Rev 1882 | Rev 2030 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1757 | jermar | 29 | /** @addtogroup genericproc |
1702 | cejka | 30 | * @{ |
31 | */ |
||
32 | |||
1248 | jermar | 33 | /** |
1702 | cejka | 34 | * @file |
1248 | jermar | 35 | * @brief Scheduler and load balancing. |
36 | * |
||
1264 | jermar | 37 | * This file contains the scheduler and kcpulb kernel thread which |
1248 | jermar | 38 | * performs load-balancing of per-CPU run queues. |
39 | */ |
||
40 | |||
1 | jermar | 41 | #include <proc/scheduler.h> |
42 | #include <proc/thread.h> |
||
43 | #include <proc/task.h> |
||
378 | jermar | 44 | #include <mm/frame.h> |
45 | #include <mm/page.h> |
||
703 | jermar | 46 | #include <mm/as.h> |
1571 | jermar | 47 | #include <time/delay.h> |
378 | jermar | 48 | #include <arch/asm.h> |
49 | #include <arch/faddr.h> |
||
1104 | jermar | 50 | #include <atomic.h> |
378 | jermar | 51 | #include <synch/spinlock.h> |
1 | jermar | 52 | #include <config.h> |
53 | #include <context.h> |
||
54 | #include <func.h> |
||
55 | #include <arch.h> |
||
788 | jermar | 56 | #include <adt/list.h> |
68 | decky | 57 | #include <panic.h> |
1 | jermar | 58 | #include <typedefs.h> |
378 | jermar | 59 | #include <cpu.h> |
195 | vana | 60 | #include <print.h> |
227 | jermar | 61 | #include <debug.h> |
1 | jermar | 62 | |
1187 | jermar | 63 | static void before_task_runs(void); |
64 | static void before_thread_runs(void); |
||
65 | static void after_thread_ran(void); |
||
898 | jermar | 66 | static void scheduler_separated_stack(void); |
195 | vana | 67 | |
898 | jermar | 68 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
69 | |||
1187 | jermar | 70 | /** Carry out actions before new task runs. */ |
71 | void before_task_runs(void) |
||
72 | { |
||
73 | before_task_runs_arch(); |
||
74 | } |
||
75 | |||
897 | jermar | 76 | /** Take actions before new thread runs. |
107 | decky | 77 | * |
118 | jermar | 78 | * Perform actions that need to be |
79 | * taken before the newly selected |
||
80 | * tread is passed control. |
||
107 | decky | 81 | * |
827 | palkovsky | 82 | * THREAD->lock is locked on entry |
83 | * |
||
107 | decky | 84 | */ |
52 | vana | 85 | void before_thread_runs(void) |
86 | { |
||
309 | palkovsky | 87 | before_thread_runs_arch(); |
906 | palkovsky | 88 | #ifdef CONFIG_FPU_LAZY |
1882 | jermar | 89 | if(THREAD == CPU->fpu_owner) |
309 | palkovsky | 90 | fpu_enable(); |
91 | else |
||
92 | fpu_disable(); |
||
906 | palkovsky | 93 | #else |
309 | palkovsky | 94 | fpu_enable(); |
95 | if (THREAD->fpu_context_exists) |
||
906 | palkovsky | 96 | fpu_context_restore(THREAD->saved_fpu_context); |
309 | palkovsky | 97 | else { |
906 | palkovsky | 98 | fpu_init(); |
1882 | jermar | 99 | THREAD->fpu_context_exists = 1; |
309 | palkovsky | 100 | } |
906 | palkovsky | 101 | #endif |
52 | vana | 102 | } |
103 | |||
898 | jermar | 104 | /** Take actions after THREAD had run. |
897 | jermar | 105 | * |
106 | * Perform actions that need to be |
||
107 | * taken after the running thread |
||
898 | jermar | 108 | * had been preempted by the scheduler. |
897 | jermar | 109 | * |
110 | * THREAD->lock is locked on entry |
||
111 | * |
||
112 | */ |
||
113 | void after_thread_ran(void) |
||
114 | { |
||
115 | after_thread_ran_arch(); |
||
116 | } |
||
117 | |||
458 | decky | 118 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 119 | void scheduler_fpu_lazy_request(void) |
120 | { |
||
907 | palkovsky | 121 | restart: |
309 | palkovsky | 122 | fpu_enable(); |
827 | palkovsky | 123 | spinlock_lock(&CPU->lock); |
124 | |||
125 | /* Save old context */ |
||
309 | palkovsky | 126 | if (CPU->fpu_owner != NULL) { |
827 | palkovsky | 127 | spinlock_lock(&CPU->fpu_owner->lock); |
906 | palkovsky | 128 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
309 | palkovsky | 129 | /* don't prevent migration */ |
1882 | jermar | 130 | CPU->fpu_owner->fpu_context_engaged = 0; |
827 | palkovsky | 131 | spinlock_unlock(&CPU->fpu_owner->lock); |
907 | palkovsky | 132 | CPU->fpu_owner = NULL; |
309 | palkovsky | 133 | } |
827 | palkovsky | 134 | |
135 | spinlock_lock(&THREAD->lock); |
||
898 | jermar | 136 | if (THREAD->fpu_context_exists) { |
906 | palkovsky | 137 | fpu_context_restore(THREAD->saved_fpu_context); |
898 | jermar | 138 | } else { |
906 | palkovsky | 139 | /* Allocate FPU context */ |
140 | if (!THREAD->saved_fpu_context) { |
||
141 | /* Might sleep */ |
||
142 | spinlock_unlock(&THREAD->lock); |
||
907 | palkovsky | 143 | spinlock_unlock(&CPU->lock); |
1854 | jermar | 144 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0); |
907 | palkovsky | 145 | /* We may have switched CPUs during slab_alloc */ |
146 | goto restart; |
||
906 | palkovsky | 147 | } |
148 | fpu_init(); |
||
1882 | jermar | 149 | THREAD->fpu_context_exists = 1; |
309 | palkovsky | 150 | } |
1882 | jermar | 151 | CPU->fpu_owner = THREAD; |
309 | palkovsky | 152 | THREAD->fpu_context_engaged = 1; |
898 | jermar | 153 | spinlock_unlock(&THREAD->lock); |
827 | palkovsky | 154 | |
155 | spinlock_unlock(&CPU->lock); |
||
309 | palkovsky | 156 | } |
157 | #endif |
||
52 | vana | 158 | |
107 | decky | 159 | /** Initialize scheduler |
160 | * |
||
161 | * Initialize kernel scheduler. |
||
162 | * |
||
163 | */ |
||
1 | jermar | 164 | void scheduler_init(void) |
165 | { |
||
166 | } |
||
167 | |||
107 | decky | 168 | /** Get thread to be scheduled |
169 | * |
||
170 | * Get the optimal thread to be scheduled |
||
109 | jermar | 171 | * according to thread accounting and scheduler |
107 | decky | 172 | * policy. |
173 | * |
||
174 | * @return Thread to be scheduled. |
||
175 | * |
||
176 | */ |
||
483 | jermar | 177 | static thread_t *find_best_thread(void) |
1 | jermar | 178 | { |
179 | thread_t *t; |
||
180 | runq_t *r; |
||
783 | palkovsky | 181 | int i; |
1 | jermar | 182 | |
227 | jermar | 183 | ASSERT(CPU != NULL); |
184 | |||
1 | jermar | 185 | loop: |
413 | jermar | 186 | interrupts_enable(); |
1 | jermar | 187 | |
783 | palkovsky | 188 | if (atomic_get(&CPU->nrdy) == 0) { |
1 | jermar | 189 | /* |
190 | * For there was nothing to run, the CPU goes to sleep |
||
191 | * until a hardware interrupt or an IPI comes. |
||
192 | * This improves energy saving and hyperthreading. |
||
193 | */ |
||
785 | jermar | 194 | |
195 | /* |
||
196 | * An interrupt might occur right now and wake up a thread. |
||
197 | * In such case, the CPU will continue to go to sleep |
||
198 | * even though there is a runnable thread. |
||
199 | */ |
||
200 | |||
1 | jermar | 201 | cpu_sleep(); |
202 | goto loop; |
||
203 | } |
||
204 | |||
413 | jermar | 205 | interrupts_disable(); |
114 | jermar | 206 | |
898 | jermar | 207 | for (i = 0; i<RQ_COUNT; i++) { |
15 | jermar | 208 | r = &CPU->rq[i]; |
1 | jermar | 209 | spinlock_lock(&r->lock); |
210 | if (r->n == 0) { |
||
211 | /* |
||
212 | * If this queue is empty, try a lower-priority queue. |
||
213 | */ |
||
214 | spinlock_unlock(&r->lock); |
||
215 | continue; |
||
216 | } |
||
213 | jermar | 217 | |
783 | palkovsky | 218 | atomic_dec(&CPU->nrdy); |
475 | jermar | 219 | atomic_dec(&nrdy); |
1 | jermar | 220 | r->n--; |
221 | |||
222 | /* |
||
223 | * Take the first thread from the queue. |
||
224 | */ |
||
225 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
226 | list_remove(&t->rq_link); |
||
227 | |||
228 | spinlock_unlock(&r->lock); |
||
229 | |||
230 | spinlock_lock(&t->lock); |
||
15 | jermar | 231 | t->cpu = CPU; |
1 | jermar | 232 | |
233 | t->ticks = us2ticks((i+1)*10000); |
||
898 | jermar | 234 | t->priority = i; /* correct rq index */ |
1 | jermar | 235 | |
236 | /* |
||
1854 | jermar | 237 | * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated |
238 | * when load balancing needs emerge. |
||
1 | jermar | 239 | */ |
1854 | jermar | 240 | t->flags &= ~THREAD_FLAG_STOLEN; |
1 | jermar | 241 | spinlock_unlock(&t->lock); |
242 | |||
243 | return t; |
||
244 | } |
||
245 | goto loop; |
||
246 | |||
247 | } |
||
248 | |||
107 | decky | 249 | /** Prevent rq starvation |
250 | * |
||
251 | * Prevent low priority threads from starving in rq's. |
||
252 | * |
||
253 | * When the function decides to relink rq's, it reconnects |
||
254 | * respective pointers so that in result threads with 'pri' |
||
1708 | jermar | 255 | * greater or equal start are moved to a higher-priority queue. |
107 | decky | 256 | * |
257 | * @param start Threshold priority. |
||
258 | * |
||
1 | jermar | 259 | */ |
452 | decky | 260 | static void relink_rq(int start) |
1 | jermar | 261 | { |
262 | link_t head; |
||
263 | runq_t *r; |
||
264 | int i, n; |
||
265 | |||
266 | list_initialize(&head); |
||
15 | jermar | 267 | spinlock_lock(&CPU->lock); |
268 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 269 | for (i = start; i<RQ_COUNT-1; i++) { |
270 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 271 | r = &CPU->rq[i + 1]; |
1 | jermar | 272 | spinlock_lock(&r->lock); |
273 | list_concat(&head, &r->rq_head); |
||
274 | n = r->n; |
||
275 | r->n = 0; |
||
276 | spinlock_unlock(&r->lock); |
||
277 | |||
278 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 279 | r = &CPU->rq[i]; |
1 | jermar | 280 | spinlock_lock(&r->lock); |
281 | list_concat(&r->rq_head, &head); |
||
282 | r->n += n; |
||
283 | spinlock_unlock(&r->lock); |
||
284 | } |
||
15 | jermar | 285 | CPU->needs_relink = 0; |
1 | jermar | 286 | } |
784 | palkovsky | 287 | spinlock_unlock(&CPU->lock); |
1 | jermar | 288 | |
289 | } |
||
290 | |||
898 | jermar | 291 | /** The scheduler |
292 | * |
||
293 | * The thread scheduling procedure. |
||
294 | * Passes control directly to |
||
295 | * scheduler_separated_stack(). |
||
296 | * |
||
297 | */ |
||
298 | void scheduler(void) |
||
299 | { |
||
300 | volatile ipl_t ipl; |
||
107 | decky | 301 | |
898 | jermar | 302 | ASSERT(CPU != NULL); |
303 | |||
304 | ipl = interrupts_disable(); |
||
305 | |||
306 | if (atomic_get(&haltstate)) |
||
307 | halt(); |
||
1007 | decky | 308 | |
898 | jermar | 309 | if (THREAD) { |
310 | spinlock_lock(&THREAD->lock); |
||
906 | palkovsky | 311 | #ifndef CONFIG_FPU_LAZY |
312 | fpu_context_save(THREAD->saved_fpu_context); |
||
313 | #endif |
||
898 | jermar | 314 | if (!context_save(&THREAD->saved_context)) { |
315 | /* |
||
316 | * This is the place where threads leave scheduler(); |
||
317 | */ |
||
318 | spinlock_unlock(&THREAD->lock); |
||
319 | interrupts_restore(THREAD->saved_context.ipl); |
||
1007 | decky | 320 | |
898 | jermar | 321 | return; |
322 | } |
||
323 | |||
324 | /* |
||
325 | * Interrupt priority level of preempted thread is recorded here |
||
326 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
327 | * code (e.g. waitq_sleep_timeout()). |
||
328 | */ |
||
329 | THREAD->saved_context.ipl = ipl; |
||
330 | } |
||
331 | |||
332 | /* |
||
333 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
334 | * and preemption counter. At this point THE could be coming either |
||
335 | * from THREAD's or CPU's stack. |
||
336 | */ |
||
337 | the_copy(THE, (the_t *) CPU->stack); |
||
338 | |||
339 | /* |
||
340 | * We may not keep the old stack. |
||
341 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
342 | * find_best_thread(), the old thread could get rescheduled by another |
||
343 | * CPU and overwrite the part of its own stack that was also used by |
||
344 | * the scheduler on this CPU. |
||
345 | * |
||
346 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
347 | * which is fooled by SP being set to the very top of the stack. |
||
348 | * Therefore the scheduler() function continues in |
||
349 | * scheduler_separated_stack(). |
||
350 | */ |
||
351 | context_save(&CPU->saved_context); |
||
1854 | jermar | 352 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), |
353 | (uintptr_t) CPU->stack, CPU_STACK_SIZE); |
||
898 | jermar | 354 | context_restore(&CPU->saved_context); |
355 | /* not reached */ |
||
356 | } |
||
357 | |||
107 | decky | 358 | /** Scheduler stack switch wrapper |
359 | * |
||
360 | * Second part of the scheduler() function |
||
361 | * using new stack. Handling the actual context |
||
362 | * switch to a new thread. |
||
363 | * |
||
787 | palkovsky | 364 | * Assume THREAD->lock is held. |
107 | decky | 365 | */ |
898 | jermar | 366 | void scheduler_separated_stack(void) |
1 | jermar | 367 | { |
368 | int priority; |
||
1007 | decky | 369 | |
227 | jermar | 370 | ASSERT(CPU != NULL); |
1007 | decky | 371 | |
15 | jermar | 372 | if (THREAD) { |
898 | jermar | 373 | /* must be run after the switch to scheduler stack */ |
897 | jermar | 374 | after_thread_ran(); |
375 | |||
15 | jermar | 376 | switch (THREAD->state) { |
1888 | jermar | 377 | case Running: |
125 | jermar | 378 | spinlock_unlock(&THREAD->lock); |
379 | thread_ready(THREAD); |
||
380 | break; |
||
1 | jermar | 381 | |
1888 | jermar | 382 | case Exiting: |
1571 | jermar | 383 | repeat: |
384 | if (THREAD->detached) { |
||
385 | thread_destroy(THREAD); |
||
386 | } else { |
||
387 | /* |
||
388 | * The thread structure is kept allocated until somebody |
||
389 | * calls thread_detach() on it. |
||
390 | */ |
||
391 | if (!spinlock_trylock(&THREAD->join_wq.lock)) { |
||
392 | /* |
||
393 | * Avoid deadlock. |
||
394 | */ |
||
395 | spinlock_unlock(&THREAD->lock); |
||
396 | delay(10); |
||
397 | spinlock_lock(&THREAD->lock); |
||
398 | goto repeat; |
||
399 | } |
||
400 | _waitq_wakeup_unsafe(&THREAD->join_wq, false); |
||
401 | spinlock_unlock(&THREAD->join_wq.lock); |
||
402 | |||
403 | THREAD->state = Undead; |
||
404 | spinlock_unlock(&THREAD->lock); |
||
405 | } |
||
125 | jermar | 406 | break; |
787 | palkovsky | 407 | |
1888 | jermar | 408 | case Sleeping: |
125 | jermar | 409 | /* |
410 | * Prefer the thread after it's woken up. |
||
411 | */ |
||
413 | jermar | 412 | THREAD->priority = -1; |
1 | jermar | 413 | |
125 | jermar | 414 | /* |
415 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
416 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
417 | */ |
||
418 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 419 | |
125 | jermar | 420 | /* |
421 | * Check for possible requests for out-of-context invocation. |
||
422 | */ |
||
423 | if (THREAD->call_me) { |
||
424 | THREAD->call_me(THREAD->call_me_with); |
||
425 | THREAD->call_me = NULL; |
||
426 | THREAD->call_me_with = NULL; |
||
427 | } |
||
1 | jermar | 428 | |
125 | jermar | 429 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 430 | |
125 | jermar | 431 | break; |
432 | |||
1888 | jermar | 433 | default: |
125 | jermar | 434 | /* |
435 | * Entering state is unexpected. |
||
436 | */ |
||
437 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
438 | break; |
||
1 | jermar | 439 | } |
897 | jermar | 440 | |
15 | jermar | 441 | THREAD = NULL; |
1 | jermar | 442 | } |
198 | jermar | 443 | |
15 | jermar | 444 | THREAD = find_best_thread(); |
1 | jermar | 445 | |
15 | jermar | 446 | spinlock_lock(&THREAD->lock); |
413 | jermar | 447 | priority = THREAD->priority; |
15 | jermar | 448 | spinlock_unlock(&THREAD->lock); |
192 | jermar | 449 | |
1 | jermar | 450 | relink_rq(priority); |
451 | |||
452 | /* |
||
453 | * If both the old and the new task are the same, lots of work is avoided. |
||
454 | */ |
||
15 | jermar | 455 | if (TASK != THREAD->task) { |
703 | jermar | 456 | as_t *as1 = NULL; |
457 | as_t *as2; |
||
1 | jermar | 458 | |
15 | jermar | 459 | if (TASK) { |
460 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 461 | as1 = TASK->as; |
15 | jermar | 462 | spinlock_unlock(&TASK->lock); |
1 | jermar | 463 | } |
464 | |||
15 | jermar | 465 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 466 | as2 = THREAD->task->as; |
15 | jermar | 467 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 468 | |
469 | /* |
||
703 | jermar | 470 | * Note that it is possible for two tasks to share one address space. |
1 | jermar | 471 | */ |
703 | jermar | 472 | if (as1 != as2) { |
1 | jermar | 473 | /* |
703 | jermar | 474 | * Both tasks and address spaces are different. |
1 | jermar | 475 | * Replace the old one with the new one. |
476 | */ |
||
823 | jermar | 477 | as_switch(as1, as2); |
1 | jermar | 478 | } |
906 | palkovsky | 479 | TASK = THREAD->task; |
1187 | jermar | 480 | before_task_runs(); |
1 | jermar | 481 | } |
482 | |||
1380 | jermar | 483 | spinlock_lock(&THREAD->lock); |
15 | jermar | 484 | THREAD->state = Running; |
1 | jermar | 485 | |
906 | palkovsky | 486 | #ifdef SCHEDULER_VERBOSE |
1854 | jermar | 487 | printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", |
488 | CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy)); |
||
906 | palkovsky | 489 | #endif |
1 | jermar | 490 | |
213 | jermar | 491 | /* |
897 | jermar | 492 | * Some architectures provide late kernel PA2KA(identity) |
493 | * mapping in a page fault handler. However, the page fault |
||
494 | * handler uses the kernel stack of the running thread and |
||
495 | * therefore cannot be used to map it. The kernel stack, if |
||
496 | * necessary, is to be mapped in before_thread_runs(). This |
||
497 | * function must be executed before the switch to the new stack. |
||
498 | */ |
||
499 | before_thread_runs(); |
||
500 | |||
501 | /* |
||
213 | jermar | 502 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
503 | */ |
||
184 | jermar | 504 | the_copy(THE, (the_t *) THREAD->kstack); |
505 | |||
15 | jermar | 506 | context_restore(&THREAD->saved_context); |
1 | jermar | 507 | /* not reached */ |
508 | } |
||
509 | |||
458 | decky | 510 | #ifdef CONFIG_SMP |
107 | decky | 511 | /** Load balancing thread |
512 | * |
||
513 | * SMP load balancing thread, supervising thread supplies |
||
514 | * for the CPU it's wired to. |
||
515 | * |
||
516 | * @param arg Generic thread argument (unused). |
||
517 | * |
||
1 | jermar | 518 | */ |
519 | void kcpulb(void *arg) |
||
520 | { |
||
521 | thread_t *t; |
||
783 | palkovsky | 522 | int count, average, i, j, k = 0; |
413 | jermar | 523 | ipl_t ipl; |
1 | jermar | 524 | |
1576 | jermar | 525 | /* |
526 | * Detach kcpulb as nobody will call thread_join_timeout() on it. |
||
527 | */ |
||
528 | thread_detach(THREAD); |
||
529 | |||
1 | jermar | 530 | loop: |
531 | /* |
||
779 | jermar | 532 | * Work in 1s intervals. |
1 | jermar | 533 | */ |
779 | jermar | 534 | thread_sleep(1); |
1 | jermar | 535 | |
536 | not_satisfied: |
||
537 | /* |
||
538 | * Calculate the number of threads that will be migrated/stolen from |
||
539 | * other CPU's. Note that situation can have changed between two |
||
540 | * passes. Each time get the most up to date counts. |
||
541 | */ |
||
784 | palkovsky | 542 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
783 | palkovsky | 543 | count = average - atomic_get(&CPU->nrdy); |
1 | jermar | 544 | |
784 | palkovsky | 545 | if (count <= 0) |
1 | jermar | 546 | goto satisfied; |
547 | |||
548 | /* |
||
549 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
550 | */ |
||
551 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
552 | for (i=0; i < config.cpu_active; i++) { |
||
553 | link_t *l; |
||
554 | runq_t *r; |
||
555 | cpu_t *cpu; |
||
556 | |||
557 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
558 | |||
559 | /* |
||
560 | * Not interested in ourselves. |
||
1854 | jermar | 561 | * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED. |
1 | jermar | 562 | */ |
15 | jermar | 563 | if (CPU == cpu) |
783 | palkovsky | 564 | continue; |
565 | if (atomic_get(&cpu->nrdy) <= average) |
||
566 | continue; |
||
1 | jermar | 567 | |
784 | palkovsky | 568 | ipl = interrupts_disable(); |
115 | jermar | 569 | r = &cpu->rq[j]; |
1 | jermar | 570 | spinlock_lock(&r->lock); |
571 | if (r->n == 0) { |
||
572 | spinlock_unlock(&r->lock); |
||
413 | jermar | 573 | interrupts_restore(ipl); |
1 | jermar | 574 | continue; |
575 | } |
||
576 | |||
577 | t = NULL; |
||
578 | l = r->rq_head.prev; /* search rq from the back */ |
||
579 | while (l != &r->rq_head) { |
||
580 | t = list_get_instance(l, thread_t, rq_link); |
||
581 | /* |
||
1854 | jermar | 582 | * We don't want to steal CPU-wired threads neither threads already |
583 | * stolen. The latter prevents threads from migrating between CPU's |
||
584 | * without ever being run. We don't want to steal threads whose FPU |
||
585 | * context is still in CPU. |
||
73 | vana | 586 | */ |
1 | jermar | 587 | spinlock_lock(&t->lock); |
1854 | jermar | 588 | if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) && |
589 | (!(t->fpu_context_engaged)) ) { |
||
1 | jermar | 590 | /* |
591 | * Remove t from r. |
||
592 | */ |
||
593 | spinlock_unlock(&t->lock); |
||
594 | |||
783 | palkovsky | 595 | atomic_dec(&cpu->nrdy); |
475 | jermar | 596 | atomic_dec(&nrdy); |
1 | jermar | 597 | |
125 | jermar | 598 | r->n--; |
1 | jermar | 599 | list_remove(&t->rq_link); |
600 | |||
601 | break; |
||
602 | } |
||
603 | spinlock_unlock(&t->lock); |
||
604 | l = l->prev; |
||
605 | t = NULL; |
||
606 | } |
||
607 | spinlock_unlock(&r->lock); |
||
608 | |||
609 | if (t) { |
||
610 | /* |
||
611 | * Ready t on local CPU |
||
612 | */ |
||
613 | spinlock_lock(&t->lock); |
||
906 | palkovsky | 614 | #ifdef KCPULB_VERBOSE |
1854 | jermar | 615 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", |
616 | CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), |
||
617 | atomic_get(&nrdy) / config.cpu_active); |
||
906 | palkovsky | 618 | #endif |
1854 | jermar | 619 | t->flags |= THREAD_FLAG_STOLEN; |
1115 | jermar | 620 | t->state = Entering; |
1 | jermar | 621 | spinlock_unlock(&t->lock); |
622 | |||
623 | thread_ready(t); |
||
624 | |||
413 | jermar | 625 | interrupts_restore(ipl); |
1 | jermar | 626 | |
627 | if (--count == 0) |
||
628 | goto satisfied; |
||
629 | |||
630 | /* |
||
125 | jermar | 631 | * We are not satisfied yet, focus on another CPU next time. |
1 | jermar | 632 | */ |
633 | k++; |
||
634 | |||
635 | continue; |
||
636 | } |
||
413 | jermar | 637 | interrupts_restore(ipl); |
1 | jermar | 638 | } |
639 | } |
||
640 | |||
783 | palkovsky | 641 | if (atomic_get(&CPU->nrdy)) { |
1 | jermar | 642 | /* |
643 | * Be a little bit light-weight and let migrated threads run. |
||
644 | */ |
||
645 | scheduler(); |
||
779 | jermar | 646 | } else { |
1 | jermar | 647 | /* |
648 | * We failed to migrate a single thread. |
||
779 | jermar | 649 | * Give up this turn. |
1 | jermar | 650 | */ |
779 | jermar | 651 | goto loop; |
1 | jermar | 652 | } |
653 | |||
654 | goto not_satisfied; |
||
125 | jermar | 655 | |
1 | jermar | 656 | satisfied: |
657 | goto loop; |
||
658 | } |
||
659 | |||
458 | decky | 660 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 661 | |
662 | |||
663 | /** Print information about threads & scheduler queues */ |
||
664 | void sched_print_list(void) |
||
665 | { |
||
666 | ipl_t ipl; |
||
667 | int cpu,i; |
||
668 | runq_t *r; |
||
669 | thread_t *t; |
||
670 | link_t *cur; |
||
671 | |||
672 | /* We are going to mess with scheduler structures, |
||
673 | * let's not be interrupted */ |
||
674 | ipl = interrupts_disable(); |
||
675 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
898 | jermar | 676 | |
775 | palkovsky | 677 | if (!cpus[cpu].active) |
678 | continue; |
||
898 | jermar | 679 | |
775 | palkovsky | 680 | spinlock_lock(&cpus[cpu].lock); |
1221 | decky | 681 | printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n", |
1062 | jermar | 682 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
775 | palkovsky | 683 | |
684 | for (i=0; i<RQ_COUNT; i++) { |
||
685 | r = &cpus[cpu].rq[i]; |
||
686 | spinlock_lock(&r->lock); |
||
687 | if (!r->n) { |
||
688 | spinlock_unlock(&r->lock); |
||
689 | continue; |
||
690 | } |
||
898 | jermar | 691 | printf("\trq[%d]: ", i); |
775 | palkovsky | 692 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
693 | t = list_get_instance(cur, thread_t, rq_link); |
||
694 | printf("%d(%s) ", t->tid, |
||
695 | thread_states[t->state]); |
||
696 | } |
||
697 | printf("\n"); |
||
698 | spinlock_unlock(&r->lock); |
||
699 | } |
||
700 | spinlock_unlock(&cpus[cpu].lock); |
||
701 | } |
||
702 | |||
703 | interrupts_restore(ipl); |
||
704 | } |
||
1702 | cejka | 705 | |
1757 | jermar | 706 | /** @} |
1702 | cejka | 707 | */ |