		/*
224
		 * Take the first thread from the queue.
225
		 */
226
		t = list_get_instance(r->rq_head.next, thread_t, rq_link);
227
		list_remove(&t->rq_link);
228
 
229
		spinlock_unlock(&r->lock);
230
 
231
		spinlock_lock(&t->lock);
15 jermar 232
		t->cpu = CPU;
1 jermar 233
 
234
		t->ticks = us2ticks((i+1)*10000);
898 jermar 235
		t->priority = i;	/* correct rq index */
1 jermar 236
 
237
		/*
1854 jermar 238
		 * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
239
		 * when load balancing needs emerge.
1 jermar 240
		 */
1854 jermar 241
		t->flags &= ~THREAD_FLAG_STOLEN;
1 jermar 242
		spinlock_unlock(&t->lock);
243
 
244
		return t;
245
	}
246
	goto loop;
247
 
248
}
249
 
107 decky 250
/** Prevent rq starvation
251
 *
252
 * Prevent low priority threads from starving in rq's.
253
 *
254
 * When the function decides to relink rq's, it reconnects
255
 * respective pointers so that in result threads with 'pri'
1708 jermar 256
 * greater or equal start are moved to a higher-priority queue.
107 decky 257
 *
258
 * @param start Threshold priority.
259
 *
1 jermar 260
 */
452 decky 261
static void relink_rq(int start)
1 jermar 262
{
263
	link_t head;
264
	runq_t *r;
265
	int i, n;
266
 
267
	list_initialize(&head);
15 jermar 268
	spinlock_lock(&CPU->lock);
269
	if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 270
		for (i = start; i<RQ_COUNT-1; i++) {
271
			/* remember and empty rq[i + 1] */
15 jermar 272
			r = &CPU->rq[i + 1];
1 jermar 273
			spinlock_lock(&r->lock);
274
			list_concat(&head, &r->rq_head);
275
			n = r->n;
276
			r->n = 0;
277
			spinlock_unlock(&r->lock);
278
 
279
			/* append rq[i + 1] to rq[i] */
15 jermar 280
			r = &CPU->rq[i];
1 jermar 281
			spinlock_lock(&r->lock);
282
			list_concat(&r->rq_head, &head);
283
			r->n += n;
284
			spinlock_unlock(&r->lock);
285
		}
15 jermar 286
		CPU->needs_relink = 0;
1 jermar 287
	}
784 palkovsky 288
	spinlock_unlock(&CPU->lock);
1 jermar 289
 
290
}
291
 
898 jermar 292
/** The scheduler
293
 *
294
 * The thread scheduling procedure.
295
 * Passes control directly to
296
 * scheduler_separated_stack().
297
 *
298
 */
299
void scheduler(void)
300
{
301
	volatile ipl_t ipl;
107 decky 302
 
898 jermar 303
	ASSERT(CPU != NULL);
304
 
305
	ipl = interrupts_disable();
306
 
307
	if (atomic_get(&haltstate))
308
		halt();
1007 decky 309
 
898 jermar 310
	if (THREAD) {
311
		spinlock_lock(&THREAD->lock);
2030 decky 312
 
313
		/* Update thread accounting */
314
		THREAD->cycles += get_cycle() - THREAD->last_cycle;
315
 
906 palkovsky 316
#ifndef CONFIG_FPU_LAZY
317
		fpu_context_save(THREAD->saved_fpu_context);
318
#endif
898 jermar 319
		if (!context_save(&THREAD->saved_context)) {
320
			/*
321
			 * This is the place where threads leave scheduler();
322
			 */
2030 decky 323
 
324
			/* Save current CPU cycle */
325
			THREAD->last_cycle = get_cycle();
326
 
898 jermar 327
			spinlock_unlock(&THREAD->lock);
328
			interrupts_restore(THREAD->saved_context.ipl);
1007 decky 329
 
898 jermar 330
			return;
331
		}
332
 
333
		/*
334
		 * Interrupt priority level of preempted thread is recorded here
335
		 * to facilitate scheduler() invocations from interrupts_disable()'d
336
		 * code (e.g. waitq_sleep_timeout()). 
337
		 */
338
		THREAD->saved_context.ipl = ipl;
339
	}
340
 
341
	/*
342
	 * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
343
	 * and preemption counter. At this point THE could be coming either
344
	 * from THREAD's or CPU's stack.
345
	 */
346
	the_copy(THE, (the_t *) CPU->stack);
347
 
348
	/*
349
	 * We may not keep the old stack.
350
	 * Reason: If we kept the old stack and got blocked, for instance, in
351
	 * find_best_thread(), the old thread could get rescheduled by another
352
	 * CPU and overwrite the part of its own stack that was also used by
353
	 * the scheduler on this CPU.
354
	 *
355
	 * Moreover, we have to bypass the compiler-generated POP sequence
356
	 * which is fooled by SP being set to the very top of the stack.
357
	 * Therefore the scheduler() function continues in
358
	 * scheduler_separated_stack().
359
	 */
360
	context_save(&CPU->saved_context);
1854 jermar 361
	context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
362
		(uintptr_t) CPU->stack, CPU_STACK_SIZE);
898 jermar 363
	context_restore(&CPU->saved_context);
364
	/* not reached */
365
}
366
 
107 decky 367
/** Scheduler stack switch wrapper
368
 *
369
 * Second part of the scheduler() function
370
 * using new stack. Handling the actual context
371
 * switch to a new thread.
372
 *
787 palkovsky 373
 * Assume THREAD->lock is held.
107 decky 374
 */
898 jermar 375
void scheduler_separated_stack(void)
1 jermar 376
{
377
	int priority;
1007 decky 378
 
227 jermar 379
	ASSERT(CPU != NULL);
1007 decky 380
 
15 jermar 381
	if (THREAD) {
898 jermar 382
		/* must be run after the switch to scheduler stack */
897 jermar 383
		after_thread_ran();
384
 
15 jermar 385
		switch (THREAD->state) {
1888 jermar 386
		case Running:
125 jermar 387
			spinlock_unlock(&THREAD->lock);
388
			thread_ready(THREAD);
389
			break;
1 jermar 390
 
1888 jermar 391
		case Exiting:
1571 jermar 392
repeat:
2040 decky 393
			if (THREAD->detached) {
1571 jermar 394
				thread_destroy(THREAD);
395
			} else {
396
				/*
397
				 * The thread structure is kept allocated until somebody
398
				 * calls thread_detach() on it.
399
				 */
400
				if (!spinlock_trylock(&THREAD->join_wq.lock)) {
401
					/*
402
					 * Avoid deadlock.
403
					 */
404
					spinlock_unlock(&THREAD->lock);
405
					delay(10);
406
					spinlock_lock(&THREAD->lock);
407
					goto repeat;
408
				}
409
				_waitq_wakeup_unsafe(&THREAD->join_wq, false);
410
				spinlock_unlock(&THREAD->join_wq.lock);
411
 
412
				THREAD->state = Undead;
413
				spinlock_unlock(&THREAD->lock);
414
			}
125 jermar 415
			break;
787 palkovsky 416
 
1888 jermar 417
		case Sleeping:
125 jermar 418
			/*
419
			 * Prefer the thread after it's woken up.
420
			 */
413 jermar 421
			THREAD->priority = -1;
1 jermar 422
 
125 jermar 423
			/*
424
			 * We need to release wq->lock which we locked in waitq_sleep().
425
			 * Address of wq->lock is kept in THREAD->sleep_queue.
426
			 */
427
			spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 428
 
125 jermar 429
			/*
430
			 * Check for possible requests for out-of-context invocation.
431
			 */
432
			if (THREAD->call_me) {
433
				THREAD->call_me(THREAD->call_me_with);
434
				THREAD->call_me = NULL;
435
				THREAD->call_me_with = NULL;
436
			}
1 jermar 437
 
125 jermar 438
			spinlock_unlock(&THREAD->lock);
1 jermar 439
 
125 jermar 440
			break;
441
 
1888 jermar 442
		default:
125 jermar 443
			/*
444
			 * Entering state is unexpected.
445
			 */
446
			panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
447
			break;
1 jermar 448
		}
897 jermar 449
 
15 jermar 450
		THREAD = NULL;
1 jermar 451
	}
198 jermar 452
 
15 jermar 453
	THREAD = find_best_thread();
1 jermar 454
 
15 jermar 455
	spinlock_lock(&THREAD->lock);
413 jermar 456
	priority = THREAD->priority;
15 jermar 457
	spinlock_unlock(&THREAD->lock);	
192 jermar 458
 
1 jermar 459
	relink_rq(priority);		
460
 
461
	/*
462
	 * If both the old and the new task are the same, lots of work is avoided.
463
	 */
15 jermar 464
	if (TASK != THREAD->task) {
703 jermar 465
		as_t *as1 = NULL;
466
		as_t *as2;
1 jermar 467
 
15 jermar 468
		if (TASK) {
469
			spinlock_lock(&TASK->lock);
703 jermar 470
			as1 = TASK->as;
15 jermar 471
			spinlock_unlock(&TASK->lock);
1 jermar 472
		}
473
 
15 jermar 474
		spinlock_lock(&THREAD->task->lock);
703 jermar 475
		as2 = THREAD->task->as;
15 jermar 476
		spinlock_unlock(&THREAD->task->lock);
1 jermar 477
 
478
		/*
703 jermar 479
		 * Note that it is possible for two tasks to share one address space.
1 jermar 480
		 */
703 jermar 481
		if (as1 != as2) {
1 jermar 482
			/*
703 jermar 483
			 * Both tasks and address spaces are different.
1 jermar 484
			 * Replace the old one with the new one.
485
			 */
823 jermar 486
			as_switch(as1, as2);
1 jermar 487
		}
906 palkovsky 488
		TASK = THREAD->task;
1187 jermar 489
		before_task_runs();
1 jermar 490
	}
491
 
1380 jermar 492
	spinlock_lock(&THREAD->lock);	
15 jermar 493
	THREAD->state = Running;
1 jermar 494
 
906 palkovsky 495
#ifdef SCHEDULER_VERBOSE
1854 jermar 496
	printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n",
497
		CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
906 palkovsky 498
#endif	
1 jermar 499
 
213 jermar 500
	/*
897 jermar 501
	 * Some architectures provide late kernel PA2KA(identity)
502
	 * mapping in a page fault handler. However, the page fault
503
	 * handler uses the kernel stack of the running thread and
504
	 * therefore cannot be used to map it. The kernel stack, if
505
	 * necessary, is to be mapped in before_thread_runs(). This
506
	 * function must be executed before the switch to the new stack.
507
	 */
508
	before_thread_runs();
509
 
510
	/*
213 jermar 511
	 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
512
	 */
184 jermar 513
	the_copy(THE, (the_t *) THREAD->kstack);
514
 
15 jermar 515
	context_restore(&THREAD->saved_context);
1 jermar 516
	/* not reached */
517
}
518
 
458 decky 519
#ifdef CONFIG_SMP
107 decky 520
/** Load balancing thread
521
 *
522
 * SMP load balancing thread, supervising thread supplies
523
 * for the CPU it's wired to.
524
 *
525
 * @param arg Generic thread argument (unused).
526
 *
1 jermar 527
 */
528
void kcpulb(void *arg)
529
{
530
	thread_t *t;
783 palkovsky 531
	int count, average, i, j, k = 0;
413 jermar 532
	ipl_t ipl;
1 jermar 533
 
1576 jermar 534
	/*
535
	 * Detach kcpulb as nobody will call thread_join_timeout() on it.
536
	 */
537
	thread_detach(THREAD);
538
 
1 jermar 539
loop:
540
	/*
779 jermar 541
	 * Work in 1s intervals.
1 jermar 542
	 */
779 jermar 543
	thread_sleep(1);
1 jermar 544
 
545
not_satisfied:
546
	/*
547
	 * Calculate the number of threads that will be migrated/stolen from
548
	 * other CPU's. Note that situation can have changed between two
549
	 * passes. Each time get the most up to date counts.
550
	 */
784 palkovsky 551
	average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 552
	count = average - atomic_get(&CPU->nrdy);
1 jermar 553
 
784 palkovsky 554
	if (count <= 0)
1 jermar 555
		goto satisfied;
556
 
557
	/*
558
	 * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
559
	 */
560
	for (j=RQ_COUNT-1; j >= 0; j--) {
561
		for (i=0; i < config.cpu_active; i++) {
562
			link_t *l;
563
			runq_t *r;
564
			cpu_t *cpu;
565
 
566
			cpu = &cpus[(i + k) % config.cpu_active];
567
 
568
			/*
569
			 * Not interested in ourselves.
1854 jermar 570
			 * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED.
1 jermar 571
			 */
15 jermar 572
			if (CPU == cpu)
783 palkovsky 573
				continue;
574
			if (atomic_get(&cpu->nrdy) <= average)
575
				continue;
1 jermar 576
 
784 palkovsky 577
			ipl = interrupts_disable();
115 jermar 578
			r = &cpu->rq[j];
1 jermar 579
			spinlock_lock(&r->lock);
580
			if (r->n == 0) {
581
				spinlock_unlock(&r->lock);
413 jermar 582
				interrupts_restore(ipl);
1 jermar 583
				continue;
584
			}
585
 
586
			t = NULL;
587
			l = r->rq_head.prev;	/* search rq from the back */
588
			while (l != &r->rq_head) {
589
				t = list_get_instance(l, thread_t, rq_link);
590
				/*
1854 jermar 591
				 * We don't want to steal CPU-wired threads neither threads already
592
				 * stolen. The latter prevents threads from migrating between CPU's
593
				 * without ever being run. We don't want to steal threads whose FPU
594
				 * context is still in CPU.
73 vana 595
				 */
1 jermar 596
				spinlock_lock(&t->lock);
1854 jermar 597
				if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) &&
598
					(!(t->fpu_context_engaged)) ) {
1 jermar 599
					/*
600
					 * Remove t from r.
601
					 */
602
					spinlock_unlock(&t->lock);
603
 
783 palkovsky 604
					atomic_dec(&cpu->nrdy);
475 jermar 605
					atomic_dec(&nrdy);
1 jermar 606
 
125 jermar 607
					r->n--;
1 jermar 608
					list_remove(&t->rq_link);
609
 
610
					break;
611
				}
612
				spinlock_unlock(&t->lock);
613
				l = l->prev;
614
				t = NULL;
615
			}
616
			spinlock_unlock(&r->lock);
617
 
618
			if (t) {
619
				/*
620
				 * Ready t on local CPU
621
				 */
622
				spinlock_lock(&t->lock);
906 palkovsky 623
#ifdef KCPULB_VERBOSE
1854 jermar 624
				printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n",
625
					CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy),
626
					atomic_get(&nrdy) / config.cpu_active);
906 palkovsky 627
#endif
1854 jermar 628
				t->flags |= THREAD_FLAG_STOLEN;
1115 jermar 629
				t->state = Entering;
1 jermar 630
				spinlock_unlock(&t->lock);
631
 
632
				thread_ready(t);
633
 
413 jermar 634
				interrupts_restore(ipl);
1 jermar 635
 
636
				if (--count == 0)
637
					goto satisfied;
638
 
639
				/*
125 jermar 640
				 * We are not satisfied yet, focus on another CPU next time.
1 jermar 641
				 */
642
				k++;
643
 
644
				continue;
645
			}
413 jermar 646
			interrupts_restore(ipl);
1 jermar 647
		}
648
	}
649
 
783 palkovsky 650
	if (atomic_get(&CPU->nrdy)) {
1 jermar 651
		/*
652
		 * Be a little bit light-weight and let migrated threads run.
653
		 */
654
		scheduler();
779 jermar 655
	} else {
1 jermar 656
		/*
657
		 * We failed to migrate a single thread.
779 jermar 658
		 * Give up this turn.
1 jermar 659
		 */
779 jermar 660
		goto loop;
1 jermar 661
	}
662
 
663
	goto not_satisfied;
125 jermar 664
 
1 jermar 665
satisfied:
666
	goto loop;
667
}
668
 
458 decky 669
#endif /* CONFIG_SMP */
775 palkovsky 670
 
671
 
672
/** Print information about threads & scheduler queues */
673
void sched_print_list(void)
674
{
675
	ipl_t ipl;
676
	int cpu,i;
677
	runq_t *r;
678
	thread_t *t;
679
	link_t *cur;
680
 
681
	/* We are going to mess with scheduler structures,
682
	 * let's not be interrupted */
683
	ipl = interrupts_disable();
684
	for (cpu=0;cpu < config.cpu_count; cpu++) {
898 jermar 685
 
775 palkovsky 686
		if (!cpus[cpu].active)
687
			continue;
898 jermar 688
 
775 palkovsky 689
		spinlock_lock(&cpus[cpu].lock);
1221 decky 690
		printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
1062 jermar 691
		       cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
775 palkovsky 692
 
693
		for (i=0; i<RQ_COUNT; i++) {
694
			r = &cpus[cpu].rq[i];
695
			spinlock_lock(&r->lock);
696
			if (!r->n) {
697
				spinlock_unlock(&r->lock);
698
				continue;
699
			}
898 jermar 700
			printf("\trq[%d]: ", i);
775 palkovsky 701
			for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
702
				t = list_get_instance(cur, thread_t, rq_link);
703
				printf("%d(%s) ", t->tid,
704
				       thread_states[t->state]);
705
			}
706
			printf("\n");
707
			spinlock_unlock(&r->lock);
708
		}
709
		spinlock_unlock(&cpus[cpu].lock);
710
	}
711
 
712
	interrupts_restore(ipl);
713
}
1702 cejka 714
 
1757 jermar 715
/** @}
1702 cejka 716
 */