Subversion Repositories HelenOS

Rev

Rev 2106 | Rev 2126 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
1288 jermar 77
#include <syscall/copy.h>
78
#include <arch/interrupt.h>
703 jermar 79
 
2009 jermar 80
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#include <arch/mm/cache.h>
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
 
2125 decky 84
#ifndef __OBJC__
1757 jermar 85
/**
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
88
 */
756 jermar 89
as_operations_t *as_operations = NULL;
2125 decky 90
#endif
703 jermar 91
 
1890 jermar 92
/**
93
 * Slab for as_t objects.
94
 */
95
static slab_cache_t *as_slab;
96
 
2087 jermar 97
/**
98
 * This lock protects inactive_as_with_asid_head list. It must be acquired
99
 * before as_t mutex.
100
 */
1415 jermar 101
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 102
 
103
/**
104
 * This list contains address spaces that are not active on any
105
 * processor and that have valid ASID.
106
 */
107
LIST_INITIALIZE(inactive_as_with_asid_head);
108
 
757 jermar 109
/** Kernel address space. */
110
as_t *AS_KERNEL = NULL;
111
 
1235 jermar 112
static int area_flags_to_page_flags(int aflags);
1780 jermar 113
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
2087 jermar 114
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
115
    as_area_t *avoid_area);
1409 jermar 116
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 117
 
1891 jermar 118
static int as_constructor(void *obj, int flags)
119
{
120
	as_t *as = (as_t *) obj;
121
	int rc;
122
 
123
	link_initialize(&as->inactive_as_with_asid_link);
124
	mutex_initialize(&as->lock);	
125
 
126
	rc = as_constructor_arch(as, flags);
127
 
128
	return rc;
129
}
130
 
131
static int as_destructor(void *obj)
132
{
133
	as_t *as = (as_t *) obj;
134
 
135
	return as_destructor_arch(as);
136
}
137
 
756 jermar 138
/** Initialize address space subsystem. */
139
void as_init(void)
140
{
141
	as_arch_init();
1890 jermar 142
 
1891 jermar 143
	as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
2087 jermar 144
	    as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 145
 
789 palkovsky 146
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 147
	if (!AS_KERNEL)
148
		panic("can't create kernel address space\n");
149
 
756 jermar 150
}
151
 
757 jermar 152
/** Create address space.
153
 *
154
 * @param flags Flags that influence way in wich the address space is created.
155
 */
756 jermar 156
as_t *as_create(int flags)
703 jermar 157
{
158
	as_t *as;
159
 
1890 jermar 160
	as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 161
	(void) as_create_arch(as, 0);
162
 
1147 jermar 163
	btree_create(&as->as_area_btree);
822 palkovsky 164
 
165
	if (flags & FLAG_AS_KERNEL)
166
		as->asid = ASID_KERNEL;
167
	else
168
		as->asid = ASID_INVALID;
169
 
1468 jermar 170
	as->refcount = 0;
1415 jermar 171
	as->cpu_refcount = 0;
2089 decky 172
#ifdef AS_PAGE_TABLE
2106 jermar 173
	as->genarch.page_table = page_table_create(flags);
2089 decky 174
#else
175
	page_table_create(flags);
176
#endif
703 jermar 177
 
178
	return as;
179
}
180
 
1468 jermar 181
/** Destroy adress space.
182
 *
2087 jermar 183
 * When there are no tasks referencing this address space (i.e. its refcount is
184
 * zero), the address space can be destroyed.
1468 jermar 185
 */
186
void as_destroy(as_t *as)
973 palkovsky 187
{
1468 jermar 188
	ipl_t ipl;
1594 jermar 189
	bool cond;
973 palkovsky 190
 
1468 jermar 191
	ASSERT(as->refcount == 0);
192
 
193
	/*
194
	 * Since there is no reference to this area,
195
	 * it is safe not to lock its mutex.
196
	 */
197
	ipl = interrupts_disable();
198
	spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 199
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 200
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 201
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 202
		asid_put(as->asid);
203
	}
204
	spinlock_unlock(&inactive_as_with_asid_lock);
205
 
206
	/*
207
	 * Destroy address space areas of the address space.
1954 jermar 208
	 * The B+tree must be walked carefully because it is
1594 jermar 209
	 * also being destroyed.
1468 jermar 210
	 */	
1594 jermar 211
	for (cond = true; cond; ) {
1468 jermar 212
		btree_node_t *node;
1594 jermar 213
 
214
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
2087 jermar 215
		node = list_get_instance(as->as_area_btree.leaf_head.next,
216
		    btree_node_t, leaf_link);
1594 jermar 217
 
218
		if ((cond = node->keys)) {
219
			as_area_destroy(as, node->key[0]);
220
		}
1468 jermar 221
	}
1495 jermar 222
 
1483 jermar 223
	btree_destroy(&as->as_area_btree);
2089 decky 224
#ifdef AS_PAGE_TABLE
2106 jermar 225
	page_table_destroy(as->genarch.page_table);
2089 decky 226
#else
227
	page_table_destroy(NULL);
228
#endif
1468 jermar 229
 
230
	interrupts_restore(ipl);
231
 
1890 jermar 232
	slab_free(as_slab, as);
973 palkovsky 233
}
234
 
703 jermar 235
/** Create address space area of common attributes.
236
 *
237
 * The created address space area is added to the target address space.
238
 *
239
 * @param as Target address space.
1239 jermar 240
 * @param flags Flags of the area memory.
1048 jermar 241
 * @param size Size of area.
703 jermar 242
 * @param base Base address of area.
1239 jermar 243
 * @param attrs Attributes of the area.
1409 jermar 244
 * @param backend Address space area backend. NULL if no backend is used.
245
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 246
 *
247
 * @return Address space area on success or NULL on failure.
248
 */
2069 jermar 249
as_area_t *
250
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 251
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 252
{
253
	ipl_t ipl;
254
	as_area_t *a;
255
 
256
	if (base % PAGE_SIZE)
1048 jermar 257
		return NULL;
258
 
1233 jermar 259
	if (!size)
260
		return NULL;
261
 
1048 jermar 262
	/* Writeable executable areas are not supported. */
263
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
264
		return NULL;
703 jermar 265
 
266
	ipl = interrupts_disable();
1380 jermar 267
	mutex_lock(&as->lock);
703 jermar 268
 
1048 jermar 269
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 270
		mutex_unlock(&as->lock);
1048 jermar 271
		interrupts_restore(ipl);
272
		return NULL;
273
	}
703 jermar 274
 
822 palkovsky 275
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 276
 
1380 jermar 277
	mutex_initialize(&a->lock);
822 palkovsky 278
 
1424 jermar 279
	a->as = as;
1026 jermar 280
	a->flags = flags;
1239 jermar 281
	a->attributes = attrs;
1048 jermar 282
	a->pages = SIZE2FRAMES(size);
822 palkovsky 283
	a->base = base;
1409 jermar 284
	a->sh_info = NULL;
285
	a->backend = backend;
1424 jermar 286
	if (backend_data)
287
		a->backend_data = *backend_data;
288
	else
2087 jermar 289
		memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
290
		    0);
1424 jermar 291
 
1387 jermar 292
	btree_create(&a->used_space);
822 palkovsky 293
 
1147 jermar 294
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 295
 
1380 jermar 296
	mutex_unlock(&as->lock);
703 jermar 297
	interrupts_restore(ipl);
704 jermar 298
 
703 jermar 299
	return a;
300
}
301
 
1235 jermar 302
/** Find address space area and change it.
303
 *
304
 * @param as Address space.
2087 jermar 305
 * @param address Virtual address belonging to the area to be changed. Must be
306
 *     page-aligned.
1235 jermar 307
 * @param size New size of the virtual memory block starting at address. 
308
 * @param flags Flags influencing the remap operation. Currently unused.
309
 *
1306 jermar 310
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 311
 */ 
1780 jermar 312
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 313
{
1306 jermar 314
	as_area_t *area;
1235 jermar 315
	ipl_t ipl;
316
	size_t pages;
317
 
318
	ipl = interrupts_disable();
1380 jermar 319
	mutex_lock(&as->lock);
1235 jermar 320
 
321
	/*
322
	 * Locate the area.
323
	 */
324
	area = find_area_and_lock(as, address);
325
	if (!area) {
1380 jermar 326
		mutex_unlock(&as->lock);
1235 jermar 327
		interrupts_restore(ipl);
1306 jermar 328
		return ENOENT;
1235 jermar 329
	}
330
 
1424 jermar 331
	if (area->backend == &phys_backend) {
1235 jermar 332
		/*
333
		 * Remapping of address space areas associated
334
		 * with memory mapped devices is not supported.
335
		 */
1380 jermar 336
		mutex_unlock(&area->lock);
337
		mutex_unlock(&as->lock);
1235 jermar 338
		interrupts_restore(ipl);
1306 jermar 339
		return ENOTSUP;
1235 jermar 340
	}
1409 jermar 341
	if (area->sh_info) {
342
		/*
343
		 * Remapping of shared address space areas 
344
		 * is not supported.
345
		 */
346
		mutex_unlock(&area->lock);
347
		mutex_unlock(&as->lock);
348
		interrupts_restore(ipl);
349
		return ENOTSUP;
350
	}
1235 jermar 351
 
352
	pages = SIZE2FRAMES((address - area->base) + size);
353
	if (!pages) {
354
		/*
355
		 * Zero size address space areas are not allowed.
356
		 */
1380 jermar 357
		mutex_unlock(&area->lock);
358
		mutex_unlock(&as->lock);
1235 jermar 359
		interrupts_restore(ipl);
1306 jermar 360
		return EPERM;
1235 jermar 361
	}
362
 
363
	if (pages < area->pages) {
1403 jermar 364
		bool cond;
1780 jermar 365
		uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 366
 
367
		/*
368
		 * Shrinking the area.
369
		 * No need to check for overlaps.
370
		 */
1403 jermar 371
 
372
		/*
1436 jermar 373
		 * Start TLB shootdown sequence.
374
		 */
2087 jermar 375
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
376
		    pages * PAGE_SIZE, area->pages - pages);
1436 jermar 377
 
378
		/*
1403 jermar 379
		 * Remove frames belonging to used space starting from
380
		 * the highest addresses downwards until an overlap with
381
		 * the resized address space area is found. Note that this
382
		 * is also the right way to remove part of the used_space
383
		 * B+tree leaf list.
384
		 */		
385
		for (cond = true; cond;) {
386
			btree_node_t *node;
387
 
388
			ASSERT(!list_empty(&area->used_space.leaf_head));
2087 jermar 389
			node = 
390
			    list_get_instance(area->used_space.leaf_head.prev,
391
			    btree_node_t, leaf_link);
1403 jermar 392
			if ((cond = (bool) node->keys)) {
1780 jermar 393
				uintptr_t b = node->key[node->keys - 1];
2087 jermar 394
				count_t c =
395
				    (count_t) node->value[node->keys - 1];
1403 jermar 396
				int i = 0;
1235 jermar 397
 
2087 jermar 398
				if (overlaps(b, c * PAGE_SIZE, area->base,
399
				    pages*PAGE_SIZE)) {
1403 jermar 400
 
2087 jermar 401
					if (b + c * PAGE_SIZE <= start_free) {
1403 jermar 402
						/*
2087 jermar 403
						 * The whole interval fits
404
						 * completely in the resized
405
						 * address space area.
1403 jermar 406
						 */
407
						break;
408
					}
409
 
410
					/*
2087 jermar 411
					 * Part of the interval corresponding
412
					 * to b and c overlaps with the resized
413
					 * address space area.
1403 jermar 414
					 */
415
 
416
					cond = false;	/* we are almost done */
417
					i = (start_free - b) >> PAGE_WIDTH;
2087 jermar 418
					if (!used_space_remove(area, start_free,
419
					    c - i))
420
						panic("Could not remove used "
421
						    "space.\n");
1403 jermar 422
				} else {
423
					/*
2087 jermar 424
					 * The interval of used space can be
425
					 * completely removed.
1403 jermar 426
					 */
427
					if (!used_space_remove(area, b, c))
2087 jermar 428
						panic("Could not remove used "
429
						    "space.\n");
1403 jermar 430
				}
431
 
432
				for (; i < c; i++) {
433
					pte_t *pte;
434
 
435
					page_table_lock(as, false);
2087 jermar 436
					pte = page_mapping_find(as, b +
437
					    i * PAGE_SIZE);
438
					ASSERT(pte && PTE_VALID(pte) &&
439
					    PTE_PRESENT(pte));
440
					if (area->backend &&
441
					    area->backend->frame_free) {
1424 jermar 442
						area->backend->frame_free(area,
2087 jermar 443
						    b + i * PAGE_SIZE,
444
						    PTE_GET_FRAME(pte));
1409 jermar 445
					}
2087 jermar 446
					page_mapping_remove(as, b +
447
					    i * PAGE_SIZE);
1403 jermar 448
					page_table_unlock(as, false);
449
				}
1235 jermar 450
			}
451
		}
1436 jermar 452
 
1235 jermar 453
		/*
1436 jermar 454
		 * Finish TLB shootdown sequence.
1235 jermar 455
		 */
2087 jermar 456
		tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
457
		    area->pages - pages);
1235 jermar 458
		tlb_shootdown_finalize();
1889 jermar 459
 
460
		/*
461
		 * Invalidate software translation caches (e.g. TSB on sparc64).
462
		 */
2087 jermar 463
		as_invalidate_translation_cache(as, area->base +
464
		    pages * PAGE_SIZE, area->pages - pages);
1235 jermar 465
	} else {
466
		/*
467
		 * Growing the area.
468
		 * Check for overlaps with other address space areas.
469
		 */
2087 jermar 470
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
471
		    area)) {
1380 jermar 472
			mutex_unlock(&area->lock);
473
			mutex_unlock(&as->lock);		
1235 jermar 474
			interrupts_restore(ipl);
1306 jermar 475
			return EADDRNOTAVAIL;
1235 jermar 476
		}
477
	} 
478
 
479
	area->pages = pages;
480
 
1380 jermar 481
	mutex_unlock(&area->lock);
482
	mutex_unlock(&as->lock);
1235 jermar 483
	interrupts_restore(ipl);
484
 
1306 jermar 485
	return 0;
1235 jermar 486
}
487
 
1306 jermar 488
/** Destroy address space area.
489
 *
490
 * @param as Address space.
491
 * @param address Address withing the area to be deleted.
492
 *
493
 * @return Zero on success or a value from @ref errno.h on failure. 
494
 */
1780 jermar 495
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 496
{
497
	as_area_t *area;
1780 jermar 498
	uintptr_t base;
1495 jermar 499
	link_t *cur;
1306 jermar 500
	ipl_t ipl;
501
 
502
	ipl = interrupts_disable();
1380 jermar 503
	mutex_lock(&as->lock);
1306 jermar 504
 
505
	area = find_area_and_lock(as, address);
506
	if (!area) {
1380 jermar 507
		mutex_unlock(&as->lock);
1306 jermar 508
		interrupts_restore(ipl);
509
		return ENOENT;
510
	}
511
 
1403 jermar 512
	base = area->base;
513
 
1411 jermar 514
	/*
1436 jermar 515
	 * Start TLB shootdown sequence.
516
	 */
1889 jermar 517
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 518
 
519
	/*
1411 jermar 520
	 * Visit only the pages mapped by used_space B+tree.
521
	 */
2087 jermar 522
	for (cur = area->used_space.leaf_head.next;
523
	    cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 524
		btree_node_t *node;
1495 jermar 525
		int i;
1403 jermar 526
 
1495 jermar 527
		node = list_get_instance(cur, btree_node_t, leaf_link);
528
		for (i = 0; i < node->keys; i++) {
1780 jermar 529
			uintptr_t b = node->key[i];
1495 jermar 530
			count_t j;
1411 jermar 531
			pte_t *pte;
1403 jermar 532
 
1495 jermar 533
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 534
				page_table_lock(as, false);
2087 jermar 535
				pte = page_mapping_find(as, b + j * PAGE_SIZE);
536
				ASSERT(pte && PTE_VALID(pte) &&
537
				    PTE_PRESENT(pte));
538
				if (area->backend &&
539
				    area->backend->frame_free) {
540
					area->backend->frame_free(area,	b +
541
					j * PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 542
				}
2087 jermar 543
				page_mapping_remove(as, b + j * PAGE_SIZE);				
1411 jermar 544
				page_table_unlock(as, false);
1306 jermar 545
			}
546
		}
547
	}
1403 jermar 548
 
1306 jermar 549
	/*
1436 jermar 550
	 * Finish TLB shootdown sequence.
1306 jermar 551
	 */
1889 jermar 552
	tlb_invalidate_pages(as->asid, area->base, area->pages);
1306 jermar 553
	tlb_shootdown_finalize();
1436 jermar 554
 
1889 jermar 555
	/*
2087 jermar 556
	 * Invalidate potential software translation caches (e.g. TSB on
557
	 * sparc64).
1889 jermar 558
	 */
559
	as_invalidate_translation_cache(as, area->base, area->pages);
560
 
1436 jermar 561
	btree_destroy(&area->used_space);
1306 jermar 562
 
1309 jermar 563
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 564
 
565
	if (area->sh_info)
566
		sh_info_remove_reference(area->sh_info);
567
 
1380 jermar 568
	mutex_unlock(&area->lock);
1306 jermar 569
 
570
	/*
571
	 * Remove the empty area from address space.
572
	 */
1889 jermar 573
	btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 574
 
1309 jermar 575
	free(area);
576
 
1889 jermar 577
	mutex_unlock(&as->lock);
1306 jermar 578
	interrupts_restore(ipl);
579
	return 0;
580
}
581
 
1413 jermar 582
/** Share address space area with another or the same address space.
1235 jermar 583
 *
1424 jermar 584
 * Address space area mapping is shared with a new address space area.
585
 * If the source address space area has not been shared so far,
586
 * a new sh_info is created. The new address space area simply gets the
587
 * sh_info of the source area. The process of duplicating the
588
 * mapping is done through the backend share function.
1413 jermar 589
 * 
1417 jermar 590
 * @param src_as Pointer to source address space.
1239 jermar 591
 * @param src_base Base address of the source address space area.
1417 jermar 592
 * @param acc_size Expected size of the source area.
1428 palkovsky 593
 * @param dst_as Pointer to destination address space.
1417 jermar 594
 * @param dst_base Target base address.
595
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 596
 *
2007 jermar 597
 * @return Zero on success or ENOENT if there is no such task or if there is no
598
 * such address space area, EPERM if there was a problem in accepting the area
599
 * or ENOMEM if there was a problem in allocating destination address space
600
 * area. ENOTSUP is returned if the address space area backend does not support
2015 jermar 601
 * sharing or if the kernel detects an attempt to create an illegal address
602
 * alias.
1235 jermar 603
 */
1780 jermar 604
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
605
		  as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 606
{
607
	ipl_t ipl;
1239 jermar 608
	int src_flags;
609
	size_t src_size;
610
	as_area_t *src_area, *dst_area;
1413 jermar 611
	share_info_t *sh_info;
1424 jermar 612
	mem_backend_t *src_backend;
613
	mem_backend_data_t src_backend_data;
1434 palkovsky 614
 
1235 jermar 615
	ipl = interrupts_disable();
1380 jermar 616
	mutex_lock(&src_as->lock);
1329 palkovsky 617
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 618
	if (!src_area) {
1238 jermar 619
		/*
620
		 * Could not find the source address space area.
621
		 */
1380 jermar 622
		mutex_unlock(&src_as->lock);
1238 jermar 623
		interrupts_restore(ipl);
624
		return ENOENT;
625
	}
2007 jermar 626
 
1424 jermar 627
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 628
		/*
1851 jermar 629
		 * There is no backend or the backend does not
1424 jermar 630
		 * know how to share the area.
1413 jermar 631
		 */
632
		mutex_unlock(&src_area->lock);
633
		mutex_unlock(&src_as->lock);
634
		interrupts_restore(ipl);
635
		return ENOTSUP;
636
	}
637
 
1239 jermar 638
	src_size = src_area->pages * PAGE_SIZE;
639
	src_flags = src_area->flags;
1424 jermar 640
	src_backend = src_area->backend;
641
	src_backend_data = src_area->backend_data;
1544 palkovsky 642
 
643
	/* Share the cacheable flag from the original mapping */
644
	if (src_flags & AS_AREA_CACHEABLE)
645
		dst_flags_mask |= AS_AREA_CACHEABLE;
646
 
2087 jermar 647
	if (src_size != acc_size ||
648
	    (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 649
		mutex_unlock(&src_area->lock);
650
		mutex_unlock(&src_as->lock);
1235 jermar 651
		interrupts_restore(ipl);
652
		return EPERM;
653
	}
1413 jermar 654
 
2015 jermar 655
#ifdef CONFIG_VIRT_IDX_DCACHE
656
	if (!(dst_flags_mask & AS_AREA_EXEC)) {
657
		if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
658
			/*
659
			 * Refuse to create an illegal address alias.
660
			 */
661
			mutex_unlock(&src_area->lock);
662
			mutex_unlock(&src_as->lock);
663
			interrupts_restore(ipl);
664
			return ENOTSUP;
665
		}
666
	}
667
#endif /* CONFIG_VIRT_IDX_DCACHE */
668
 
1235 jermar 669
	/*
1413 jermar 670
	 * Now we are committed to sharing the area.
1954 jermar 671
	 * First, prepare the area for sharing.
1413 jermar 672
	 * Then it will be safe to unlock it.
673
	 */
674
	sh_info = src_area->sh_info;
675
	if (!sh_info) {
676
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
677
		mutex_initialize(&sh_info->lock);
678
		sh_info->refcount = 2;
679
		btree_create(&sh_info->pagemap);
680
		src_area->sh_info = sh_info;
681
	} else {
682
		mutex_lock(&sh_info->lock);
683
		sh_info->refcount++;
684
		mutex_unlock(&sh_info->lock);
685
	}
686
 
1424 jermar 687
	src_area->backend->share(src_area);
1413 jermar 688
 
689
	mutex_unlock(&src_area->lock);
690
	mutex_unlock(&src_as->lock);
691
 
692
	/*
1239 jermar 693
	 * Create copy of the source address space area.
694
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
695
	 * attribute set which prevents race condition with
696
	 * preliminary as_page_fault() calls.
1417 jermar 697
	 * The flags of the source area are masked against dst_flags_mask
698
	 * to support sharing in less privileged mode.
1235 jermar 699
	 */
1461 palkovsky 700
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
2087 jermar 701
	    AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 702
	if (!dst_area) {
1235 jermar 703
		/*
704
		 * Destination address space area could not be created.
705
		 */
1413 jermar 706
		sh_info_remove_reference(sh_info);
707
 
1235 jermar 708
		interrupts_restore(ipl);
709
		return ENOMEM;
710
	}
2009 jermar 711
 
1235 jermar 712
	/*
1239 jermar 713
	 * Now the destination address space area has been
714
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 715
	 * attribute and set the sh_info.
1239 jermar 716
	 */	
2009 jermar 717
	mutex_lock(&dst_as->lock);	
1380 jermar 718
	mutex_lock(&dst_area->lock);
1239 jermar 719
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 720
	dst_area->sh_info = sh_info;
1380 jermar 721
	mutex_unlock(&dst_area->lock);
2009 jermar 722
	mutex_unlock(&dst_as->lock);	
723
 
1235 jermar 724
	interrupts_restore(ipl);
725
 
726
	return 0;
727
}
728
 
1423 jermar 729
/** Check access mode for address space area.
730
 *
731
 * The address space area must be locked prior to this call.
732
 *
733
 * @param area Address space area.
734
 * @param access Access mode.
735
 *
736
 * @return False if access violates area's permissions, true otherwise.
737
 */
738
bool as_area_check_access(as_area_t *area, pf_access_t access)
739
{
740
	int flagmap[] = {
741
		[PF_ACCESS_READ] = AS_AREA_READ,
742
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
743
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
744
	};
745
 
746
	if (!(area->flags & flagmap[access]))
747
		return false;
748
 
749
	return true;
750
}
751
 
703 jermar 752
/** Handle page fault within the current address space.
753
 *
1409 jermar 754
 * This is the high-level page fault handler. It decides
755
 * whether the page fault can be resolved by any backend
756
 * and if so, it invokes the backend to resolve the page
757
 * fault.
758
 *
703 jermar 759
 * Interrupts are assumed disabled.
760
 *
761
 * @param page Faulting page.
1411 jermar 762
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 763
 * @param istate Pointer to interrupted state.
703 jermar 764
 *
1409 jermar 765
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
766
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 767
 */
1780 jermar 768
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 769
{
1044 jermar 770
	pte_t *pte;
977 jermar 771
	as_area_t *area;
703 jermar 772
 
1380 jermar 773
	if (!THREAD)
1409 jermar 774
		return AS_PF_FAULT;
1380 jermar 775
 
703 jermar 776
	ASSERT(AS);
1044 jermar 777
 
1380 jermar 778
	mutex_lock(&AS->lock);
977 jermar 779
	area = find_area_and_lock(AS, page);	
703 jermar 780
	if (!area) {
781
		/*
782
		 * No area contained mapping for 'page'.
783
		 * Signal page fault to low-level handler.
784
		 */
1380 jermar 785
		mutex_unlock(&AS->lock);
1288 jermar 786
		goto page_fault;
703 jermar 787
	}
788
 
1239 jermar 789
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
790
		/*
791
		 * The address space area is not fully initialized.
792
		 * Avoid possible race by returning error.
793
		 */
1380 jermar 794
		mutex_unlock(&area->lock);
795
		mutex_unlock(&AS->lock);
1288 jermar 796
		goto page_fault;		
1239 jermar 797
	}
798
 
1424 jermar 799
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 800
		/*
801
		 * The address space area is not backed by any backend
802
		 * or the backend cannot handle page faults.
803
		 */
804
		mutex_unlock(&area->lock);
805
		mutex_unlock(&AS->lock);
806
		goto page_fault;		
807
	}
1179 jermar 808
 
1044 jermar 809
	page_table_lock(AS, false);
810
 
703 jermar 811
	/*
1044 jermar 812
	 * To avoid race condition between two page faults
813
	 * on the same address, we need to make sure
814
	 * the mapping has not been already inserted.
815
	 */
816
	if ((pte = page_mapping_find(AS, page))) {
817
		if (PTE_PRESENT(pte)) {
1423 jermar 818
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
2087 jermar 819
			    (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
820
			    (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1423 jermar 821
				page_table_unlock(AS, false);
822
				mutex_unlock(&area->lock);
823
				mutex_unlock(&AS->lock);
824
				return AS_PF_OK;
825
			}
1044 jermar 826
		}
827
	}
1409 jermar 828
 
1044 jermar 829
	/*
1409 jermar 830
	 * Resort to the backend page fault handler.
703 jermar 831
	 */
1424 jermar 832
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 833
		page_table_unlock(AS, false);
834
		mutex_unlock(&area->lock);
835
		mutex_unlock(&AS->lock);
836
		goto page_fault;
837
	}
703 jermar 838
 
1044 jermar 839
	page_table_unlock(AS, false);
1380 jermar 840
	mutex_unlock(&area->lock);
841
	mutex_unlock(&AS->lock);
1288 jermar 842
	return AS_PF_OK;
843
 
844
page_fault:
845
	if (THREAD->in_copy_from_uspace) {
846
		THREAD->in_copy_from_uspace = false;
2087 jermar 847
		istate_set_retaddr(istate,
848
		    (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 849
	} else if (THREAD->in_copy_to_uspace) {
850
		THREAD->in_copy_to_uspace = false;
2087 jermar 851
		istate_set_retaddr(istate,
852
		    (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 853
	} else {
854
		return AS_PF_FAULT;
855
	}
856
 
857
	return AS_PF_DEFER;
703 jermar 858
}
859
 
823 jermar 860
/** Switch address spaces.
703 jermar 861
 *
1380 jermar 862
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 863
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 864
 *
823 jermar 865
 * @param old Old address space or NULL.
866
 * @param new New address space.
703 jermar 867
 */
2106 jermar 868
void as_switch(as_t *old_as, as_t *new_as)
703 jermar 869
{
870
	ipl_t ipl;
823 jermar 871
	bool needs_asid = false;
703 jermar 872
 
873
	ipl = interrupts_disable();
1415 jermar 874
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 875
 
876
	/*
823 jermar 877
	 * First, take care of the old address space.
878
	 */	
2106 jermar 879
	if (old_as) {
880
		mutex_lock_active(&old_as->lock);
881
		ASSERT(old_as->cpu_refcount);
882
		if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
823 jermar 883
			/*
884
			 * The old address space is no longer active on
885
			 * any processor. It can be appended to the
886
			 * list of inactive address spaces with assigned
887
			 * ASID.
888
			 */
2106 jermar 889
			 ASSERT(old_as->asid != ASID_INVALID);
890
			 list_append(&old_as->inactive_as_with_asid_link,
2087 jermar 891
			     &inactive_as_with_asid_head);
823 jermar 892
		}
2106 jermar 893
		mutex_unlock(&old_as->lock);
1890 jermar 894
 
895
		/*
896
		 * Perform architecture-specific tasks when the address space
897
		 * is being removed from the CPU.
898
		 */
2106 jermar 899
		as_deinstall_arch(old_as);
823 jermar 900
	}
901
 
902
	/*
903
	 * Second, prepare the new address space.
904
	 */
2106 jermar 905
	mutex_lock_active(&new_as->lock);
906
	if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
907
		if (new_as->asid != ASID_INVALID) {
908
			list_remove(&new_as->inactive_as_with_asid_link);
2087 jermar 909
		} else {
910
			/*
2106 jermar 911
			 * Defer call to asid_get() until new_as->lock is released.
2087 jermar 912
			 */
913
			needs_asid = true;
914
		}
823 jermar 915
	}
2106 jermar 916
#ifdef AS_PAGE_TABLE
917
	SET_PTL0_ADDRESS(new_as->genarch.page_table);
918
#endif
919
	mutex_unlock(&new_as->lock);
823 jermar 920
 
921
	if (needs_asid) {
922
		/*
923
		 * Allocation of new ASID was deferred
924
		 * until now in order to avoid deadlock.
925
		 */
926
		asid_t asid;
927
 
928
		asid = asid_get();
2106 jermar 929
		mutex_lock_active(&new_as->lock);
930
		new_as->asid = asid;
931
		mutex_unlock(&new_as->lock);
823 jermar 932
	}
1415 jermar 933
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 934
	interrupts_restore(ipl);
935
 
936
	/*
703 jermar 937
	 * Perform architecture-specific steps.
727 jermar 938
	 * (e.g. write ASID to hardware register etc.)
703 jermar 939
	 */
2106 jermar 940
	as_install_arch(new_as);
703 jermar 941
 
2106 jermar 942
	AS = new_as;
703 jermar 943
}
754 jermar 944
 
1235 jermar 945
/** Convert address space area flags to page flags.
754 jermar 946
 *
1235 jermar 947
 * @param aflags Flags of some address space area.
754 jermar 948
 *
1235 jermar 949
 * @return Flags to be passed to page_mapping_insert().
754 jermar 950
 */
1235 jermar 951
int area_flags_to_page_flags(int aflags)
754 jermar 952
{
953
	int flags;
954
 
1178 jermar 955
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 956
 
1235 jermar 957
	if (aflags & AS_AREA_READ)
1026 jermar 958
		flags |= PAGE_READ;
959
 
1235 jermar 960
	if (aflags & AS_AREA_WRITE)
1026 jermar 961
		flags |= PAGE_WRITE;
962
 
1235 jermar 963
	if (aflags & AS_AREA_EXEC)
1026 jermar 964
		flags |= PAGE_EXEC;
965
 
1424 jermar 966
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 967
		flags |= PAGE_CACHEABLE;
968
 
754 jermar 969
	return flags;
970
}
756 jermar 971
 
1235 jermar 972
/** Compute flags for virtual address translation subsytem.
973
 *
974
 * The address space area must be locked.
975
 * Interrupts must be disabled.
976
 *
977
 * @param a Address space area.
978
 *
979
 * @return Flags to be used in page_mapping_insert().
980
 */
1409 jermar 981
int as_area_get_flags(as_area_t *a)
1235 jermar 982
{
983
	return area_flags_to_page_flags(a->flags);
984
}
985
 
756 jermar 986
/** Create page table.
987
 *
988
 * Depending on architecture, create either address space
989
 * private or global page table.
990
 *
991
 * @param flags Flags saying whether the page table is for kernel address space.
992
 *
993
 * @return First entry of the page table.
994
 */
995
pte_t *page_table_create(int flags)
996
{
2125 decky 997
#ifdef __OBJC__
998
	return [as_t page_table_create: flags];
999
#else
1000
	ASSERT(as_operations);
1001
	ASSERT(as_operations->page_table_create);
1002
 
1003
	return as_operations->page_table_create(flags);
1004
#endif
756 jermar 1005
}
977 jermar 1006
 
1468 jermar 1007
/** Destroy page table.
1008
 *
1009
 * Destroy page table in architecture specific way.
1010
 *
1011
 * @param page_table Physical address of PTL0.
1012
 */
1013
void page_table_destroy(pte_t *page_table)
1014
{
2125 decky 1015
#ifdef __OBJC__
1016
	return [as_t page_table_destroy: page_table];
1017
#else
1018
	ASSERT(as_operations);
1019
	ASSERT(as_operations->page_table_destroy);
1020
 
1021
	as_operations->page_table_destroy(page_table);
1022
#endif
1468 jermar 1023
}
1024
 
1044 jermar 1025
/** Lock page table.
1026
 *
1027
 * This function should be called before any page_mapping_insert(),
1028
 * page_mapping_remove() and page_mapping_find().
1029
 * 
1030
 * Locking order is such that address space areas must be locked
1031
 * prior to this call. Address space can be locked prior to this
1032
 * call in which case the lock argument is false.
1033
 *
1034
 * @param as Address space.
1248 jermar 1035
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 1036
 */
1037
void page_table_lock(as_t *as, bool lock)
1038
{
2125 decky 1039
#ifdef __OBJC__
1040
	[as page_table_lock: lock];
1041
#else
1044 jermar 1042
	ASSERT(as_operations);
1043
	ASSERT(as_operations->page_table_lock);
2125 decky 1044
 
1044 jermar 1045
	as_operations->page_table_lock(as, lock);
2125 decky 1046
#endif
1044 jermar 1047
}
1048
 
1049
/** Unlock page table.
1050
 *
1051
 * @param as Address space.
1248 jermar 1052
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 1053
 */
1054
void page_table_unlock(as_t *as, bool unlock)
1055
{
2125 decky 1056
#ifdef __OBJC__
1057
	[as page_table_unlock: unlock];
1058
#else
1044 jermar 1059
	ASSERT(as_operations);
1060
	ASSERT(as_operations->page_table_unlock);
2125 decky 1061
 
1044 jermar 1062
	as_operations->page_table_unlock(as, unlock);
2125 decky 1063
#endif
1044 jermar 1064
}
1065
 
977 jermar 1066
 
1067
/** Find address space area and lock it.
1068
 *
1069
 * The address space must be locked and interrupts must be disabled.
1070
 *
1071
 * @param as Address space.
1072
 * @param va Virtual address.
1073
 *
2087 jermar 1074
 * @return Locked address space area containing va on success or NULL on
1075
 *     failure.
977 jermar 1076
 */
1780 jermar 1077
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1078
{
1079
	as_area_t *a;
1147 jermar 1080
	btree_node_t *leaf, *lnode;
1081
	int i;
977 jermar 1082
 
1147 jermar 1083
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1084
	if (a) {
1085
		/* va is the base address of an address space area */
1380 jermar 1086
		mutex_lock(&a->lock);
1147 jermar 1087
		return a;
1088
	}
1089
 
1090
	/*
1150 jermar 1091
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1092
	 * to find out whether this is a miss or va belongs to an address
1093
	 * space area found there.
1094
	 */
1095
 
1096
	/* First, search the leaf node itself. */
1097
	for (i = 0; i < leaf->keys; i++) {
1098
		a = (as_area_t *) leaf->value[i];
1380 jermar 1099
		mutex_lock(&a->lock);
1147 jermar 1100
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1101
			return a;
1102
		}
1380 jermar 1103
		mutex_unlock(&a->lock);
1147 jermar 1104
	}
977 jermar 1105
 
1147 jermar 1106
	/*
1150 jermar 1107
	 * Second, locate the left neighbour and test its last record.
1148 jermar 1108
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 1109
	 */
2087 jermar 1110
	lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1111
	if (lnode) {
1147 jermar 1112
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1113
		mutex_lock(&a->lock);
1147 jermar 1114
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1115
			return a;
1147 jermar 1116
		}
1380 jermar 1117
		mutex_unlock(&a->lock);
977 jermar 1118
	}
1119
 
1120
	return NULL;
1121
}
1048 jermar 1122
 
1123
/** Check area conflicts with other areas.
1124
 *
1125
 * The address space must be locked and interrupts must be disabled.
1126
 *
1127
 * @param as Address space.
1128
 * @param va Starting virtual address of the area being tested.
1129
 * @param size Size of the area being tested.
1130
 * @param avoid_area Do not touch this area. 
1131
 *
1132
 * @return True if there is no conflict, false otherwise.
1133
 */
2087 jermar 1134
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1135
			  as_area_t *avoid_area)
1048 jermar 1136
{
1137
	as_area_t *a;
1147 jermar 1138
	btree_node_t *leaf, *node;
1139
	int i;
1048 jermar 1140
 
1070 jermar 1141
	/*
1142
	 * We don't want any area to have conflicts with NULL page.
1143
	 */
1144
	if (overlaps(va, size, NULL, PAGE_SIZE))
1145
		return false;
1146
 
1147 jermar 1147
	/*
1148
	 * The leaf node is found in O(log n), where n is proportional to
1149
	 * the number of address space areas belonging to as.
1150
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1151
	 * record in the left neighbour, the leftmost record in the right
1152
	 * neighbour and all records in the leaf node itself.
1147 jermar 1153
	 */
1048 jermar 1154
 
1147 jermar 1155
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1156
		if (a != avoid_area)
1157
			return false;
1158
	}
1159
 
1160
	/* First, check the two border cases. */
1150 jermar 1161
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1162
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1163
		mutex_lock(&a->lock);
1147 jermar 1164
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1165
			mutex_unlock(&a->lock);
1147 jermar 1166
			return false;
1167
		}
1380 jermar 1168
		mutex_unlock(&a->lock);
1147 jermar 1169
	}
2087 jermar 1170
	node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1171
	if (node) {
1147 jermar 1172
		a = (as_area_t *) node->value[0];
1380 jermar 1173
		mutex_lock(&a->lock);
1147 jermar 1174
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1175
			mutex_unlock(&a->lock);
1147 jermar 1176
			return false;
1177
		}
1380 jermar 1178
		mutex_unlock(&a->lock);
1147 jermar 1179
	}
1180
 
1181
	/* Second, check the leaf node. */
1182
	for (i = 0; i < leaf->keys; i++) {
1183
		a = (as_area_t *) leaf->value[i];
1184
 
1048 jermar 1185
		if (a == avoid_area)
1186
			continue;
1147 jermar 1187
 
1380 jermar 1188
		mutex_lock(&a->lock);
1147 jermar 1189
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1190
			mutex_unlock(&a->lock);
1147 jermar 1191
			return false;
1192
		}
1380 jermar 1193
		mutex_unlock(&a->lock);
1048 jermar 1194
	}
1195
 
1070 jermar 1196
	/*
1197
	 * So far, the area does not conflict with other areas.
1198
	 * Check if it doesn't conflict with kernel address space.
1199
	 */	 
1200
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1201
		return !overlaps(va, size, 
2087 jermar 1202
		    KERNEL_ADDRESS_SPACE_START,
1203
		    KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1070 jermar 1204
	}
1205
 
1048 jermar 1206
	return true;
1207
}
1235 jermar 1208
 
1380 jermar 1209
/** Return size of the address space area with given base.  */
1780 jermar 1210
size_t as_get_size(uintptr_t base)
1329 palkovsky 1211
{
1212
	ipl_t ipl;
1213
	as_area_t *src_area;
1214
	size_t size;
1215
 
1216
	ipl = interrupts_disable();
1217
	src_area = find_area_and_lock(AS, base);
1218
	if (src_area){
1219
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1220
		mutex_unlock(&src_area->lock);
1329 palkovsky 1221
	} else {
1222
		size = 0;
1223
	}
1224
	interrupts_restore(ipl);
1225
	return size;
1226
}
1227
 
1387 jermar 1228
/** Mark portion of address space area as used.
1229
 *
1230
 * The address space area must be already locked.
1231
 *
1232
 * @param a Address space area.
1233
 * @param page First page to be marked.
1234
 * @param count Number of page to be marked.
1235
 *
1236
 * @return 0 on failure and 1 on success.
1237
 */
1780 jermar 1238
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1239
{
1240
	btree_node_t *leaf, *node;
1241
	count_t pages;
1242
	int i;
1243
 
1244
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1245
	ASSERT(count);
1246
 
1247
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1248
	if (pages) {
1249
		/*
1250
		 * We hit the beginning of some used space.
1251
		 */
1252
		return 0;
1253
	}
1254
 
1437 jermar 1255
	if (!leaf->keys) {
1256
		btree_insert(&a->used_space, page, (void *) count, leaf);
1257
		return 1;
1258
	}
1259
 
1387 jermar 1260
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1261
	if (node) {
2087 jermar 1262
		uintptr_t left_pg = node->key[node->keys - 1];
1263
		uintptr_t right_pg = leaf->key[0];
1264
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1265
		count_t right_cnt = (count_t) leaf->value[0];
1387 jermar 1266
 
1267
		/*
1268
		 * Examine the possibility that the interval fits
1269
		 * somewhere between the rightmost interval of
1270
		 * the left neigbour and the first interval of the leaf.
1271
		 */
1272
 
1273
		if (page >= right_pg) {
1274
			/* Do nothing. */
2087 jermar 1275
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1276
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1277
			/* The interval intersects with the left interval. */
1278
			return 0;
2087 jermar 1279
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1280
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1281
			/* The interval intersects with the right interval. */
1282
			return 0;			
2087 jermar 1283
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1284
		    (page + count * PAGE_SIZE == right_pg)) {
1285
			/*
1286
			 * The interval can be added by merging the two already
1287
			 * present intervals.
1288
			 */
1403 jermar 1289
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1290
			btree_remove(&a->used_space, right_pg, leaf);
1291
			return 1; 
2087 jermar 1292
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1293
			/* 
1294
			 * The interval can be added by simply growing the left
1295
			 * interval.
1296
			 */
1403 jermar 1297
			node->value[node->keys - 1] += count;
1387 jermar 1298
			return 1;
2087 jermar 1299
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1300
			/*
2087 jermar 1301
			 * The interval can be addded by simply moving base of
1302
			 * the right interval down and increasing its size
1303
			 * accordingly.
1387 jermar 1304
			 */
1403 jermar 1305
			leaf->value[0] += count;
1387 jermar 1306
			leaf->key[0] = page;
1307
			return 1;
1308
		} else {
1309
			/*
1310
			 * The interval is between both neigbouring intervals,
1311
			 * but cannot be merged with any of them.
1312
			 */
2087 jermar 1313
			btree_insert(&a->used_space, page, (void *) count,
1314
			    leaf);
1387 jermar 1315
			return 1;
1316
		}
1317
	} else if (page < leaf->key[0]) {
1780 jermar 1318
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1319
		count_t right_cnt = (count_t) leaf->value[0];
1320
 
1321
		/*
2087 jermar 1322
		 * Investigate the border case in which the left neighbour does
1323
		 * not exist but the interval fits from the left.
1387 jermar 1324
		 */
1325
 
2087 jermar 1326
		if (overlaps(page, count * PAGE_SIZE, right_pg,
1327
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1328
			/* The interval intersects with the right interval. */
1329
			return 0;
2087 jermar 1330
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1331
			/*
2087 jermar 1332
			 * The interval can be added by moving the base of the
1333
			 * right interval down and increasing its size
1334
			 * accordingly.
1387 jermar 1335
			 */
1336
			leaf->key[0] = page;
1403 jermar 1337
			leaf->value[0] += count;
1387 jermar 1338
			return 1;
1339
		} else {
1340
			/*
1341
			 * The interval doesn't adjoin with the right interval.
1342
			 * It must be added individually.
1343
			 */
2087 jermar 1344
			btree_insert(&a->used_space, page, (void *) count,
1345
			    leaf);
1387 jermar 1346
			return 1;
1347
		}
1348
	}
1349
 
1350
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1351
	if (node) {
2087 jermar 1352
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1353
		uintptr_t right_pg = node->key[0];
1354
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1355
		count_t right_cnt = (count_t) node->value[0];
1387 jermar 1356
 
1357
		/*
1358
		 * Examine the possibility that the interval fits
1359
		 * somewhere between the leftmost interval of
1360
		 * the right neigbour and the last interval of the leaf.
1361
		 */
1362
 
1363
		if (page < left_pg) {
1364
			/* Do nothing. */
2087 jermar 1365
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1366
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1367
			/* The interval intersects with the left interval. */
1368
			return 0;
2087 jermar 1369
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1370
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1371
			/* The interval intersects with the right interval. */
1372
			return 0;			
2087 jermar 1373
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1374
		    (page + count * PAGE_SIZE == right_pg)) {
1375
			/*
1376
			 * The interval can be added by merging the two already
1377
			 * present intervals.
1378
			 * */
1403 jermar 1379
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1380
			btree_remove(&a->used_space, right_pg, node);
1381
			return 1; 
2087 jermar 1382
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1383
			/*
1384
			 * The interval can be added by simply growing the left
1385
			 * interval.
1386
			 * */
1403 jermar 1387
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1388
			return 1;
2087 jermar 1389
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1390
			/*
2087 jermar 1391
			 * The interval can be addded by simply moving base of
1392
			 * the right interval down and increasing its size
1393
			 * accordingly.
1387 jermar 1394
			 */
1403 jermar 1395
			node->value[0] += count;
1387 jermar 1396
			node->key[0] = page;
1397
			return 1;
1398
		} else {
1399
			/*
1400
			 * The interval is between both neigbouring intervals,
1401
			 * but cannot be merged with any of them.
1402
			 */
2087 jermar 1403
			btree_insert(&a->used_space, page, (void *) count,
1404
			    leaf);
1387 jermar 1405
			return 1;
1406
		}
1407
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1408
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1409
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1410
 
1411
		/*
2087 jermar 1412
		 * Investigate the border case in which the right neighbour
1413
		 * does not exist but the interval fits from the right.
1387 jermar 1414
		 */
1415
 
2087 jermar 1416
		if (overlaps(page, count * PAGE_SIZE, left_pg,
1417
		    left_cnt * PAGE_SIZE)) {
1403 jermar 1418
			/* The interval intersects with the left interval. */
1387 jermar 1419
			return 0;
2087 jermar 1420
		} else if (left_pg + left_cnt * PAGE_SIZE == page) {
1421
			/*
1422
			 * The interval can be added by growing the left
1423
			 * interval.
1424
			 */
1403 jermar 1425
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1426
			return 1;
1427
		} else {
1428
			/*
1429
			 * The interval doesn't adjoin with the left interval.
1430
			 * It must be added individually.
1431
			 */
2087 jermar 1432
			btree_insert(&a->used_space, page, (void *) count,
1433
			    leaf);
1387 jermar 1434
			return 1;
1435
		}
1436
	}
1437
 
1438
	/*
2087 jermar 1439
	 * Note that if the algorithm made it thus far, the interval can fit
1440
	 * only between two other intervals of the leaf. The two border cases
1441
	 * were already resolved.
1387 jermar 1442
	 */
1443
	for (i = 1; i < leaf->keys; i++) {
1444
		if (page < leaf->key[i]) {
2087 jermar 1445
			uintptr_t left_pg = leaf->key[i - 1];
1446
			uintptr_t right_pg = leaf->key[i];
1447
			count_t left_cnt = (count_t) leaf->value[i - 1];
1448
			count_t right_cnt = (count_t) leaf->value[i];
1387 jermar 1449
 
1450
			/*
1451
			 * The interval fits between left_pg and right_pg.
1452
			 */
1453
 
2087 jermar 1454
			if (overlaps(page, count * PAGE_SIZE, left_pg,
1455
			    left_cnt * PAGE_SIZE)) {
1456
				/*
1457
				 * The interval intersects with the left
1458
				 * interval.
1459
				 */
1387 jermar 1460
				return 0;
2087 jermar 1461
			} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1462
			    right_cnt * PAGE_SIZE)) {
1463
				/*
1464
				 * The interval intersects with the right
1465
				 * interval.
1466
				 */
1387 jermar 1467
				return 0;			
2087 jermar 1468
			} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1469
			    (page + count * PAGE_SIZE == right_pg)) {
1470
				/*
1471
				 * The interval can be added by merging the two
1472
				 * already present intervals.
1473
				 */
1403 jermar 1474
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1475
				btree_remove(&a->used_space, right_pg, leaf);
1476
				return 1; 
2087 jermar 1477
			} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1478
				/*
1479
				 * The interval can be added by simply growing
1480
				 * the left interval.
1481
				 */
1403 jermar 1482
				leaf->value[i - 1] += count;
1387 jermar 1483
				return 1;
2087 jermar 1484
			} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1485
				/*
2087 jermar 1486
			         * The interval can be addded by simply moving
1487
				 * base of the right interval down and
1488
				 * increasing its size accordingly.
1387 jermar 1489
			 	 */
1403 jermar 1490
				leaf->value[i] += count;
1387 jermar 1491
				leaf->key[i] = page;
1492
				return 1;
1493
			} else {
1494
				/*
2087 jermar 1495
				 * The interval is between both neigbouring
1496
				 * intervals, but cannot be merged with any of
1497
				 * them.
1387 jermar 1498
				 */
2087 jermar 1499
				btree_insert(&a->used_space, page,
1500
				    (void *) count, leaf);
1387 jermar 1501
				return 1;
1502
			}
1503
		}
1504
	}
1505
 
2087 jermar 1506
	panic("Inconsistency detected while adding %d pages of used space at "
1507
	    "%p.\n", count, page);
1387 jermar 1508
}
1509
 
1510
/** Mark portion of address space area as unused.
1511
 *
1512
 * The address space area must be already locked.
1513
 *
1514
 * @param a Address space area.
1515
 * @param page First page to be marked.
1516
 * @param count Number of page to be marked.
1517
 *
1518
 * @return 0 on failure and 1 on success.
1519
 */
1780 jermar 1520
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1521
{
1522
	btree_node_t *leaf, *node;
1523
	count_t pages;
1524
	int i;
1525
 
1526
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1527
	ASSERT(count);
1528
 
1529
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1530
	if (pages) {
1531
		/*
1532
		 * We are lucky, page is the beginning of some interval.
1533
		 */
1534
		if (count > pages) {
1535
			return 0;
1536
		} else if (count == pages) {
1537
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1538
			return 1;
1387 jermar 1539
		} else {
1540
			/*
1541
			 * Find the respective interval.
1542
			 * Decrease its size and relocate its start address.
1543
			 */
1544
			for (i = 0; i < leaf->keys; i++) {
1545
				if (leaf->key[i] == page) {
2087 jermar 1546
					leaf->key[i] += count * PAGE_SIZE;
1403 jermar 1547
					leaf->value[i] -= count;
1387 jermar 1548
					return 1;
1549
				}
1550
			}
1551
			goto error;
1552
		}
1553
	}
1554
 
1555
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1556
	if (node && page < leaf->key[0]) {
1780 jermar 1557
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1558
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1559
 
2087 jermar 1560
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1561
		    count * PAGE_SIZE)) {
1562
			if (page + count * PAGE_SIZE ==
1563
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1564
				/*
2087 jermar 1565
				 * The interval is contained in the rightmost
1566
				 * interval of the left neighbour and can be
1567
				 * removed by updating the size of the bigger
1568
				 * interval.
1387 jermar 1569
				 */
1403 jermar 1570
				node->value[node->keys - 1] -= count;
1387 jermar 1571
				return 1;
2087 jermar 1572
			} else if (page + count * PAGE_SIZE <
1573
			    left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1574
				count_t new_cnt;
1387 jermar 1575
 
1576
				/*
2087 jermar 1577
				 * The interval is contained in the rightmost
1578
				 * interval of the left neighbour but its
1579
				 * removal requires both updating the size of
1580
				 * the original interval and also inserting a
1581
				 * new interval.
1387 jermar 1582
				 */
2087 jermar 1583
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1584
				    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1585
				node->value[node->keys - 1] -= count + new_cnt;
2087 jermar 1586
				btree_insert(&a->used_space, page +
1587
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1588
				return 1;
1589
			}
1590
		}
1591
		return 0;
1592
	} else if (page < leaf->key[0]) {
1593
		return 0;
1594
	}
1595
 
1596
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1597
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1598
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1599
 
2087 jermar 1600
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1601
		    count * PAGE_SIZE)) {
1602
			if (page + count * PAGE_SIZE == 
1603
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1604
				/*
2087 jermar 1605
				 * The interval is contained in the rightmost
1606
				 * interval of the leaf and can be removed by
1607
				 * updating the size of the bigger interval.
1387 jermar 1608
				 */
1403 jermar 1609
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1610
				return 1;
2087 jermar 1611
			} else if (page + count * PAGE_SIZE < left_pg +
1612
			    left_cnt * PAGE_SIZE) {
1403 jermar 1613
				count_t new_cnt;
1387 jermar 1614
 
1615
				/*
2087 jermar 1616
				 * The interval is contained in the rightmost
1617
				 * interval of the leaf but its removal
1618
				 * requires both updating the size of the
1619
				 * original interval and also inserting a new
1620
				 * interval.
1387 jermar 1621
				 */
2087 jermar 1622
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1623
				    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1624
				leaf->value[leaf->keys - 1] -= count + new_cnt;
2087 jermar 1625
				btree_insert(&a->used_space, page +
1626
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1627
				return 1;
1628
			}
1629
		}
1630
		return 0;
1631
	}	
1632
 
1633
	/*
1634
	 * The border cases have been already resolved.
1635
	 * Now the interval can be only between intervals of the leaf. 
1636
	 */
1637
	for (i = 1; i < leaf->keys - 1; i++) {
1638
		if (page < leaf->key[i]) {
1780 jermar 1639
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1640
			count_t left_cnt = (count_t) leaf->value[i - 1];
1641
 
1642
			/*
2087 jermar 1643
			 * Now the interval is between intervals corresponding
1644
			 * to (i - 1) and i.
1387 jermar 1645
			 */
2087 jermar 1646
			if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1647
			    count * PAGE_SIZE)) {
1648
				if (page + count * PAGE_SIZE ==
1649
				    left_pg + left_cnt*PAGE_SIZE) {
1387 jermar 1650
					/*
2087 jermar 1651
					 * The interval is contained in the
1652
					 * interval (i - 1) of the leaf and can
1653
					 * be removed by updating the size of
1654
					 * the bigger interval.
1387 jermar 1655
					 */
1403 jermar 1656
					leaf->value[i - 1] -= count;
1387 jermar 1657
					return 1;
2087 jermar 1658
				} else if (page + count * PAGE_SIZE <
1659
				    left_pg + left_cnt * PAGE_SIZE) {
1403 jermar 1660
					count_t new_cnt;
1387 jermar 1661
 
1662
					/*
2087 jermar 1663
					 * The interval is contained in the
1664
					 * interval (i - 1) of the leaf but its
1665
					 * removal requires both updating the
1666
					 * size of the original interval and
1387 jermar 1667
					 * also inserting a new interval.
1668
					 */
2087 jermar 1669
					new_cnt = ((left_pg +
1670
					    left_cnt * PAGE_SIZE) -
1671
					    (page + count * PAGE_SIZE)) >>
1672
					    PAGE_WIDTH;
1403 jermar 1673
					leaf->value[i - 1] -= count + new_cnt;
2087 jermar 1674
					btree_insert(&a->used_space, page +
1675
					    count * PAGE_SIZE, (void *) new_cnt,
1676
					    leaf);
1387 jermar 1677
					return 1;
1678
				}
1679
			}
1680
			return 0;
1681
		}
1682
	}
1683
 
1684
error:
2087 jermar 1685
	panic("Inconsistency detected while removing %d pages of used space "
1686
	    "from %p.\n", count, page);
1387 jermar 1687
}
1688
 
1409 jermar 1689
/** Remove reference to address space area share info.
1690
 *
1691
 * If the reference count drops to 0, the sh_info is deallocated.
1692
 *
1693
 * @param sh_info Pointer to address space area share info.
1694
 */
1695
void sh_info_remove_reference(share_info_t *sh_info)
1696
{
1697
	bool dealloc = false;
1698
 
1699
	mutex_lock(&sh_info->lock);
1700
	ASSERT(sh_info->refcount);
1701
	if (--sh_info->refcount == 0) {
1702
		dealloc = true;
1495 jermar 1703
		link_t *cur;
1409 jermar 1704
 
1705
		/*
1706
		 * Now walk carefully the pagemap B+tree and free/remove
1707
		 * reference from all frames found there.
1708
		 */
2087 jermar 1709
		for (cur = sh_info->pagemap.leaf_head.next;
1710
		    cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1711
			btree_node_t *node;
1495 jermar 1712
			int i;
1409 jermar 1713
 
1495 jermar 1714
			node = list_get_instance(cur, btree_node_t, leaf_link);
1715
			for (i = 0; i < node->keys; i++) 
1780 jermar 1716
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1717
		}
1718
 
1719
	}
1720
	mutex_unlock(&sh_info->lock);
1721
 
1722
	if (dealloc) {
1723
		btree_destroy(&sh_info->pagemap);
1724
		free(sh_info);
1725
	}
1726
}
1727
 
1235 jermar 1728
/*
1729
 * Address space related syscalls.
1730
 */
1731
 
1732
/** Wrapper for as_area_create(). */
1780 jermar 1733
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1734
{
2087 jermar 1735
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1736
	    AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1737
		return (unative_t) address;
1235 jermar 1738
	else
1780 jermar 1739
		return (unative_t) -1;
1235 jermar 1740
}
1741
 
1793 jermar 1742
/** Wrapper for as_area_resize(). */
1780 jermar 1743
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1744
{
1780 jermar 1745
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1746
}
1747
 
1793 jermar 1748
/** Wrapper for as_area_destroy(). */
1780 jermar 1749
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1750
{
1780 jermar 1751
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1752
}
1702 cejka 1753
 
1914 jermar 1754
/** Print out information about address space.
1755
 *
1756
 * @param as Address space.
1757
 */
1758
void as_print(as_t *as)
1759
{
1760
	ipl_t ipl;
1761
 
1762
	ipl = interrupts_disable();
1763
	mutex_lock(&as->lock);
1764
 
1765
	/* print out info about address space areas */
1766
	link_t *cur;
2087 jermar 1767
	for (cur = as->as_area_btree.leaf_head.next;
1768
	    cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1769
		btree_node_t *node;
1914 jermar 1770
 
2087 jermar 1771
		node = list_get_instance(cur, btree_node_t, leaf_link);
1772
 
1914 jermar 1773
		int i;
1774
		for (i = 0; i < node->keys; i++) {
1915 jermar 1775
			as_area_t *area = node->value[i];
1914 jermar 1776
 
1777
			mutex_lock(&area->lock);
1778
			printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
2087 jermar 1779
			    area, area->base, area->pages, area->base,
1780
			    area->base + area->pages*PAGE_SIZE);
1914 jermar 1781
			mutex_unlock(&area->lock);
1782
		}
1783
	}
1784
 
1785
	mutex_unlock(&as->lock);
1786
	interrupts_restore(ipl);
1787
}
1788
 
1757 jermar 1789
/** @}
1702 cejka 1790
 */