Subversion Repositories HelenOS

Rev

Rev 2183 | Rev 2745 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief   Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
2183 jermar 60
#include <preemption.h>
703 jermar 61
#include <synch/spinlock.h>
1380 jermar 62
#include <synch/mutex.h>
788 jermar 63
#include <adt/list.h>
1147 jermar 64
#include <adt/btree.h>
1235 jermar 65
#include <proc/task.h>
1288 jermar 66
#include <proc/thread.h>
1235 jermar 67
#include <arch/asm.h>
703 jermar 68
#include <panic.h>
69
#include <debug.h>
1235 jermar 70
#include <print.h>
703 jermar 71
#include <memstr.h>
1070 jermar 72
#include <macros.h>
703 jermar 73
#include <arch.h>
1235 jermar 74
#include <errno.h>
75
#include <config.h>
1387 jermar 76
#include <align.h>
1235 jermar 77
#include <arch/types.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
2125 decky 85
#ifndef __OBJC__
1757 jermar 86
/**
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
89
 */
756 jermar 90
as_operations_t *as_operations = NULL;
703 jermar 91
 
1890 jermar 92
/**
93
 * Slab for as_t objects.
94
 */
95
static slab_cache_t *as_slab;
2126 decky 96
#endif
1890 jermar 97
 
2087 jermar 98
/**
2170 jermar 99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
2087 jermar 104
 */
2170 jermar 105
SPINLOCK_INITIALIZE(asidlock);
823 jermar 106
 
107
/**
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
757 jermar 113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
115
 
1235 jermar 116
static int area_flags_to_page_flags(int aflags);
1780 jermar 117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
2087 jermar 118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
1409 jermar 120
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 121
 
2126 decky 122
#ifndef __OBJC__
1891 jermar 123
static int as_constructor(void *obj, int flags)
124
{
125
    as_t *as = (as_t *) obj;
126
    int rc;
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
130
 
131
    rc = as_constructor_arch(as, flags);
132
 
133
    return rc;
134
}
135
 
136
static int as_destructor(void *obj)
137
{
138
    as_t *as = (as_t *) obj;
139
 
140
    return as_destructor_arch(as);
141
}
2126 decky 142
#endif
1891 jermar 143
 
756 jermar 144
/** Initialize address space subsystem. */
145
void as_init(void)
146
{
147
    as_arch_init();
2126 decky 148
 
149
#ifndef __OBJC__
1891 jermar 150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
2087 jermar 151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
2126 decky 152
#endif
1890 jermar 153
 
789 palkovsky 154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
157
 
756 jermar 158
}
159
 
757 jermar 160
/** Create address space.
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
756 jermar 164
as_t *as_create(int flags)
703 jermar 165
{
166
    as_t *as;
167
 
2126 decky 168
#ifdef __OBJC__
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
172
    (void) as_constructor_arch(as, flags);
173
#else
1890 jermar 174
    as = (as_t *) slab_alloc(as_slab, 0);
2126 decky 175
#endif
1891 jermar 176
    (void) as_create_arch(as, 0);
177
 
1147 jermar 178
    btree_create(&as->as_area_btree);
822 palkovsky 179
 
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
182
    else
183
        as->asid = ASID_INVALID;
184
 
2183 jermar 185
    atomic_set(&as->refcount, 0);
1415 jermar 186
    as->cpu_refcount = 0;
2089 decky 187
#ifdef AS_PAGE_TABLE
2106 jermar 188
    as->genarch.page_table = page_table_create(flags);
2089 decky 189
#else
190
    page_table_create(flags);
191
#endif
703 jermar 192
 
193
    return as;
194
}
195
 
1468 jermar 196
/** Destroy adress space.
197
 *
2087 jermar 198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
2183 jermar 200
 *
201
 * We know that we don't hold any spinlock.
1468 jermar 202
 */
203
void as_destroy(as_t *as)
973 palkovsky 204
{
1468 jermar 205
    ipl_t ipl;
1594 jermar 206
    bool cond;
2183 jermar 207
    DEADLOCK_PROBE_INIT(p_asidlock);
973 palkovsky 208
 
2183 jermar 209
    ASSERT(atomic_get(&as->refcount) == 0);
1468 jermar 210
 
211
    /*
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
214
     */
2170 jermar 215
 
2183 jermar 216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
222
     */
223
    preemption_disable();
224
    ipl = interrupts_read();
225
retry:
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
1587 jermar 233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 234
        if (as != AS && as->cpu_refcount == 0)
1587 jermar 235
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 236
        asid_put(as->asid);
237
    }
2170 jermar 238
    spinlock_unlock(&asidlock);
1468 jermar 239
 
240
    /*
241
     * Destroy address space areas of the address space.
1954 jermar 242
     * The B+tree must be walked carefully because it is
1594 jermar 243
     * also being destroyed.
1468 jermar 244
     */
1594 jermar 245
    for (cond = true; cond; ) {
1468 jermar 246
        btree_node_t *node;
1594 jermar 247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
2087 jermar 249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
1594 jermar 251
 
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
254
        }
1468 jermar 255
    }
1495 jermar 256
 
1483 jermar 257
    btree_destroy(&as->as_area_btree);
2089 decky 258
#ifdef AS_PAGE_TABLE
2106 jermar 259
    page_table_destroy(as->genarch.page_table);
2089 decky 260
#else
261
    page_table_destroy(NULL);
262
#endif
1468 jermar 263
 
264
    interrupts_restore(ipl);
2126 decky 265
 
266
#ifdef __OBJC__
267
    [as free];
268
#else
1890 jermar 269
    slab_free(as_slab, as);
2126 decky 270
#endif
973 palkovsky 271
}
272
 
703 jermar 273
/** Create address space area of common attributes.
274
 *
275
 * The created address space area is added to the target address space.
276
 *
277
 * @param as Target address space.
1239 jermar 278
 * @param flags Flags of the area memory.
1048 jermar 279
 * @param size Size of area.
703 jermar 280
 * @param base Base address of area.
1239 jermar 281
 * @param attrs Attributes of the area.
1409 jermar 282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 284
 *
285
 * @return Address space area on success or NULL on failure.
286
 */
2069 jermar 287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 290
{
291
    ipl_t ipl;
292
    as_area_t *a;
293
 
294
    if (base % PAGE_SIZE)
1048 jermar 295
        return NULL;
296
 
1233 jermar 297
    if (!size)
298
        return NULL;
299
 
1048 jermar 300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
703 jermar 303
 
304
    ipl = interrupts_disable();
1380 jermar 305
    mutex_lock(&as->lock);
703 jermar 306
 
1048 jermar 307
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 308
        mutex_unlock(&as->lock);
1048 jermar 309
        interrupts_restore(ipl);
310
        return NULL;
311
    }
703 jermar 312
 
822 palkovsky 313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 314
 
1380 jermar 315
    mutex_initialize(&a->lock);
822 palkovsky 316
 
1424 jermar 317
    a->as = as;
1026 jermar 318
    a->flags = flags;
1239 jermar 319
    a->attributes = attrs;
1048 jermar 320
    a->pages = SIZE2FRAMES(size);
822 palkovsky 321
    a->base = base;
1409 jermar 322
    a->sh_info = NULL;
323
    a->backend = backend;
1424 jermar 324
    if (backend_data)
325
        a->backend_data = *backend_data;
326
    else
2087 jermar 327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328
            0);
1424 jermar 329
 
1387 jermar 330
    btree_create(&a->used_space);
822 palkovsky 331
 
1147 jermar 332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 333
 
1380 jermar 334
    mutex_unlock(&as->lock);
703 jermar 335
    interrupts_restore(ipl);
704 jermar 336
 
703 jermar 337
    return a;
338
}
339
 
1235 jermar 340
/** Find address space area and change it.
341
 *
342
 * @param as Address space.
2087 jermar 343
 * @param address Virtual address belonging to the area to be changed. Must be
344
 *     page-aligned.
1235 jermar 345
 * @param size New size of the virtual memory block starting at address.
346
 * @param flags Flags influencing the remap operation. Currently unused.
347
 *
1306 jermar 348
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 349
 */
1780 jermar 350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 351
{
1306 jermar 352
    as_area_t *area;
1235 jermar 353
    ipl_t ipl;
354
    size_t pages;
355
 
356
    ipl = interrupts_disable();
1380 jermar 357
    mutex_lock(&as->lock);
1235 jermar 358
 
359
    /*
360
     * Locate the area.
361
     */
362
    area = find_area_and_lock(as, address);
363
    if (!area) {
1380 jermar 364
        mutex_unlock(&as->lock);
1235 jermar 365
        interrupts_restore(ipl);
1306 jermar 366
        return ENOENT;
1235 jermar 367
    }
368
 
1424 jermar 369
    if (area->backend == &phys_backend) {
1235 jermar 370
        /*
371
         * Remapping of address space areas associated
372
         * with memory mapped devices is not supported.
373
         */
1380 jermar 374
        mutex_unlock(&area->lock);
375
        mutex_unlock(&as->lock);
1235 jermar 376
        interrupts_restore(ipl);
1306 jermar 377
        return ENOTSUP;
1235 jermar 378
    }
1409 jermar 379
    if (area->sh_info) {
380
        /*
381
         * Remapping of shared address space areas
382
         * is not supported.
383
         */
384
        mutex_unlock(&area->lock);
385
        mutex_unlock(&as->lock);
386
        interrupts_restore(ipl);
387
        return ENOTSUP;
388
    }
1235 jermar 389
 
390
    pages = SIZE2FRAMES((address - area->base) + size);
391
    if (!pages) {
392
        /*
393
         * Zero size address space areas are not allowed.
394
         */
1380 jermar 395
        mutex_unlock(&area->lock);
396
        mutex_unlock(&as->lock);
1235 jermar 397
        interrupts_restore(ipl);
1306 jermar 398
        return EPERM;
1235 jermar 399
    }
400
 
401
    if (pages < area->pages) {
1403 jermar 402
        bool cond;
1780 jermar 403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 404
 
405
        /*
406
         * Shrinking the area.
407
         * No need to check for overlaps.
408
         */
1403 jermar 409
 
410
        /*
1436 jermar 411
         * Start TLB shootdown sequence.
412
         */
2087 jermar 413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414
            pages * PAGE_SIZE, area->pages - pages);
1436 jermar 415
 
416
        /*
1403 jermar 417
         * Remove frames belonging to used space starting from
418
         * the highest addresses downwards until an overlap with
419
         * the resized address space area is found. Note that this
420
         * is also the right way to remove part of the used_space
421
         * B+tree leaf list.
422
         */    
423
        for (cond = true; cond;) {
424
            btree_node_t *node;
425
 
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
2087 jermar 427
            node =
428
                list_get_instance(area->used_space.leaf_head.prev,
429
                btree_node_t, leaf_link);
1403 jermar 430
            if ((cond = (bool) node->keys)) {
1780 jermar 431
                uintptr_t b = node->key[node->keys - 1];
2087 jermar 432
                count_t c =
433
                    (count_t) node->value[node->keys - 1];
1403 jermar 434
                int i = 0;
1235 jermar 435
 
2087 jermar 436
                if (overlaps(b, c * PAGE_SIZE, area->base,
2133 jermar 437
                    pages * PAGE_SIZE)) {
1403 jermar 438
 
2087 jermar 439
                    if (b + c * PAGE_SIZE <= start_free) {
1403 jermar 440
                        /*
2087 jermar 441
                         * The whole interval fits
442
                         * completely in the resized
443
                         * address space area.
1403 jermar 444
                         */
445
                        break;
446
                    }
447
 
448
                    /*
2087 jermar 449
                     * Part of the interval corresponding
450
                     * to b and c overlaps with the resized
451
                     * address space area.
1403 jermar 452
                     */
453
 
454
                    cond = false;   /* we are almost done */
455
                    i = (start_free - b) >> PAGE_WIDTH;
2087 jermar 456
                    if (!used_space_remove(area, start_free,
457
                        c - i))
458
                        panic("Could not remove used "
459
                            "space.\n");
1403 jermar 460
                } else {
461
                    /*
2087 jermar 462
                     * The interval of used space can be
463
                     * completely removed.
1403 jermar 464
                     */
465
                    if (!used_space_remove(area, b, c))
2087 jermar 466
                        panic("Could not remove used "
467
                            "space.\n");
1403 jermar 468
                }
469
 
470
                for (; i < c; i++) {
471
                    pte_t *pte;
472
 
473
                    page_table_lock(as, false);
2087 jermar 474
                    pte = page_mapping_find(as, b +
475
                        i * PAGE_SIZE);
476
                    ASSERT(pte && PTE_VALID(pte) &&
477
                        PTE_PRESENT(pte));
478
                    if (area->backend &&
479
                        area->backend->frame_free) {
1424 jermar 480
                        area->backend->frame_free(area,
2087 jermar 481
                            b + i * PAGE_SIZE,
482
                            PTE_GET_FRAME(pte));
1409 jermar 483
                    }
2087 jermar 484
                    page_mapping_remove(as, b +
485
                        i * PAGE_SIZE);
1403 jermar 486
                    page_table_unlock(as, false);
487
                }
1235 jermar 488
            }
489
        }
1436 jermar 490
 
1235 jermar 491
        /*
1436 jermar 492
         * Finish TLB shootdown sequence.
1235 jermar 493
         */
2183 jermar 494
 
2087 jermar 495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496
            area->pages - pages);
1889 jermar 497
        /*
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
499
         */
2087 jermar 500
        as_invalidate_translation_cache(as, area->base +
501
            pages * PAGE_SIZE, area->pages - pages);
2183 jermar 502
        tlb_shootdown_finalize();
503
 
1235 jermar 504
    } else {
505
        /*
506
         * Growing the area.
507
         * Check for overlaps with other address space areas.
508
         */
2087 jermar 509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510
            area)) {
1380 jermar 511
            mutex_unlock(&area->lock);
512
            mutex_unlock(&as->lock);       
1235 jermar 513
            interrupts_restore(ipl);
1306 jermar 514
            return EADDRNOTAVAIL;
1235 jermar 515
        }
516
    }
517
 
518
    area->pages = pages;
519
 
1380 jermar 520
    mutex_unlock(&area->lock);
521
    mutex_unlock(&as->lock);
1235 jermar 522
    interrupts_restore(ipl);
523
 
1306 jermar 524
    return 0;
1235 jermar 525
}
526
 
1306 jermar 527
/** Destroy address space area.
528
 *
529
 * @param as Address space.
530
 * @param address Address withing the area to be deleted.
531
 *
532
 * @return Zero on success or a value from @ref errno.h on failure.
533
 */
1780 jermar 534
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 535
{
536
    as_area_t *area;
1780 jermar 537
    uintptr_t base;
1495 jermar 538
    link_t *cur;
1306 jermar 539
    ipl_t ipl;
540
 
541
    ipl = interrupts_disable();
1380 jermar 542
    mutex_lock(&as->lock);
1306 jermar 543
 
544
    area = find_area_and_lock(as, address);
545
    if (!area) {
1380 jermar 546
        mutex_unlock(&as->lock);
1306 jermar 547
        interrupts_restore(ipl);
548
        return ENOENT;
549
    }
550
 
1403 jermar 551
    base = area->base;
552
 
1411 jermar 553
    /*
1436 jermar 554
     * Start TLB shootdown sequence.
555
     */
1889 jermar 556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 557
 
558
    /*
1411 jermar 559
     * Visit only the pages mapped by used_space B+tree.
560
     */
2087 jermar 561
    for (cur = area->used_space.leaf_head.next;
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 563
        btree_node_t *node;
1495 jermar 564
        int i;
1403 jermar 565
 
1495 jermar 566
        node = list_get_instance(cur, btree_node_t, leaf_link);
567
        for (i = 0; i < node->keys; i++) {
1780 jermar 568
            uintptr_t b = node->key[i];
1495 jermar 569
            count_t j;
1411 jermar 570
            pte_t *pte;
1403 jermar 571
 
1495 jermar 572
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 573
                page_table_lock(as, false);
2087 jermar 574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
575
                ASSERT(pte && PTE_VALID(pte) &&
576
                    PTE_PRESENT(pte));
577
                if (area->backend &&
578
                    area->backend->frame_free) {
579
                    area->backend->frame_free(area, b +
2133 jermar 580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 581
                }
2087 jermar 582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
1411 jermar 583
                page_table_unlock(as, false);
1306 jermar 584
            }
585
        }
586
    }
1403 jermar 587
 
1306 jermar 588
    /*
1436 jermar 589
     * Finish TLB shootdown sequence.
1306 jermar 590
     */
2183 jermar 591
 
1889 jermar 592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
593
    /*
2087 jermar 594
     * Invalidate potential software translation caches (e.g. TSB on
595
     * sparc64).
1889 jermar 596
     */
597
    as_invalidate_translation_cache(as, area->base, area->pages);
2183 jermar 598
    tlb_shootdown_finalize();
1889 jermar 599
 
1436 jermar 600
    btree_destroy(&area->used_space);
1306 jermar 601
 
1309 jermar 602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 603
 
604
    if (area->sh_info)
605
        sh_info_remove_reference(area->sh_info);
606
 
1380 jermar 607
    mutex_unlock(&area->lock);
1306 jermar 608
 
609
    /*
610
     * Remove the empty area from address space.
611
     */
1889 jermar 612
    btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 613
 
1309 jermar 614
    free(area);
615
 
1889 jermar 616
    mutex_unlock(&as->lock);
1306 jermar 617
    interrupts_restore(ipl);
618
    return 0;
619
}
620
 
1413 jermar 621
/** Share address space area with another or the same address space.
1235 jermar 622
 *
1424 jermar 623
 * Address space area mapping is shared with a new address space area.
624
 * If the source address space area has not been shared so far,
625
 * a new sh_info is created. The new address space area simply gets the
626
 * sh_info of the source area. The process of duplicating the
627
 * mapping is done through the backend share function.
1413 jermar 628
 *
1417 jermar 629
 * @param src_as Pointer to source address space.
1239 jermar 630
 * @param src_base Base address of the source address space area.
1417 jermar 631
 * @param acc_size Expected size of the source area.
1428 palkovsky 632
 * @param dst_as Pointer to destination address space.
1417 jermar 633
 * @param dst_base Target base address.
634
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 635
 *
2007 jermar 636
 * @return Zero on success or ENOENT if there is no such task or if there is no
637
 * such address space area, EPERM if there was a problem in accepting the area
638
 * or ENOMEM if there was a problem in allocating destination address space
639
 * area. ENOTSUP is returned if the address space area backend does not support
2141 jermar 640
 * sharing.
1235 jermar 641
 */
1780 jermar 642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 644
{
645
    ipl_t ipl;
1239 jermar 646
    int src_flags;
647
    size_t src_size;
648
    as_area_t *src_area, *dst_area;
1413 jermar 649
    share_info_t *sh_info;
1424 jermar 650
    mem_backend_t *src_backend;
651
    mem_backend_data_t src_backend_data;
1434 palkovsky 652
 
1235 jermar 653
    ipl = interrupts_disable();
1380 jermar 654
    mutex_lock(&src_as->lock);
1329 palkovsky 655
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 656
    if (!src_area) {
1238 jermar 657
        /*
658
         * Could not find the source address space area.
659
         */
1380 jermar 660
        mutex_unlock(&src_as->lock);
1238 jermar 661
        interrupts_restore(ipl);
662
        return ENOENT;
663
    }
2007 jermar 664
 
1424 jermar 665
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 666
        /*
1851 jermar 667
         * There is no backend or the backend does not
1424 jermar 668
         * know how to share the area.
1413 jermar 669
         */
670
        mutex_unlock(&src_area->lock);
671
        mutex_unlock(&src_as->lock);
672
        interrupts_restore(ipl);
673
        return ENOTSUP;
674
    }
675
 
1239 jermar 676
    src_size = src_area->pages * PAGE_SIZE;
677
    src_flags = src_area->flags;
1424 jermar 678
    src_backend = src_area->backend;
679
    src_backend_data = src_area->backend_data;
1544 palkovsky 680
 
681
    /* Share the cacheable flag from the original mapping */
682
    if (src_flags & AS_AREA_CACHEABLE)
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
684
 
2087 jermar 685
    if (src_size != acc_size ||
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 687
        mutex_unlock(&src_area->lock);
688
        mutex_unlock(&src_as->lock);
1235 jermar 689
        interrupts_restore(ipl);
690
        return EPERM;
691
    }
1413 jermar 692
 
1235 jermar 693
    /*
1413 jermar 694
     * Now we are committed to sharing the area.
1954 jermar 695
     * First, prepare the area for sharing.
1413 jermar 696
     * Then it will be safe to unlock it.
697
     */
698
    sh_info = src_area->sh_info;
699
    if (!sh_info) {
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701
        mutex_initialize(&sh_info->lock);
702
        sh_info->refcount = 2;
703
        btree_create(&sh_info->pagemap);
704
        src_area->sh_info = sh_info;
705
    } else {
706
        mutex_lock(&sh_info->lock);
707
        sh_info->refcount++;
708
        mutex_unlock(&sh_info->lock);
709
    }
710
 
1424 jermar 711
    src_area->backend->share(src_area);
1413 jermar 712
 
713
    mutex_unlock(&src_area->lock);
714
    mutex_unlock(&src_as->lock);
715
 
716
    /*
1239 jermar 717
     * Create copy of the source address space area.
718
     * The destination area is created with AS_AREA_ATTR_PARTIAL
719
     * attribute set which prevents race condition with
720
     * preliminary as_page_fault() calls.
1417 jermar 721
     * The flags of the source area are masked against dst_flags_mask
722
     * to support sharing in less privileged mode.
1235 jermar 723
     */
1461 palkovsky 724
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
2087 jermar 725
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 726
    if (!dst_area) {
1235 jermar 727
        /*
728
         * Destination address space area could not be created.
729
         */
1413 jermar 730
        sh_info_remove_reference(sh_info);
731
 
1235 jermar 732
        interrupts_restore(ipl);
733
        return ENOMEM;
734
    }
2009 jermar 735
 
1235 jermar 736
    /*
1239 jermar 737
     * Now the destination address space area has been
738
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 739
     * attribute and set the sh_info.
1239 jermar 740
     */
2009 jermar 741
    mutex_lock(&dst_as->lock); 
1380 jermar 742
    mutex_lock(&dst_area->lock);
1239 jermar 743
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 744
    dst_area->sh_info = sh_info;
1380 jermar 745
    mutex_unlock(&dst_area->lock);
2009 jermar 746
    mutex_unlock(&dst_as->lock);   
747
 
1235 jermar 748
    interrupts_restore(ipl);
749
 
750
    return 0;
751
}
752
 
1423 jermar 753
/** Check access mode for address space area.
754
 *
755
 * The address space area must be locked prior to this call.
756
 *
757
 * @param area Address space area.
758
 * @param access Access mode.
759
 *
760
 * @return False if access violates area's permissions, true otherwise.
761
 */
762
bool as_area_check_access(as_area_t *area, pf_access_t access)
763
{
764
    int flagmap[] = {
765
        [PF_ACCESS_READ] = AS_AREA_READ,
766
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
767
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
768
    };
769
 
770
    if (!(area->flags & flagmap[access]))
771
        return false;
772
 
773
    return true;
774
}
775
 
703 jermar 776
/** Handle page fault within the current address space.
777
 *
1409 jermar 778
 * This is the high-level page fault handler. It decides
779
 * whether the page fault can be resolved by any backend
780
 * and if so, it invokes the backend to resolve the page
781
 * fault.
782
 *
703 jermar 783
 * Interrupts are assumed disabled.
784
 *
785
 * @param page Faulting page.
1411 jermar 786
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 787
 * @param istate Pointer to interrupted state.
703 jermar 788
 *
1409 jermar 789
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
790
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 791
 */
1780 jermar 792
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 793
{
1044 jermar 794
    pte_t *pte;
977 jermar 795
    as_area_t *area;
703 jermar 796
 
1380 jermar 797
    if (!THREAD)
1409 jermar 798
        return AS_PF_FAULT;
1380 jermar 799
 
703 jermar 800
    ASSERT(AS);
1044 jermar 801
 
1380 jermar 802
    mutex_lock(&AS->lock);
977 jermar 803
    area = find_area_and_lock(AS, page);   
703 jermar 804
    if (!area) {
805
        /*
806
         * No area contained mapping for 'page'.
807
         * Signal page fault to low-level handler.
808
         */
1380 jermar 809
        mutex_unlock(&AS->lock);
1288 jermar 810
        goto page_fault;
703 jermar 811
    }
812
 
1239 jermar 813
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
814
        /*
815
         * The address space area is not fully initialized.
816
         * Avoid possible race by returning error.
817
         */
1380 jermar 818
        mutex_unlock(&area->lock);
819
        mutex_unlock(&AS->lock);
1288 jermar 820
        goto page_fault;       
1239 jermar 821
    }
822
 
1424 jermar 823
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 824
        /*
825
         * The address space area is not backed by any backend
826
         * or the backend cannot handle page faults.
827
         */
828
        mutex_unlock(&area->lock);
829
        mutex_unlock(&AS->lock);
830
        goto page_fault;       
831
    }
1179 jermar 832
 
1044 jermar 833
    page_table_lock(AS, false);
834
 
703 jermar 835
    /*
1044 jermar 836
     * To avoid race condition between two page faults
837
     * on the same address, we need to make sure
838
     * the mapping has not been already inserted.
839
     */
840
    if ((pte = page_mapping_find(AS, page))) {
841
        if (PTE_PRESENT(pte)) {
1423 jermar 842
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
2087 jermar 843
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
844
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1423 jermar 845
                page_table_unlock(AS, false);
846
                mutex_unlock(&area->lock);
847
                mutex_unlock(&AS->lock);
848
                return AS_PF_OK;
849
            }
1044 jermar 850
        }
851
    }
1409 jermar 852
 
1044 jermar 853
    /*
1409 jermar 854
     * Resort to the backend page fault handler.
703 jermar 855
     */
1424 jermar 856
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 857
        page_table_unlock(AS, false);
858
        mutex_unlock(&area->lock);
859
        mutex_unlock(&AS->lock);
860
        goto page_fault;
861
    }
703 jermar 862
 
1044 jermar 863
    page_table_unlock(AS, false);
1380 jermar 864
    mutex_unlock(&area->lock);
865
    mutex_unlock(&AS->lock);
1288 jermar 866
    return AS_PF_OK;
867
 
868
page_fault:
869
    if (THREAD->in_copy_from_uspace) {
870
        THREAD->in_copy_from_uspace = false;
2087 jermar 871
        istate_set_retaddr(istate,
872
            (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 873
    } else if (THREAD->in_copy_to_uspace) {
874
        THREAD->in_copy_to_uspace = false;
2087 jermar 875
        istate_set_retaddr(istate,
876
            (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 877
    } else {
878
        return AS_PF_FAULT;
879
    }
880
 
881
    return AS_PF_DEFER;
703 jermar 882
}
883
 
823 jermar 884
/** Switch address spaces.
703 jermar 885
 *
1380 jermar 886
 * Note that this function cannot sleep as it is essentially a part of
2170 jermar 887
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
888
 * thing which is forbidden in this context is locking the address space.
1380 jermar 889
 *
2183 jermar 890
 * When this function is enetered, no spinlocks may be held.
891
 *
823 jermar 892
 * @param old Old address space or NULL.
893
 * @param new New address space.
703 jermar 894
 */
2106 jermar 895
void as_switch(as_t *old_as, as_t *new_as)
703 jermar 896
{
2183 jermar 897
    DEADLOCK_PROBE_INIT(p_asidlock);
898
    preemption_disable();
899
retry:
900
    (void) interrupts_disable();
901
    if (!spinlock_trylock(&asidlock)) {
902
        /*
903
         * Avoid deadlock with TLB shootdown.
904
         * We can enable interrupts here because
905
         * preemption is disabled. We should not be
906
         * holding any other lock.
907
         */
908
        (void) interrupts_enable();
909
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
910
        goto retry;
911
    }
912
    preemption_enable();
703 jermar 913
 
914
    /*
823 jermar 915
     * First, take care of the old address space.
916
     */
2106 jermar 917
    if (old_as) {
918
        ASSERT(old_as->cpu_refcount);
919
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
823 jermar 920
            /*
921
             * The old address space is no longer active on
922
             * any processor. It can be appended to the
923
             * list of inactive address spaces with assigned
924
             * ASID.
925
             */
2141 jermar 926
            ASSERT(old_as->asid != ASID_INVALID);
927
            list_append(&old_as->inactive_as_with_asid_link,
928
                &inactive_as_with_asid_head);
823 jermar 929
        }
1890 jermar 930
 
931
        /*
932
         * Perform architecture-specific tasks when the address space
933
         * is being removed from the CPU.
934
         */
2106 jermar 935
        as_deinstall_arch(old_as);
823 jermar 936
    }
937
 
938
    /*
939
     * Second, prepare the new address space.
940
     */
2106 jermar 941
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
2170 jermar 942
        if (new_as->asid != ASID_INVALID)
2106 jermar 943
            list_remove(&new_as->inactive_as_with_asid_link);
2170 jermar 944
        else
945
            new_as->asid = asid_get();
823 jermar 946
    }
2106 jermar 947
#ifdef AS_PAGE_TABLE
948
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
949
#endif
823 jermar 950
 
951
    /*
703 jermar 952
     * Perform architecture-specific steps.
727 jermar 953
     * (e.g. write ASID to hardware register etc.)
703 jermar 954
     */
2106 jermar 955
    as_install_arch(new_as);
2170 jermar 956
 
957
    spinlock_unlock(&asidlock);
703 jermar 958
 
2106 jermar 959
    AS = new_as;
703 jermar 960
}
754 jermar 961
 
1235 jermar 962
/** Convert address space area flags to page flags.
754 jermar 963
 *
1235 jermar 964
 * @param aflags Flags of some address space area.
754 jermar 965
 *
1235 jermar 966
 * @return Flags to be passed to page_mapping_insert().
754 jermar 967
 */
1235 jermar 968
int area_flags_to_page_flags(int aflags)
754 jermar 969
{
970
    int flags;
971
 
1178 jermar 972
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 973
 
1235 jermar 974
    if (aflags & AS_AREA_READ)
1026 jermar 975
        flags |= PAGE_READ;
976
 
1235 jermar 977
    if (aflags & AS_AREA_WRITE)
1026 jermar 978
        flags |= PAGE_WRITE;
979
 
1235 jermar 980
    if (aflags & AS_AREA_EXEC)
1026 jermar 981
        flags |= PAGE_EXEC;
982
 
1424 jermar 983
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 984
        flags |= PAGE_CACHEABLE;
985
 
754 jermar 986
    return flags;
987
}
756 jermar 988
 
1235 jermar 989
/** Compute flags for virtual address translation subsytem.
990
 *
991
 * The address space area must be locked.
992
 * Interrupts must be disabled.
993
 *
994
 * @param a Address space area.
995
 *
996
 * @return Flags to be used in page_mapping_insert().
997
 */
1409 jermar 998
int as_area_get_flags(as_area_t *a)
1235 jermar 999
{
1000
    return area_flags_to_page_flags(a->flags);
1001
}
1002
 
756 jermar 1003
/** Create page table.
1004
 *
1005
 * Depending on architecture, create either address space
1006
 * private or global page table.
1007
 *
1008
 * @param flags Flags saying whether the page table is for kernel address space.
1009
 *
1010
 * @return First entry of the page table.
1011
 */
1012
pte_t *page_table_create(int flags)
1013
{
2125 decky 1014
#ifdef __OBJC__
1015
    return [as_t page_table_create: flags];
1016
#else
1017
    ASSERT(as_operations);
1018
    ASSERT(as_operations->page_table_create);
1019
 
1020
    return as_operations->page_table_create(flags);
1021
#endif
756 jermar 1022
}
977 jermar 1023
 
1468 jermar 1024
/** Destroy page table.
1025
 *
1026
 * Destroy page table in architecture specific way.
1027
 *
1028
 * @param page_table Physical address of PTL0.
1029
 */
1030
void page_table_destroy(pte_t *page_table)
1031
{
2125 decky 1032
#ifdef __OBJC__
1033
    return [as_t page_table_destroy: page_table];
1034
#else
1035
    ASSERT(as_operations);
1036
    ASSERT(as_operations->page_table_destroy);
1037
 
1038
    as_operations->page_table_destroy(page_table);
1039
#endif
1468 jermar 1040
}
1041
 
1044 jermar 1042
/** Lock page table.
1043
 *
1044
 * This function should be called before any page_mapping_insert(),
1045
 * page_mapping_remove() and page_mapping_find().
1046
 *
1047
 * Locking order is such that address space areas must be locked
1048
 * prior to this call. Address space can be locked prior to this
1049
 * call in which case the lock argument is false.
1050
 *
1051
 * @param as Address space.
1248 jermar 1052
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 1053
 */
1054
void page_table_lock(as_t *as, bool lock)
1055
{
2125 decky 1056
#ifdef __OBJC__
1057
    [as page_table_lock: lock];
1058
#else
1044 jermar 1059
    ASSERT(as_operations);
1060
    ASSERT(as_operations->page_table_lock);
2125 decky 1061
 
1044 jermar 1062
    as_operations->page_table_lock(as, lock);
2125 decky 1063
#endif
1044 jermar 1064
}
1065
 
1066
/** Unlock page table.
1067
 *
1068
 * @param as Address space.
1248 jermar 1069
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 1070
 */
1071
void page_table_unlock(as_t *as, bool unlock)
1072
{
2125 decky 1073
#ifdef __OBJC__
1074
    [as page_table_unlock: unlock];
1075
#else
1044 jermar 1076
    ASSERT(as_operations);
1077
    ASSERT(as_operations->page_table_unlock);
2125 decky 1078
 
1044 jermar 1079
    as_operations->page_table_unlock(as, unlock);
2125 decky 1080
#endif
1044 jermar 1081
}
1082
 
977 jermar 1083
 
1084
/** Find address space area and lock it.
1085
 *
1086
 * The address space must be locked and interrupts must be disabled.
1087
 *
1088
 * @param as Address space.
1089
 * @param va Virtual address.
1090
 *
2087 jermar 1091
 * @return Locked address space area containing va on success or NULL on
1092
 *     failure.
977 jermar 1093
 */
1780 jermar 1094
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1095
{
1096
    as_area_t *a;
1147 jermar 1097
    btree_node_t *leaf, *lnode;
1098
    int i;
977 jermar 1099
 
1147 jermar 1100
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1101
    if (a) {
1102
        /* va is the base address of an address space area */
1380 jermar 1103
        mutex_lock(&a->lock);
1147 jermar 1104
        return a;
1105
    }
1106
 
1107
    /*
1150 jermar 1108
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1109
     * to find out whether this is a miss or va belongs to an address
1110
     * space area found there.
1111
     */
1112
 
1113
    /* First, search the leaf node itself. */
1114
    for (i = 0; i < leaf->keys; i++) {
1115
        a = (as_area_t *) leaf->value[i];
1380 jermar 1116
        mutex_lock(&a->lock);
1147 jermar 1117
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1118
            return a;
1119
        }
1380 jermar 1120
        mutex_unlock(&a->lock);
1147 jermar 1121
    }
977 jermar 1122
 
1147 jermar 1123
    /*
1150 jermar 1124
     * Second, locate the left neighbour and test its last record.
1148 jermar 1125
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 1126
     */
2087 jermar 1127
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1128
    if (lnode) {
1147 jermar 1129
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1130
        mutex_lock(&a->lock);
1147 jermar 1131
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1132
            return a;
1147 jermar 1133
        }
1380 jermar 1134
        mutex_unlock(&a->lock);
977 jermar 1135
    }
1136
 
1137
    return NULL;
1138
}
1048 jermar 1139
 
1140
/** Check area conflicts with other areas.
1141
 *
1142
 * The address space must be locked and interrupts must be disabled.
1143
 *
1144
 * @param as Address space.
1145
 * @param va Starting virtual address of the area being tested.
1146
 * @param size Size of the area being tested.
1147
 * @param avoid_area Do not touch this area.
1148
 *
1149
 * @return True if there is no conflict, false otherwise.
1150
 */
2087 jermar 1151
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1152
              as_area_t *avoid_area)
1048 jermar 1153
{
1154
    as_area_t *a;
1147 jermar 1155
    btree_node_t *leaf, *node;
1156
    int i;
1048 jermar 1157
 
1070 jermar 1158
    /*
1159
     * We don't want any area to have conflicts with NULL page.
1160
     */
1161
    if (overlaps(va, size, NULL, PAGE_SIZE))
1162
        return false;
1163
 
1147 jermar 1164
    /*
1165
     * The leaf node is found in O(log n), where n is proportional to
1166
     * the number of address space areas belonging to as.
1167
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1168
     * record in the left neighbour, the leftmost record in the right
1169
     * neighbour and all records in the leaf node itself.
1147 jermar 1170
     */
1048 jermar 1171
 
1147 jermar 1172
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1173
        if (a != avoid_area)
1174
            return false;
1175
    }
1176
 
1177
    /* First, check the two border cases. */
1150 jermar 1178
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1179
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1180
        mutex_lock(&a->lock);
1147 jermar 1181
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1182
            mutex_unlock(&a->lock);
1147 jermar 1183
            return false;
1184
        }
1380 jermar 1185
        mutex_unlock(&a->lock);
1147 jermar 1186
    }
2087 jermar 1187
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1188
    if (node) {
1147 jermar 1189
        a = (as_area_t *) node->value[0];
1380 jermar 1190
        mutex_lock(&a->lock);
1147 jermar 1191
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1192
            mutex_unlock(&a->lock);
1147 jermar 1193
            return false;
1194
        }
1380 jermar 1195
        mutex_unlock(&a->lock);
1147 jermar 1196
    }
1197
 
1198
    /* Second, check the leaf node. */
1199
    for (i = 0; i < leaf->keys; i++) {
1200
        a = (as_area_t *) leaf->value[i];
1201
 
1048 jermar 1202
        if (a == avoid_area)
1203
            continue;
1147 jermar 1204
 
1380 jermar 1205
        mutex_lock(&a->lock);
1147 jermar 1206
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1207
            mutex_unlock(&a->lock);
1147 jermar 1208
            return false;
1209
        }
1380 jermar 1210
        mutex_unlock(&a->lock);
1048 jermar 1211
    }
1212
 
1070 jermar 1213
    /*
1214
     * So far, the area does not conflict with other areas.
1215
     * Check if it doesn't conflict with kernel address space.
1216
     */  
1217
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1218
        return !overlaps(va, size,
2087 jermar 1219
            KERNEL_ADDRESS_SPACE_START,
1220
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1070 jermar 1221
    }
1222
 
1048 jermar 1223
    return true;
1224
}
1235 jermar 1225
 
2556 jermar 1226
/** Return size of the address space area with given base.
1227
 *
1228
 * @param base      Arbitrary address insede the address space area.
1229
 *
1230
 * @return      Size of the address space area in bytes or zero if it
1231
 *          does not exist.
1232
 */
1233
size_t as_area_get_size(uintptr_t base)
1329 palkovsky 1234
{
1235
    ipl_t ipl;
1236
    as_area_t *src_area;
1237
    size_t size;
1238
 
1239
    ipl = interrupts_disable();
1240
    src_area = find_area_and_lock(AS, base);
1241
    if (src_area){
1242
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1243
        mutex_unlock(&src_area->lock);
1329 palkovsky 1244
    } else {
1245
        size = 0;
1246
    }
1247
    interrupts_restore(ipl);
1248
    return size;
1249
}
1250
 
1387 jermar 1251
/** Mark portion of address space area as used.
1252
 *
1253
 * The address space area must be already locked.
1254
 *
1255
 * @param a Address space area.
1256
 * @param page First page to be marked.
1257
 * @param count Number of page to be marked.
1258
 *
1259
 * @return 0 on failure and 1 on success.
1260
 */
1780 jermar 1261
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1262
{
1263
    btree_node_t *leaf, *node;
1264
    count_t pages;
1265
    int i;
1266
 
1267
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1268
    ASSERT(count);
1269
 
1270
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1271
    if (pages) {
1272
        /*
1273
         * We hit the beginning of some used space.
1274
         */
1275
        return 0;
1276
    }
1277
 
1437 jermar 1278
    if (!leaf->keys) {
1279
        btree_insert(&a->used_space, page, (void *) count, leaf);
1280
        return 1;
1281
    }
1282
 
1387 jermar 1283
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1284
    if (node) {
2087 jermar 1285
        uintptr_t left_pg = node->key[node->keys - 1];
1286
        uintptr_t right_pg = leaf->key[0];
1287
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1288
        count_t right_cnt = (count_t) leaf->value[0];
1387 jermar 1289
 
1290
        /*
1291
         * Examine the possibility that the interval fits
1292
         * somewhere between the rightmost interval of
1293
         * the left neigbour and the first interval of the leaf.
1294
         */
1295
 
1296
        if (page >= right_pg) {
1297
            /* Do nothing. */
2087 jermar 1298
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1299
            left_cnt * PAGE_SIZE)) {
1387 jermar 1300
            /* The interval intersects with the left interval. */
1301
            return 0;
2087 jermar 1302
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1303
            right_cnt * PAGE_SIZE)) {
1387 jermar 1304
            /* The interval intersects with the right interval. */
1305
            return 0;          
2087 jermar 1306
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1307
            (page + count * PAGE_SIZE == right_pg)) {
1308
            /*
1309
             * The interval can be added by merging the two already
1310
             * present intervals.
1311
             */
1403 jermar 1312
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1313
            btree_remove(&a->used_space, right_pg, leaf);
1314
            return 1;
2087 jermar 1315
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1316
            /*
1317
             * The interval can be added by simply growing the left
1318
             * interval.
1319
             */
1403 jermar 1320
            node->value[node->keys - 1] += count;
1387 jermar 1321
            return 1;
2087 jermar 1322
        } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1323
            /*
2087 jermar 1324
             * The interval can be addded by simply moving base of
1325
             * the right interval down and increasing its size
1326
             * accordingly.
1387 jermar 1327
             */
1403 jermar 1328
            leaf->value[0] += count;
1387 jermar 1329
            leaf->key[0] = page;
1330
            return 1;
1331
        } else {
1332
            /*
1333
             * The interval is between both neigbouring intervals,
1334
             * but cannot be merged with any of them.
1335
             */
2087 jermar 1336
            btree_insert(&a->used_space, page, (void *) count,
1337
                leaf);
1387 jermar 1338
            return 1;
1339
        }
1340
    } else if (page < leaf->key[0]) {
1780 jermar 1341
        uintptr_t right_pg = leaf->key[0];
1387 jermar 1342
        count_t right_cnt = (count_t) leaf->value[0];
1343
 
1344
        /*
2087 jermar 1345
         * Investigate the border case in which the left neighbour does
1346
         * not exist but the interval fits from the left.
1387 jermar 1347
         */
1348
 
2087 jermar 1349
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1350
            right_cnt * PAGE_SIZE)) {
1387 jermar 1351
            /* The interval intersects with the right interval. */
1352
            return 0;
2087 jermar 1353
        } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1354
            /*
2087 jermar 1355
             * The interval can be added by moving the base of the
1356
             * right interval down and increasing its size
1357
             * accordingly.
1387 jermar 1358
             */
1359
            leaf->key[0] = page;
1403 jermar 1360
            leaf->value[0] += count;
1387 jermar 1361
            return 1;
1362
        } else {
1363
            /*
1364
             * The interval doesn't adjoin with the right interval.
1365
             * It must be added individually.
1366
             */
2087 jermar 1367
            btree_insert(&a->used_space, page, (void *) count,
1368
                leaf);
1387 jermar 1369
            return 1;
1370
        }
1371
    }
1372
 
1373
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1374
    if (node) {
2087 jermar 1375
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1376
        uintptr_t right_pg = node->key[0];
1377
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1378
        count_t right_cnt = (count_t) node->value[0];
1387 jermar 1379
 
1380
        /*
1381
         * Examine the possibility that the interval fits
1382
         * somewhere between the leftmost interval of
1383
         * the right neigbour and the last interval of the leaf.
1384
         */
1385
 
1386
        if (page < left_pg) {
1387
            /* Do nothing. */
2087 jermar 1388
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1389
            left_cnt * PAGE_SIZE)) {
1387 jermar 1390
            /* The interval intersects with the left interval. */
1391
            return 0;
2087 jermar 1392
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1393
            right_cnt * PAGE_SIZE)) {
1387 jermar 1394
            /* The interval intersects with the right interval. */
1395
            return 0;          
2087 jermar 1396
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1397
            (page + count * PAGE_SIZE == right_pg)) {
1398
            /*
1399
             * The interval can be added by merging the two already
1400
             * present intervals.
1401
             * */
1403 jermar 1402
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1403
            btree_remove(&a->used_space, right_pg, node);
1404
            return 1;
2087 jermar 1405
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1406
            /*
1407
             * The interval can be added by simply growing the left
1408
             * interval.
1409
             * */
1403 jermar 1410
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1411
            return 1;
2087 jermar 1412
        } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1413
            /*
2087 jermar 1414
             * The interval can be addded by simply moving base of
1415
             * the right interval down and increasing its size
1416
             * accordingly.
1387 jermar 1417
             */
1403 jermar 1418
            node->value[0] += count;
1387 jermar 1419
            node->key[0] = page;
1420
            return 1;
1421
        } else {
1422
            /*
1423
             * The interval is between both neigbouring intervals,
1424
             * but cannot be merged with any of them.
1425
             */
2087 jermar 1426
            btree_insert(&a->used_space, page, (void *) count,
1427
                leaf);
1387 jermar 1428
            return 1;
1429
        }
1430
    } else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1431
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1432
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1433
 
1434
        /*
2087 jermar 1435
         * Investigate the border case in which the right neighbour
1436
         * does not exist but the interval fits from the right.
1387 jermar 1437
         */
1438
 
2087 jermar 1439
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1440
            left_cnt * PAGE_SIZE)) {
1403 jermar 1441
            /* The interval intersects with the left interval. */
1387 jermar 1442
            return 0;
2087 jermar 1443
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1444
            /*
1445
             * The interval can be added by growing the left
1446
             * interval.
1447
             */
1403 jermar 1448
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1449
            return 1;
1450
        } else {
1451
            /*
1452
             * The interval doesn't adjoin with the left interval.
1453
             * It must be added individually.
1454
             */
2087 jermar 1455
            btree_insert(&a->used_space, page, (void *) count,
1456
                leaf);
1387 jermar 1457
            return 1;
1458
        }
1459
    }
1460
 
1461
    /*
2087 jermar 1462
     * Note that if the algorithm made it thus far, the interval can fit
1463
     * only between two other intervals of the leaf. The two border cases
1464
     * were already resolved.
1387 jermar 1465
     */
1466
    for (i = 1; i < leaf->keys; i++) {
1467
        if (page < leaf->key[i]) {
2087 jermar 1468
            uintptr_t left_pg = leaf->key[i - 1];
1469
            uintptr_t right_pg = leaf->key[i];
1470
            count_t left_cnt = (count_t) leaf->value[i - 1];
1471
            count_t right_cnt = (count_t) leaf->value[i];
1387 jermar 1472
 
1473
            /*
1474
             * The interval fits between left_pg and right_pg.
1475
             */
1476
 
2087 jermar 1477
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1478
                left_cnt * PAGE_SIZE)) {
1479
                /*
1480
                 * The interval intersects with the left
1481
                 * interval.
1482
                 */
1387 jermar 1483
                return 0;
2087 jermar 1484
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1485
                right_cnt * PAGE_SIZE)) {
1486
                /*
1487
                 * The interval intersects with the right
1488
                 * interval.
1489
                 */
1387 jermar 1490
                return 0;          
2087 jermar 1491
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1492
                (page + count * PAGE_SIZE == right_pg)) {
1493
                /*
1494
                 * The interval can be added by merging the two
1495
                 * already present intervals.
1496
                 */
1403 jermar 1497
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1498
                btree_remove(&a->used_space, right_pg, leaf);
1499
                return 1;
2087 jermar 1500
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1501
                /*
1502
                 * The interval can be added by simply growing
1503
                 * the left interval.
1504
                 */
1403 jermar 1505
                leaf->value[i - 1] += count;
1387 jermar 1506
                return 1;
2087 jermar 1507
            } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1508
                /*
2087 jermar 1509
                     * The interval can be addded by simply moving
1510
                 * base of the right interval down and
1511
                 * increasing its size accordingly.
1387 jermar 1512
                 */
1403 jermar 1513
                leaf->value[i] += count;
1387 jermar 1514
                leaf->key[i] = page;
1515
                return 1;
1516
            } else {
1517
                /*
2087 jermar 1518
                 * The interval is between both neigbouring
1519
                 * intervals, but cannot be merged with any of
1520
                 * them.
1387 jermar 1521
                 */
2087 jermar 1522
                btree_insert(&a->used_space, page,
1523
                    (void *) count, leaf);
1387 jermar 1524
                return 1;
1525
            }
1526
        }
1527
    }
1528
 
2087 jermar 1529
    panic("Inconsistency detected while adding %d pages of used space at "
1530
        "%p.\n", count, page);
1387 jermar 1531
}
1532
 
1533
/** Mark portion of address space area as unused.
1534
 *
1535
 * The address space area must be already locked.
1536
 *
1537
 * @param a Address space area.
1538
 * @param page First page to be marked.
1539
 * @param count Number of page to be marked.
1540
 *
1541
 * @return 0 on failure and 1 on success.
1542
 */
1780 jermar 1543
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1544
{
1545
    btree_node_t *leaf, *node;
1546
    count_t pages;
1547
    int i;
1548
 
1549
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1550
    ASSERT(count);
1551
 
1552
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1553
    if (pages) {
1554
        /*
1555
         * We are lucky, page is the beginning of some interval.
1556
         */
1557
        if (count > pages) {
1558
            return 0;
1559
        } else if (count == pages) {
1560
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1561
            return 1;
1387 jermar 1562
        } else {
1563
            /*
1564
             * Find the respective interval.
1565
             * Decrease its size and relocate its start address.
1566
             */
1567
            for (i = 0; i < leaf->keys; i++) {
1568
                if (leaf->key[i] == page) {
2087 jermar 1569
                    leaf->key[i] += count * PAGE_SIZE;
1403 jermar 1570
                    leaf->value[i] -= count;
1387 jermar 1571
                    return 1;
1572
                }
1573
            }
1574
            goto error;
1575
        }
1576
    }
1577
 
1578
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1579
    if (node && page < leaf->key[0]) {
1780 jermar 1580
        uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1581
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1582
 
2087 jermar 1583
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1584
            count * PAGE_SIZE)) {
1585
            if (page + count * PAGE_SIZE ==
1586
                left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1587
                /*
2087 jermar 1588
                 * The interval is contained in the rightmost
1589
                 * interval of the left neighbour and can be
1590
                 * removed by updating the size of the bigger
1591
                 * interval.
1387 jermar 1592
                 */
1403 jermar 1593
                node->value[node->keys - 1] -= count;
1387 jermar 1594
                return 1;
2087 jermar 1595
            } else if (page + count * PAGE_SIZE <
1596
                left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1597
                count_t new_cnt;
1387 jermar 1598
 
1599
                /*
2087 jermar 1600
                 * The interval is contained in the rightmost
1601
                 * interval of the left neighbour but its
1602
                 * removal requires both updating the size of
1603
                 * the original interval and also inserting a
1604
                 * new interval.
1387 jermar 1605
                 */
2087 jermar 1606
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1607
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1608
                node->value[node->keys - 1] -= count + new_cnt;
2087 jermar 1609
                btree_insert(&a->used_space, page +
1610
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1611
                return 1;
1612
            }
1613
        }
1614
        return 0;
1615
    } else if (page < leaf->key[0]) {
1616
        return 0;
1617
    }
1618
 
1619
    if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1620
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1621
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1622
 
2087 jermar 1623
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1624
            count * PAGE_SIZE)) {
1625
            if (page + count * PAGE_SIZE ==
1626
                left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1627
                /*
2087 jermar 1628
                 * The interval is contained in the rightmost
1629
                 * interval of the leaf and can be removed by
1630
                 * updating the size of the bigger interval.
1387 jermar 1631
                 */
1403 jermar 1632
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1633
                return 1;
2087 jermar 1634
            } else if (page + count * PAGE_SIZE < left_pg +
1635
                left_cnt * PAGE_SIZE) {
1403 jermar 1636
                count_t new_cnt;
1387 jermar 1637
 
1638
                /*
2087 jermar 1639
                 * The interval is contained in the rightmost
1640
                 * interval of the leaf but its removal
1641
                 * requires both updating the size of the
1642
                 * original interval and also inserting a new
1643
                 * interval.
1387 jermar 1644
                 */
2087 jermar 1645
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1646
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1647
                leaf->value[leaf->keys - 1] -= count + new_cnt;
2087 jermar 1648
                btree_insert(&a->used_space, page +
1649
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1650
                return 1;
1651
            }
1652
        }
1653
        return 0;
1654
    }  
1655
 
1656
    /*
1657
     * The border cases have been already resolved.
1658
     * Now the interval can be only between intervals of the leaf.
1659
     */
1660
    for (i = 1; i < leaf->keys - 1; i++) {
1661
        if (page < leaf->key[i]) {
1780 jermar 1662
            uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1663
            count_t left_cnt = (count_t) leaf->value[i - 1];
1664
 
1665
            /*
2087 jermar 1666
             * Now the interval is between intervals corresponding
1667
             * to (i - 1) and i.
1387 jermar 1668
             */
2087 jermar 1669
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1670
                count * PAGE_SIZE)) {
1671
                if (page + count * PAGE_SIZE ==
1672
                    left_pg + left_cnt*PAGE_SIZE) {
1387 jermar 1673
                    /*
2087 jermar 1674
                     * The interval is contained in the
1675
                     * interval (i - 1) of the leaf and can
1676
                     * be removed by updating the size of
1677
                     * the bigger interval.
1387 jermar 1678
                     */
1403 jermar 1679
                    leaf->value[i - 1] -= count;
1387 jermar 1680
                    return 1;
2087 jermar 1681
                } else if (page + count * PAGE_SIZE <
1682
                    left_pg + left_cnt * PAGE_SIZE) {
1403 jermar 1683
                    count_t new_cnt;
1387 jermar 1684
 
1685
                    /*
2087 jermar 1686
                     * The interval is contained in the
1687
                     * interval (i - 1) of the leaf but its
1688
                     * removal requires both updating the
1689
                     * size of the original interval and
1387 jermar 1690
                     * also inserting a new interval.
1691
                     */
2087 jermar 1692
                    new_cnt = ((left_pg +
1693
                        left_cnt * PAGE_SIZE) -
1694
                        (page + count * PAGE_SIZE)) >>
1695
                        PAGE_WIDTH;
1403 jermar 1696
                    leaf->value[i - 1] -= count + new_cnt;
2087 jermar 1697
                    btree_insert(&a->used_space, page +
1698
                        count * PAGE_SIZE, (void *) new_cnt,
1699
                        leaf);
1387 jermar 1700
                    return 1;
1701
                }
1702
            }
1703
            return 0;
1704
        }
1705
    }
1706
 
1707
error:
2087 jermar 1708
    panic("Inconsistency detected while removing %d pages of used space "
1709
        "from %p.\n", count, page);
1387 jermar 1710
}
1711
 
1409 jermar 1712
/** Remove reference to address space area share info.
1713
 *
1714
 * If the reference count drops to 0, the sh_info is deallocated.
1715
 *
1716
 * @param sh_info Pointer to address space area share info.
1717
 */
1718
void sh_info_remove_reference(share_info_t *sh_info)
1719
{
1720
    bool dealloc = false;
1721
 
1722
    mutex_lock(&sh_info->lock);
1723
    ASSERT(sh_info->refcount);
1724
    if (--sh_info->refcount == 0) {
1725
        dealloc = true;
1495 jermar 1726
        link_t *cur;
1409 jermar 1727
 
1728
        /*
1729
         * Now walk carefully the pagemap B+tree and free/remove
1730
         * reference from all frames found there.
1731
         */
2087 jermar 1732
        for (cur = sh_info->pagemap.leaf_head.next;
1733
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1734
            btree_node_t *node;
1495 jermar 1735
            int i;
1409 jermar 1736
 
1495 jermar 1737
            node = list_get_instance(cur, btree_node_t, leaf_link);
1738
            for (i = 0; i < node->keys; i++)
1780 jermar 1739
                frame_free((uintptr_t) node->value[i]);
1409 jermar 1740
        }
1741
 
1742
    }
1743
    mutex_unlock(&sh_info->lock);
1744
 
1745
    if (dealloc) {
1746
        btree_destroy(&sh_info->pagemap);
1747
        free(sh_info);
1748
    }
1749
}
1750
 
1235 jermar 1751
/*
1752
 * Address space related syscalls.
1753
 */
1754
 
1755
/** Wrapper for as_area_create(). */
1780 jermar 1756
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1757
{
2087 jermar 1758
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1759
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1760
        return (unative_t) address;
1235 jermar 1761
    else
1780 jermar 1762
        return (unative_t) -1;
1235 jermar 1763
}
1764
 
1793 jermar 1765
/** Wrapper for as_area_resize(). */
1780 jermar 1766
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1767
{
1780 jermar 1768
    return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1769
}
1770
 
1793 jermar 1771
/** Wrapper for as_area_destroy(). */
1780 jermar 1772
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1773
{
1780 jermar 1774
    return (unative_t) as_area_destroy(AS, address);
1306 jermar 1775
}
1702 cejka 1776
 
1914 jermar 1777
/** Print out information about address space.
1778
 *
1779
 * @param as Address space.
1780
 */
1781
void as_print(as_t *as)
1782
{
1783
    ipl_t ipl;
1784
 
1785
    ipl = interrupts_disable();
1786
    mutex_lock(&as->lock);
1787
 
1788
    /* print out info about address space areas */
1789
    link_t *cur;
2087 jermar 1790
    for (cur = as->as_area_btree.leaf_head.next;
1791
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1792
        btree_node_t *node;
1914 jermar 1793
 
2087 jermar 1794
        node = list_get_instance(cur, btree_node_t, leaf_link);
1795
 
1914 jermar 1796
        int i;
1797
        for (i = 0; i < node->keys; i++) {
1915 jermar 1798
            as_area_t *area = node->value[i];
1914 jermar 1799
 
1800
            mutex_lock(&area->lock);
1801
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
2087 jermar 1802
                area, area->base, area->pages, area->base,
1803
                area->base + area->pages*PAGE_SIZE);
1914 jermar 1804
            mutex_unlock(&area->lock);
1805
        }
1806
    }
1807
 
1808
    mutex_unlock(&as->lock);
1809
    interrupts_restore(ipl);
1810
}
1811
 
1757 jermar 1812
/** @}
1702 cejka 1813
 */