Subversion Repositories HelenOS

Rev

Rev 1793 | Rev 1889 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
77
#include <typedefs.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
1757 jermar 81
/**
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
84
 */
756 jermar 85
as_operations_t *as_operations = NULL;
703 jermar 86
 
1415 jermar 87
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
88
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 89
 
90
/**
91
 * This list contains address spaces that are not active on any
92
 * processor and that have valid ASID.
93
 */
94
LIST_INITIALIZE(inactive_as_with_asid_head);
95
 
757 jermar 96
/** Kernel address space. */
97
as_t *AS_KERNEL = NULL;
98
 
1235 jermar 99
static int area_flags_to_page_flags(int aflags);
1780 jermar 100
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
101
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
1409 jermar 102
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 103
 
756 jermar 104
/** Initialize address space subsystem. */
105
void as_init(void)
106
{
107
	as_arch_init();
789 palkovsky 108
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 109
	if (!AS_KERNEL)
110
		panic("can't create kernel address space\n");
111
 
756 jermar 112
}
113
 
757 jermar 114
/** Create address space.
115
 *
116
 * @param flags Flags that influence way in wich the address space is created.
117
 */
756 jermar 118
as_t *as_create(int flags)
703 jermar 119
{
120
	as_t *as;
121
 
822 palkovsky 122
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 123
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 124
	mutex_initialize(&as->lock);
1147 jermar 125
	btree_create(&as->as_area_btree);
822 palkovsky 126
 
127
	if (flags & FLAG_AS_KERNEL)
128
		as->asid = ASID_KERNEL;
129
	else
130
		as->asid = ASID_INVALID;
131
 
1468 jermar 132
	as->refcount = 0;
1415 jermar 133
	as->cpu_refcount = 0;
822 palkovsky 134
	as->page_table = page_table_create(flags);
703 jermar 135
 
136
	return as;
137
}
138
 
1468 jermar 139
/** Destroy adress space.
140
 *
141
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
142
 * the address space can be destroyed.
143
 */
144
void as_destroy(as_t *as)
973 palkovsky 145
{
1468 jermar 146
	ipl_t ipl;
1594 jermar 147
	bool cond;
973 palkovsky 148
 
1468 jermar 149
	ASSERT(as->refcount == 0);
150
 
151
	/*
152
	 * Since there is no reference to this area,
153
	 * it is safe not to lock its mutex.
154
	 */
155
	ipl = interrupts_disable();
156
	spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 157
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 158
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 159
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 160
		asid_put(as->asid);
161
	}
162
	spinlock_unlock(&inactive_as_with_asid_lock);
163
 
164
	/*
165
	 * Destroy address space areas of the address space.
1594 jermar 166
	 * The B+tee must be walked carefully because it is
167
	 * also being destroyed.
1468 jermar 168
	 */	
1594 jermar 169
	for (cond = true; cond; ) {
1468 jermar 170
		btree_node_t *node;
1594 jermar 171
 
172
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
173
		node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
174
 
175
		if ((cond = node->keys)) {
176
			as_area_destroy(as, node->key[0]);
177
		}
1468 jermar 178
	}
1495 jermar 179
 
1483 jermar 180
	btree_destroy(&as->as_area_btree);
1468 jermar 181
	page_table_destroy(as->page_table);
182
 
183
	interrupts_restore(ipl);
184
 
973 palkovsky 185
	free(as);
186
}
187
 
703 jermar 188
/** Create address space area of common attributes.
189
 *
190
 * The created address space area is added to the target address space.
191
 *
192
 * @param as Target address space.
1239 jermar 193
 * @param flags Flags of the area memory.
1048 jermar 194
 * @param size Size of area.
703 jermar 195
 * @param base Base address of area.
1239 jermar 196
 * @param attrs Attributes of the area.
1409 jermar 197
 * @param backend Address space area backend. NULL if no backend is used.
198
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 199
 *
200
 * @return Address space area on success or NULL on failure.
201
 */
1780 jermar 202
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 203
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 204
{
205
	ipl_t ipl;
206
	as_area_t *a;
207
 
208
	if (base % PAGE_SIZE)
1048 jermar 209
		return NULL;
210
 
1233 jermar 211
	if (!size)
212
		return NULL;
213
 
1048 jermar 214
	/* Writeable executable areas are not supported. */
215
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
216
		return NULL;
703 jermar 217
 
218
	ipl = interrupts_disable();
1380 jermar 219
	mutex_lock(&as->lock);
703 jermar 220
 
1048 jermar 221
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 222
		mutex_unlock(&as->lock);
1048 jermar 223
		interrupts_restore(ipl);
224
		return NULL;
225
	}
703 jermar 226
 
822 palkovsky 227
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 228
 
1380 jermar 229
	mutex_initialize(&a->lock);
822 palkovsky 230
 
1424 jermar 231
	a->as = as;
1026 jermar 232
	a->flags = flags;
1239 jermar 233
	a->attributes = attrs;
1048 jermar 234
	a->pages = SIZE2FRAMES(size);
822 palkovsky 235
	a->base = base;
1409 jermar 236
	a->sh_info = NULL;
237
	a->backend = backend;
1424 jermar 238
	if (backend_data)
239
		a->backend_data = *backend_data;
240
	else
1780 jermar 241
		memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 242
 
1387 jermar 243
	btree_create(&a->used_space);
822 palkovsky 244
 
1147 jermar 245
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 246
 
1380 jermar 247
	mutex_unlock(&as->lock);
703 jermar 248
	interrupts_restore(ipl);
704 jermar 249
 
703 jermar 250
	return a;
251
}
252
 
1235 jermar 253
/** Find address space area and change it.
254
 *
255
 * @param as Address space.
256
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
257
 * @param size New size of the virtual memory block starting at address. 
258
 * @param flags Flags influencing the remap operation. Currently unused.
259
 *
1306 jermar 260
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 261
 */ 
1780 jermar 262
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 263
{
1306 jermar 264
	as_area_t *area;
1235 jermar 265
	ipl_t ipl;
266
	size_t pages;
267
 
268
	ipl = interrupts_disable();
1380 jermar 269
	mutex_lock(&as->lock);
1235 jermar 270
 
271
	/*
272
	 * Locate the area.
273
	 */
274
	area = find_area_and_lock(as, address);
275
	if (!area) {
1380 jermar 276
		mutex_unlock(&as->lock);
1235 jermar 277
		interrupts_restore(ipl);
1306 jermar 278
		return ENOENT;
1235 jermar 279
	}
280
 
1424 jermar 281
	if (area->backend == &phys_backend) {
1235 jermar 282
		/*
283
		 * Remapping of address space areas associated
284
		 * with memory mapped devices is not supported.
285
		 */
1380 jermar 286
		mutex_unlock(&area->lock);
287
		mutex_unlock(&as->lock);
1235 jermar 288
		interrupts_restore(ipl);
1306 jermar 289
		return ENOTSUP;
1235 jermar 290
	}
1409 jermar 291
	if (area->sh_info) {
292
		/*
293
		 * Remapping of shared address space areas 
294
		 * is not supported.
295
		 */
296
		mutex_unlock(&area->lock);
297
		mutex_unlock(&as->lock);
298
		interrupts_restore(ipl);
299
		return ENOTSUP;
300
	}
1235 jermar 301
 
302
	pages = SIZE2FRAMES((address - area->base) + size);
303
	if (!pages) {
304
		/*
305
		 * Zero size address space areas are not allowed.
306
		 */
1380 jermar 307
		mutex_unlock(&area->lock);
308
		mutex_unlock(&as->lock);
1235 jermar 309
		interrupts_restore(ipl);
1306 jermar 310
		return EPERM;
1235 jermar 311
	}
312
 
313
	if (pages < area->pages) {
1403 jermar 314
		bool cond;
1780 jermar 315
		uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 316
 
317
		/*
318
		 * Shrinking the area.
319
		 * No need to check for overlaps.
320
		 */
1403 jermar 321
 
322
		/*
1436 jermar 323
		 * Start TLB shootdown sequence.
324
		 */
325
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
326
 
327
		/*
1403 jermar 328
		 * Remove frames belonging to used space starting from
329
		 * the highest addresses downwards until an overlap with
330
		 * the resized address space area is found. Note that this
331
		 * is also the right way to remove part of the used_space
332
		 * B+tree leaf list.
333
		 */		
334
		for (cond = true; cond;) {
335
			btree_node_t *node;
336
 
337
			ASSERT(!list_empty(&area->used_space.leaf_head));
338
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
339
			if ((cond = (bool) node->keys)) {
1780 jermar 340
				uintptr_t b = node->key[node->keys - 1];
1403 jermar 341
				count_t c = (count_t) node->value[node->keys - 1];
342
				int i = 0;
1235 jermar 343
 
1403 jermar 344
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
345
 
346
					if (b + c*PAGE_SIZE <= start_free) {
347
						/*
348
						 * The whole interval fits completely
349
						 * in the resized address space area.
350
						 */
351
						break;
352
					}
353
 
354
					/*
355
					 * Part of the interval corresponding to b and c
356
					 * overlaps with the resized address space area.
357
					 */
358
 
359
					cond = false;	/* we are almost done */
360
					i = (start_free - b) >> PAGE_WIDTH;
361
					if (!used_space_remove(area, start_free, c - i))
362
						panic("Could not remove used space.");
363
				} else {
364
					/*
365
					 * The interval of used space can be completely removed.
366
					 */
367
					if (!used_space_remove(area, b, c))
368
						panic("Could not remove used space.\n");
369
				}
370
 
371
				for (; i < c; i++) {
372
					pte_t *pte;
373
 
374
					page_table_lock(as, false);
375
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
376
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 377
					if (area->backend && area->backend->frame_free) {
378
						area->backend->frame_free(area,
1409 jermar 379
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
380
					}
1403 jermar 381
					page_mapping_remove(as, b + i*PAGE_SIZE);
382
					page_table_unlock(as, false);
383
				}
1235 jermar 384
			}
385
		}
1436 jermar 386
 
1235 jermar 387
		/*
1436 jermar 388
		 * Finish TLB shootdown sequence.
1235 jermar 389
		 */
390
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
391
		tlb_shootdown_finalize();
392
	} else {
393
		/*
394
		 * Growing the area.
395
		 * Check for overlaps with other address space areas.
396
		 */
397
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 398
			mutex_unlock(&area->lock);
399
			mutex_unlock(&as->lock);		
1235 jermar 400
			interrupts_restore(ipl);
1306 jermar 401
			return EADDRNOTAVAIL;
1235 jermar 402
		}
403
	} 
404
 
405
	area->pages = pages;
406
 
1380 jermar 407
	mutex_unlock(&area->lock);
408
	mutex_unlock(&as->lock);
1235 jermar 409
	interrupts_restore(ipl);
410
 
1306 jermar 411
	return 0;
1235 jermar 412
}
413
 
1306 jermar 414
/** Destroy address space area.
415
 *
416
 * @param as Address space.
417
 * @param address Address withing the area to be deleted.
418
 *
419
 * @return Zero on success or a value from @ref errno.h on failure. 
420
 */
1780 jermar 421
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 422
{
423
	as_area_t *area;
1780 jermar 424
	uintptr_t base;
1495 jermar 425
	link_t *cur;
1306 jermar 426
	ipl_t ipl;
427
 
428
	ipl = interrupts_disable();
1380 jermar 429
	mutex_lock(&as->lock);
1306 jermar 430
 
431
	area = find_area_and_lock(as, address);
432
	if (!area) {
1380 jermar 433
		mutex_unlock(&as->lock);
1306 jermar 434
		interrupts_restore(ipl);
435
		return ENOENT;
436
	}
437
 
1403 jermar 438
	base = area->base;
439
 
1411 jermar 440
	/*
1436 jermar 441
	 * Start TLB shootdown sequence.
442
	 */
443
	tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
444
 
445
	/*
1411 jermar 446
	 * Visit only the pages mapped by used_space B+tree.
447
	 */
1495 jermar 448
	for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 449
		btree_node_t *node;
1495 jermar 450
		int i;
1403 jermar 451
 
1495 jermar 452
		node = list_get_instance(cur, btree_node_t, leaf_link);
453
		for (i = 0; i < node->keys; i++) {
1780 jermar 454
			uintptr_t b = node->key[i];
1495 jermar 455
			count_t j;
1411 jermar 456
			pte_t *pte;
1403 jermar 457
 
1495 jermar 458
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 459
				page_table_lock(as, false);
1495 jermar 460
				pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 461
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 462
				if (area->backend && area->backend->frame_free) {
463
					area->backend->frame_free(area,
1495 jermar 464
						b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 465
				}
1495 jermar 466
				page_mapping_remove(as, b + j*PAGE_SIZE);
1411 jermar 467
				page_table_unlock(as, false);
1306 jermar 468
			}
469
		}
470
	}
1403 jermar 471
 
1306 jermar 472
	/*
1436 jermar 473
	 * Finish TLB shootdown sequence.
1306 jermar 474
	 */
475
	tlb_invalidate_pages(AS->asid, area->base, area->pages);
476
	tlb_shootdown_finalize();
1436 jermar 477
 
478
	btree_destroy(&area->used_space);
1306 jermar 479
 
1309 jermar 480
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 481
 
482
	if (area->sh_info)
483
		sh_info_remove_reference(area->sh_info);
484
 
1380 jermar 485
	mutex_unlock(&area->lock);
1306 jermar 486
 
487
	/*
488
	 * Remove the empty area from address space.
489
	 */
490
	btree_remove(&AS->as_area_btree, base, NULL);
491
 
1309 jermar 492
	free(area);
493
 
1380 jermar 494
	mutex_unlock(&AS->lock);
1306 jermar 495
	interrupts_restore(ipl);
496
	return 0;
497
}
498
 
1413 jermar 499
/** Share address space area with another or the same address space.
1235 jermar 500
 *
1424 jermar 501
 * Address space area mapping is shared with a new address space area.
502
 * If the source address space area has not been shared so far,
503
 * a new sh_info is created. The new address space area simply gets the
504
 * sh_info of the source area. The process of duplicating the
505
 * mapping is done through the backend share function.
1413 jermar 506
 * 
1417 jermar 507
 * @param src_as Pointer to source address space.
1239 jermar 508
 * @param src_base Base address of the source address space area.
1417 jermar 509
 * @param acc_size Expected size of the source area.
1428 palkovsky 510
 * @param dst_as Pointer to destination address space.
1417 jermar 511
 * @param dst_base Target base address.
512
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 513
 *
1306 jermar 514
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 515
 *	   if there is no such address space area,
516
 *	   EPERM if there was a problem in accepting the area or
517
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 518
 *	   address space area. ENOTSUP is returned if an attempt
519
 *	   to share non-anonymous address space area is detected.
1235 jermar 520
 */
1780 jermar 521
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
522
		  as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 523
{
524
	ipl_t ipl;
1239 jermar 525
	int src_flags;
526
	size_t src_size;
527
	as_area_t *src_area, *dst_area;
1413 jermar 528
	share_info_t *sh_info;
1424 jermar 529
	mem_backend_t *src_backend;
530
	mem_backend_data_t src_backend_data;
1434 palkovsky 531
 
1235 jermar 532
	ipl = interrupts_disable();
1380 jermar 533
	mutex_lock(&src_as->lock);
1329 palkovsky 534
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 535
	if (!src_area) {
1238 jermar 536
		/*
537
		 * Could not find the source address space area.
538
		 */
1380 jermar 539
		mutex_unlock(&src_as->lock);
1238 jermar 540
		interrupts_restore(ipl);
541
		return ENOENT;
542
	}
1413 jermar 543
 
1424 jermar 544
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 545
		/*
1851 jermar 546
		 * There is no backend or the backend does not
1424 jermar 547
		 * know how to share the area.
1413 jermar 548
		 */
549
		mutex_unlock(&src_area->lock);
550
		mutex_unlock(&src_as->lock);
551
		interrupts_restore(ipl);
552
		return ENOTSUP;
553
	}
554
 
1239 jermar 555
	src_size = src_area->pages * PAGE_SIZE;
556
	src_flags = src_area->flags;
1424 jermar 557
	src_backend = src_area->backend;
558
	src_backend_data = src_area->backend_data;
1544 palkovsky 559
 
560
	/* Share the cacheable flag from the original mapping */
561
	if (src_flags & AS_AREA_CACHEABLE)
562
		dst_flags_mask |= AS_AREA_CACHEABLE;
563
 
1461 palkovsky 564
	if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 565
		mutex_unlock(&src_area->lock);
566
		mutex_unlock(&src_as->lock);
1235 jermar 567
		interrupts_restore(ipl);
568
		return EPERM;
569
	}
1413 jermar 570
 
1235 jermar 571
	/*
1413 jermar 572
	 * Now we are committed to sharing the area.
573
	 * First prepare the area for sharing.
574
	 * Then it will be safe to unlock it.
575
	 */
576
	sh_info = src_area->sh_info;
577
	if (!sh_info) {
578
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
579
		mutex_initialize(&sh_info->lock);
580
		sh_info->refcount = 2;
581
		btree_create(&sh_info->pagemap);
582
		src_area->sh_info = sh_info;
583
	} else {
584
		mutex_lock(&sh_info->lock);
585
		sh_info->refcount++;
586
		mutex_unlock(&sh_info->lock);
587
	}
588
 
1424 jermar 589
	src_area->backend->share(src_area);
1413 jermar 590
 
591
	mutex_unlock(&src_area->lock);
592
	mutex_unlock(&src_as->lock);
593
 
594
	/*
1239 jermar 595
	 * Create copy of the source address space area.
596
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
597
	 * attribute set which prevents race condition with
598
	 * preliminary as_page_fault() calls.
1417 jermar 599
	 * The flags of the source area are masked against dst_flags_mask
600
	 * to support sharing in less privileged mode.
1235 jermar 601
	 */
1461 palkovsky 602
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 603
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 604
	if (!dst_area) {
1235 jermar 605
		/*
606
		 * Destination address space area could not be created.
607
		 */
1413 jermar 608
		sh_info_remove_reference(sh_info);
609
 
1235 jermar 610
		interrupts_restore(ipl);
611
		return ENOMEM;
612
	}
613
 
614
	/*
1239 jermar 615
	 * Now the destination address space area has been
616
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 617
	 * attribute and set the sh_info.
1239 jermar 618
	 */	
1380 jermar 619
	mutex_lock(&dst_area->lock);
1239 jermar 620
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 621
	dst_area->sh_info = sh_info;
1380 jermar 622
	mutex_unlock(&dst_area->lock);
1235 jermar 623
 
624
	interrupts_restore(ipl);
625
 
626
	return 0;
627
}
628
 
1423 jermar 629
/** Check access mode for address space area.
630
 *
631
 * The address space area must be locked prior to this call.
632
 *
633
 * @param area Address space area.
634
 * @param access Access mode.
635
 *
636
 * @return False if access violates area's permissions, true otherwise.
637
 */
638
bool as_area_check_access(as_area_t *area, pf_access_t access)
639
{
640
	int flagmap[] = {
641
		[PF_ACCESS_READ] = AS_AREA_READ,
642
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
643
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
644
	};
645
 
646
	if (!(area->flags & flagmap[access]))
647
		return false;
648
 
649
	return true;
650
}
651
 
703 jermar 652
/** Handle page fault within the current address space.
653
 *
1409 jermar 654
 * This is the high-level page fault handler. It decides
655
 * whether the page fault can be resolved by any backend
656
 * and if so, it invokes the backend to resolve the page
657
 * fault.
658
 *
703 jermar 659
 * Interrupts are assumed disabled.
660
 *
661
 * @param page Faulting page.
1411 jermar 662
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 663
 * @param istate Pointer to interrupted state.
703 jermar 664
 *
1409 jermar 665
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
666
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 667
 */
1780 jermar 668
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 669
{
1044 jermar 670
	pte_t *pte;
977 jermar 671
	as_area_t *area;
703 jermar 672
 
1380 jermar 673
	if (!THREAD)
1409 jermar 674
		return AS_PF_FAULT;
1380 jermar 675
 
703 jermar 676
	ASSERT(AS);
1044 jermar 677
 
1380 jermar 678
	mutex_lock(&AS->lock);
977 jermar 679
	area = find_area_and_lock(AS, page);	
703 jermar 680
	if (!area) {
681
		/*
682
		 * No area contained mapping for 'page'.
683
		 * Signal page fault to low-level handler.
684
		 */
1380 jermar 685
		mutex_unlock(&AS->lock);
1288 jermar 686
		goto page_fault;
703 jermar 687
	}
688
 
1239 jermar 689
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
690
		/*
691
		 * The address space area is not fully initialized.
692
		 * Avoid possible race by returning error.
693
		 */
1380 jermar 694
		mutex_unlock(&area->lock);
695
		mutex_unlock(&AS->lock);
1288 jermar 696
		goto page_fault;		
1239 jermar 697
	}
698
 
1424 jermar 699
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 700
		/*
701
		 * The address space area is not backed by any backend
702
		 * or the backend cannot handle page faults.
703
		 */
704
		mutex_unlock(&area->lock);
705
		mutex_unlock(&AS->lock);
706
		goto page_fault;		
707
	}
1179 jermar 708
 
1044 jermar 709
	page_table_lock(AS, false);
710
 
703 jermar 711
	/*
1044 jermar 712
	 * To avoid race condition between two page faults
713
	 * on the same address, we need to make sure
714
	 * the mapping has not been already inserted.
715
	 */
716
	if ((pte = page_mapping_find(AS, page))) {
717
		if (PTE_PRESENT(pte)) {
1423 jermar 718
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
719
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
720
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
721
				page_table_unlock(AS, false);
722
				mutex_unlock(&area->lock);
723
				mutex_unlock(&AS->lock);
724
				return AS_PF_OK;
725
			}
1044 jermar 726
		}
727
	}
1409 jermar 728
 
1044 jermar 729
	/*
1409 jermar 730
	 * Resort to the backend page fault handler.
703 jermar 731
	 */
1424 jermar 732
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 733
		page_table_unlock(AS, false);
734
		mutex_unlock(&area->lock);
735
		mutex_unlock(&AS->lock);
736
		goto page_fault;
737
	}
703 jermar 738
 
1044 jermar 739
	page_table_unlock(AS, false);
1380 jermar 740
	mutex_unlock(&area->lock);
741
	mutex_unlock(&AS->lock);
1288 jermar 742
	return AS_PF_OK;
743
 
744
page_fault:
745
	if (THREAD->in_copy_from_uspace) {
746
		THREAD->in_copy_from_uspace = false;
1780 jermar 747
		istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 748
	} else if (THREAD->in_copy_to_uspace) {
749
		THREAD->in_copy_to_uspace = false;
1780 jermar 750
		istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 751
	} else {
752
		return AS_PF_FAULT;
753
	}
754
 
755
	return AS_PF_DEFER;
703 jermar 756
}
757
 
823 jermar 758
/** Switch address spaces.
703 jermar 759
 *
1380 jermar 760
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 761
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 762
 *
823 jermar 763
 * @param old Old address space or NULL.
764
 * @param new New address space.
703 jermar 765
 */
823 jermar 766
void as_switch(as_t *old, as_t *new)
703 jermar 767
{
768
	ipl_t ipl;
823 jermar 769
	bool needs_asid = false;
703 jermar 770
 
771
	ipl = interrupts_disable();
1415 jermar 772
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 773
 
774
	/*
823 jermar 775
	 * First, take care of the old address space.
776
	 */	
777
	if (old) {
1380 jermar 778
		mutex_lock_active(&old->lock);
1415 jermar 779
		ASSERT(old->cpu_refcount);
780
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 781
			/*
782
			 * The old address space is no longer active on
783
			 * any processor. It can be appended to the
784
			 * list of inactive address spaces with assigned
785
			 * ASID.
786
			 */
787
			 ASSERT(old->asid != ASID_INVALID);
788
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
789
		}
1380 jermar 790
		mutex_unlock(&old->lock);
823 jermar 791
	}
792
 
793
	/*
794
	 * Second, prepare the new address space.
795
	 */
1380 jermar 796
	mutex_lock_active(&new->lock);
1415 jermar 797
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 798
		if (new->asid != ASID_INVALID)
799
			list_remove(&new->inactive_as_with_asid_link);
800
		else
801
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
802
	}
803
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 804
	mutex_unlock(&new->lock);
823 jermar 805
 
806
	if (needs_asid) {
807
		/*
808
		 * Allocation of new ASID was deferred
809
		 * until now in order to avoid deadlock.
810
		 */
811
		asid_t asid;
812
 
813
		asid = asid_get();
1380 jermar 814
		mutex_lock_active(&new->lock);
823 jermar 815
		new->asid = asid;
1380 jermar 816
		mutex_unlock(&new->lock);
823 jermar 817
	}
1415 jermar 818
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 819
	interrupts_restore(ipl);
820
 
821
	/*
703 jermar 822
	 * Perform architecture-specific steps.
727 jermar 823
	 * (e.g. write ASID to hardware register etc.)
703 jermar 824
	 */
823 jermar 825
	as_install_arch(new);
703 jermar 826
 
823 jermar 827
	AS = new;
703 jermar 828
}
754 jermar 829
 
1235 jermar 830
/** Convert address space area flags to page flags.
754 jermar 831
 *
1235 jermar 832
 * @param aflags Flags of some address space area.
754 jermar 833
 *
1235 jermar 834
 * @return Flags to be passed to page_mapping_insert().
754 jermar 835
 */
1235 jermar 836
int area_flags_to_page_flags(int aflags)
754 jermar 837
{
838
	int flags;
839
 
1178 jermar 840
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 841
 
1235 jermar 842
	if (aflags & AS_AREA_READ)
1026 jermar 843
		flags |= PAGE_READ;
844
 
1235 jermar 845
	if (aflags & AS_AREA_WRITE)
1026 jermar 846
		flags |= PAGE_WRITE;
847
 
1235 jermar 848
	if (aflags & AS_AREA_EXEC)
1026 jermar 849
		flags |= PAGE_EXEC;
850
 
1424 jermar 851
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 852
		flags |= PAGE_CACHEABLE;
853
 
754 jermar 854
	return flags;
855
}
756 jermar 856
 
1235 jermar 857
/** Compute flags for virtual address translation subsytem.
858
 *
859
 * The address space area must be locked.
860
 * Interrupts must be disabled.
861
 *
862
 * @param a Address space area.
863
 *
864
 * @return Flags to be used in page_mapping_insert().
865
 */
1409 jermar 866
int as_area_get_flags(as_area_t *a)
1235 jermar 867
{
868
	return area_flags_to_page_flags(a->flags);
869
}
870
 
756 jermar 871
/** Create page table.
872
 *
873
 * Depending on architecture, create either address space
874
 * private or global page table.
875
 *
876
 * @param flags Flags saying whether the page table is for kernel address space.
877
 *
878
 * @return First entry of the page table.
879
 */
880
pte_t *page_table_create(int flags)
881
{
882
        ASSERT(as_operations);
883
        ASSERT(as_operations->page_table_create);
884
 
885
        return as_operations->page_table_create(flags);
886
}
977 jermar 887
 
1468 jermar 888
/** Destroy page table.
889
 *
890
 * Destroy page table in architecture specific way.
891
 *
892
 * @param page_table Physical address of PTL0.
893
 */
894
void page_table_destroy(pte_t *page_table)
895
{
896
        ASSERT(as_operations);
897
        ASSERT(as_operations->page_table_destroy);
898
 
899
        as_operations->page_table_destroy(page_table);
900
}
901
 
1044 jermar 902
/** Lock page table.
903
 *
904
 * This function should be called before any page_mapping_insert(),
905
 * page_mapping_remove() and page_mapping_find().
906
 * 
907
 * Locking order is such that address space areas must be locked
908
 * prior to this call. Address space can be locked prior to this
909
 * call in which case the lock argument is false.
910
 *
911
 * @param as Address space.
1248 jermar 912
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 913
 */
914
void page_table_lock(as_t *as, bool lock)
915
{
916
	ASSERT(as_operations);
917
	ASSERT(as_operations->page_table_lock);
918
 
919
	as_operations->page_table_lock(as, lock);
920
}
921
 
922
/** Unlock page table.
923
 *
924
 * @param as Address space.
1248 jermar 925
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 926
 */
927
void page_table_unlock(as_t *as, bool unlock)
928
{
929
	ASSERT(as_operations);
930
	ASSERT(as_operations->page_table_unlock);
931
 
932
	as_operations->page_table_unlock(as, unlock);
933
}
934
 
977 jermar 935
 
936
/** Find address space area and lock it.
937
 *
938
 * The address space must be locked and interrupts must be disabled.
939
 *
940
 * @param as Address space.
941
 * @param va Virtual address.
942
 *
943
 * @return Locked address space area containing va on success or NULL on failure.
944
 */
1780 jermar 945
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 946
{
947
	as_area_t *a;
1147 jermar 948
	btree_node_t *leaf, *lnode;
949
	int i;
977 jermar 950
 
1147 jermar 951
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
952
	if (a) {
953
		/* va is the base address of an address space area */
1380 jermar 954
		mutex_lock(&a->lock);
1147 jermar 955
		return a;
956
	}
957
 
958
	/*
1150 jermar 959
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 960
	 * to find out whether this is a miss or va belongs to an address
961
	 * space area found there.
962
	 */
963
 
964
	/* First, search the leaf node itself. */
965
	for (i = 0; i < leaf->keys; i++) {
966
		a = (as_area_t *) leaf->value[i];
1380 jermar 967
		mutex_lock(&a->lock);
1147 jermar 968
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
969
			return a;
970
		}
1380 jermar 971
		mutex_unlock(&a->lock);
1147 jermar 972
	}
977 jermar 973
 
1147 jermar 974
	/*
1150 jermar 975
	 * Second, locate the left neighbour and test its last record.
1148 jermar 976
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 977
	 */
1150 jermar 978
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 979
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 980
		mutex_lock(&a->lock);
1147 jermar 981
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 982
			return a;
1147 jermar 983
		}
1380 jermar 984
		mutex_unlock(&a->lock);
977 jermar 985
	}
986
 
987
	return NULL;
988
}
1048 jermar 989
 
990
/** Check area conflicts with other areas.
991
 *
992
 * The address space must be locked and interrupts must be disabled.
993
 *
994
 * @param as Address space.
995
 * @param va Starting virtual address of the area being tested.
996
 * @param size Size of the area being tested.
997
 * @param avoid_area Do not touch this area. 
998
 *
999
 * @return True if there is no conflict, false otherwise.
1000
 */
1780 jermar 1001
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1002
{
1003
	as_area_t *a;
1147 jermar 1004
	btree_node_t *leaf, *node;
1005
	int i;
1048 jermar 1006
 
1070 jermar 1007
	/*
1008
	 * We don't want any area to have conflicts with NULL page.
1009
	 */
1010
	if (overlaps(va, size, NULL, PAGE_SIZE))
1011
		return false;
1012
 
1147 jermar 1013
	/*
1014
	 * The leaf node is found in O(log n), where n is proportional to
1015
	 * the number of address space areas belonging to as.
1016
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1017
	 * record in the left neighbour, the leftmost record in the right
1018
	 * neighbour and all records in the leaf node itself.
1147 jermar 1019
	 */
1048 jermar 1020
 
1147 jermar 1021
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1022
		if (a != avoid_area)
1023
			return false;
1024
	}
1025
 
1026
	/* First, check the two border cases. */
1150 jermar 1027
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1028
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1029
		mutex_lock(&a->lock);
1147 jermar 1030
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1031
			mutex_unlock(&a->lock);
1147 jermar 1032
			return false;
1033
		}
1380 jermar 1034
		mutex_unlock(&a->lock);
1147 jermar 1035
	}
1150 jermar 1036
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1037
		a = (as_area_t *) node->value[0];
1380 jermar 1038
		mutex_lock(&a->lock);
1147 jermar 1039
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1040
			mutex_unlock(&a->lock);
1147 jermar 1041
			return false;
1042
		}
1380 jermar 1043
		mutex_unlock(&a->lock);
1147 jermar 1044
	}
1045
 
1046
	/* Second, check the leaf node. */
1047
	for (i = 0; i < leaf->keys; i++) {
1048
		a = (as_area_t *) leaf->value[i];
1049
 
1048 jermar 1050
		if (a == avoid_area)
1051
			continue;
1147 jermar 1052
 
1380 jermar 1053
		mutex_lock(&a->lock);
1147 jermar 1054
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1055
			mutex_unlock(&a->lock);
1147 jermar 1056
			return false;
1057
		}
1380 jermar 1058
		mutex_unlock(&a->lock);
1048 jermar 1059
	}
1060
 
1070 jermar 1061
	/*
1062
	 * So far, the area does not conflict with other areas.
1063
	 * Check if it doesn't conflict with kernel address space.
1064
	 */	 
1065
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1066
		return !overlaps(va, size, 
1067
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1068
	}
1069
 
1048 jermar 1070
	return true;
1071
}
1235 jermar 1072
 
1380 jermar 1073
/** Return size of the address space area with given base.  */
1780 jermar 1074
size_t as_get_size(uintptr_t base)
1329 palkovsky 1075
{
1076
	ipl_t ipl;
1077
	as_area_t *src_area;
1078
	size_t size;
1079
 
1080
	ipl = interrupts_disable();
1081
	src_area = find_area_and_lock(AS, base);
1082
	if (src_area){
1083
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1084
		mutex_unlock(&src_area->lock);
1329 palkovsky 1085
	} else {
1086
		size = 0;
1087
	}
1088
	interrupts_restore(ipl);
1089
	return size;
1090
}
1091
 
1387 jermar 1092
/** Mark portion of address space area as used.
1093
 *
1094
 * The address space area must be already locked.
1095
 *
1096
 * @param a Address space area.
1097
 * @param page First page to be marked.
1098
 * @param count Number of page to be marked.
1099
 *
1100
 * @return 0 on failure and 1 on success.
1101
 */
1780 jermar 1102
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1103
{
1104
	btree_node_t *leaf, *node;
1105
	count_t pages;
1106
	int i;
1107
 
1108
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1109
	ASSERT(count);
1110
 
1111
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1112
	if (pages) {
1113
		/*
1114
		 * We hit the beginning of some used space.
1115
		 */
1116
		return 0;
1117
	}
1118
 
1437 jermar 1119
	if (!leaf->keys) {
1120
		btree_insert(&a->used_space, page, (void *) count, leaf);
1121
		return 1;
1122
	}
1123
 
1387 jermar 1124
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1125
	if (node) {
1780 jermar 1126
		uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1387 jermar 1127
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1128
 
1129
		/*
1130
		 * Examine the possibility that the interval fits
1131
		 * somewhere between the rightmost interval of
1132
		 * the left neigbour and the first interval of the leaf.
1133
		 */
1134
 
1135
		if (page >= right_pg) {
1136
			/* Do nothing. */
1137
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1138
			/* The interval intersects with the left interval. */
1139
			return 0;
1140
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1141
			/* The interval intersects with the right interval. */
1142
			return 0;			
1143
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1144
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1145
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1146
			btree_remove(&a->used_space, right_pg, leaf);
1147
			return 1; 
1148
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1149
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1150
			node->value[node->keys - 1] += count;
1387 jermar 1151
			return 1;
1152
		} else if (page + count*PAGE_SIZE == right_pg) {
1153
			/*
1154
			 * The interval can be addded by simply moving base of the right
1155
			 * interval down and increasing its size accordingly.
1156
			 */
1403 jermar 1157
			leaf->value[0] += count;
1387 jermar 1158
			leaf->key[0] = page;
1159
			return 1;
1160
		} else {
1161
			/*
1162
			 * The interval is between both neigbouring intervals,
1163
			 * but cannot be merged with any of them.
1164
			 */
1165
			btree_insert(&a->used_space, page, (void *) count, leaf);
1166
			return 1;
1167
		}
1168
	} else if (page < leaf->key[0]) {
1780 jermar 1169
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1170
		count_t right_cnt = (count_t) leaf->value[0];
1171
 
1172
		/*
1173
		 * Investigate the border case in which the left neighbour does not
1174
		 * exist but the interval fits from the left.
1175
		 */
1176
 
1177
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1178
			/* The interval intersects with the right interval. */
1179
			return 0;
1180
		} else if (page + count*PAGE_SIZE == right_pg) {
1181
			/*
1182
			 * The interval can be added by moving the base of the right interval down
1183
			 * and increasing its size accordingly.
1184
			 */
1185
			leaf->key[0] = page;
1403 jermar 1186
			leaf->value[0] += count;
1387 jermar 1187
			return 1;
1188
		} else {
1189
			/*
1190
			 * The interval doesn't adjoin with the right interval.
1191
			 * It must be added individually.
1192
			 */
1193
			btree_insert(&a->used_space, page, (void *) count, leaf);
1194
			return 1;
1195
		}
1196
	}
1197
 
1198
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1199
	if (node) {
1780 jermar 1200
		uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1387 jermar 1201
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1202
 
1203
		/*
1204
		 * Examine the possibility that the interval fits
1205
		 * somewhere between the leftmost interval of
1206
		 * the right neigbour and the last interval of the leaf.
1207
		 */
1208
 
1209
		if (page < left_pg) {
1210
			/* Do nothing. */
1211
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1212
			/* The interval intersects with the left interval. */
1213
			return 0;
1214
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1215
			/* The interval intersects with the right interval. */
1216
			return 0;			
1217
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1218
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1219
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1220
			btree_remove(&a->used_space, right_pg, node);
1221
			return 1; 
1222
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1223
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1224
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1225
			return 1;
1226
		} else if (page + count*PAGE_SIZE == right_pg) {
1227
			/*
1228
			 * The interval can be addded by simply moving base of the right
1229
			 * interval down and increasing its size accordingly.
1230
			 */
1403 jermar 1231
			node->value[0] += count;
1387 jermar 1232
			node->key[0] = page;
1233
			return 1;
1234
		} else {
1235
			/*
1236
			 * The interval is between both neigbouring intervals,
1237
			 * but cannot be merged with any of them.
1238
			 */
1239
			btree_insert(&a->used_space, page, (void *) count, leaf);
1240
			return 1;
1241
		}
1242
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1243
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1244
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1245
 
1246
		/*
1247
		 * Investigate the border case in which the right neighbour does not
1248
		 * exist but the interval fits from the right.
1249
		 */
1250
 
1251
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1252
			/* The interval intersects with the left interval. */
1387 jermar 1253
			return 0;
1254
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1255
			/* The interval can be added by growing the left interval. */
1403 jermar 1256
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1257
			return 1;
1258
		} else {
1259
			/*
1260
			 * The interval doesn't adjoin with the left interval.
1261
			 * It must be added individually.
1262
			 */
1263
			btree_insert(&a->used_space, page, (void *) count, leaf);
1264
			return 1;
1265
		}
1266
	}
1267
 
1268
	/*
1269
	 * Note that if the algorithm made it thus far, the interval can fit only
1270
	 * between two other intervals of the leaf. The two border cases were already
1271
	 * resolved.
1272
	 */
1273
	for (i = 1; i < leaf->keys; i++) {
1274
		if (page < leaf->key[i]) {
1780 jermar 1275
			uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1387 jermar 1276
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1277
 
1278
			/*
1279
			 * The interval fits between left_pg and right_pg.
1280
			 */
1281
 
1282
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1283
				/* The interval intersects with the left interval. */
1284
				return 0;
1285
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1286
				/* The interval intersects with the right interval. */
1287
				return 0;			
1288
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1289
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1290
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1291
				btree_remove(&a->used_space, right_pg, leaf);
1292
				return 1; 
1293
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1294
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1295
				leaf->value[i - 1] += count;
1387 jermar 1296
				return 1;
1297
			} else if (page + count*PAGE_SIZE == right_pg) {
1298
				/*
1299
			         * The interval can be addded by simply moving base of the right
1300
			 	 * interval down and increasing its size accordingly.
1301
			 	 */
1403 jermar 1302
				leaf->value[i] += count;
1387 jermar 1303
				leaf->key[i] = page;
1304
				return 1;
1305
			} else {
1306
				/*
1307
				 * The interval is between both neigbouring intervals,
1308
				 * but cannot be merged with any of them.
1309
				 */
1310
				btree_insert(&a->used_space, page, (void *) count, leaf);
1311
				return 1;
1312
			}
1313
		}
1314
	}
1315
 
1735 decky 1316
	panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1387 jermar 1317
}
1318
 
1319
/** Mark portion of address space area as unused.
1320
 *
1321
 * The address space area must be already locked.
1322
 *
1323
 * @param a Address space area.
1324
 * @param page First page to be marked.
1325
 * @param count Number of page to be marked.
1326
 *
1327
 * @return 0 on failure and 1 on success.
1328
 */
1780 jermar 1329
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1330
{
1331
	btree_node_t *leaf, *node;
1332
	count_t pages;
1333
	int i;
1334
 
1335
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1336
	ASSERT(count);
1337
 
1338
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1339
	if (pages) {
1340
		/*
1341
		 * We are lucky, page is the beginning of some interval.
1342
		 */
1343
		if (count > pages) {
1344
			return 0;
1345
		} else if (count == pages) {
1346
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1347
			return 1;
1387 jermar 1348
		} else {
1349
			/*
1350
			 * Find the respective interval.
1351
			 * Decrease its size and relocate its start address.
1352
			 */
1353
			for (i = 0; i < leaf->keys; i++) {
1354
				if (leaf->key[i] == page) {
1355
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1356
					leaf->value[i] -= count;
1387 jermar 1357
					return 1;
1358
				}
1359
			}
1360
			goto error;
1361
		}
1362
	}
1363
 
1364
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1365
	if (node && page < leaf->key[0]) {
1780 jermar 1366
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1367
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1368
 
1369
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1370
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1371
				/*
1372
				 * The interval is contained in the rightmost interval
1373
				 * of the left neighbour and can be removed by
1374
				 * updating the size of the bigger interval.
1375
				 */
1403 jermar 1376
				node->value[node->keys - 1] -= count;
1387 jermar 1377
				return 1;
1378
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1379
				count_t new_cnt;
1387 jermar 1380
 
1381
				/*
1382
				 * The interval is contained in the rightmost interval
1383
				 * of the left neighbour but its removal requires
1384
				 * both updating the size of the original interval and
1385
				 * also inserting a new interval.
1386
				 */
1403 jermar 1387
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1388
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1389
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1390
				return 1;
1391
			}
1392
		}
1393
		return 0;
1394
	} else if (page < leaf->key[0]) {
1395
		return 0;
1396
	}
1397
 
1398
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1399
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1400
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1401
 
1402
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1403
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1404
				/*
1405
				 * The interval is contained in the rightmost interval
1406
				 * of the leaf and can be removed by updating the size
1407
				 * of the bigger interval.
1408
				 */
1403 jermar 1409
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1410
				return 1;
1411
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1412
				count_t new_cnt;
1387 jermar 1413
 
1414
				/*
1415
				 * The interval is contained in the rightmost interval
1416
				 * of the leaf but its removal requires both updating
1417
				 * the size of the original interval and
1418
				 * also inserting a new interval.
1419
				 */
1403 jermar 1420
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1421
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1422
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1423
				return 1;
1424
			}
1425
		}
1426
		return 0;
1427
	}	
1428
 
1429
	/*
1430
	 * The border cases have been already resolved.
1431
	 * Now the interval can be only between intervals of the leaf. 
1432
	 */
1433
	for (i = 1; i < leaf->keys - 1; i++) {
1434
		if (page < leaf->key[i]) {
1780 jermar 1435
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1436
			count_t left_cnt = (count_t) leaf->value[i - 1];
1437
 
1438
			/*
1439
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1440
			 */
1441
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1442
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1443
					/*
1444
				 	* The interval is contained in the interval (i - 1)
1445
					 * of the leaf and can be removed by updating the size
1446
					 * of the bigger interval.
1447
					 */
1403 jermar 1448
					leaf->value[i - 1] -= count;
1387 jermar 1449
					return 1;
1450
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1451
					count_t new_cnt;
1387 jermar 1452
 
1453
					/*
1454
					 * The interval is contained in the interval (i - 1)
1455
					 * of the leaf but its removal requires both updating
1456
					 * the size of the original interval and
1457
					 * also inserting a new interval.
1458
					 */
1403 jermar 1459
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1460
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1461
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1462
					return 1;
1463
				}
1464
			}
1465
			return 0;
1466
		}
1467
	}
1468
 
1469
error:
1735 decky 1470
	panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1387 jermar 1471
}
1472
 
1409 jermar 1473
/** Remove reference to address space area share info.
1474
 *
1475
 * If the reference count drops to 0, the sh_info is deallocated.
1476
 *
1477
 * @param sh_info Pointer to address space area share info.
1478
 */
1479
void sh_info_remove_reference(share_info_t *sh_info)
1480
{
1481
	bool dealloc = false;
1482
 
1483
	mutex_lock(&sh_info->lock);
1484
	ASSERT(sh_info->refcount);
1485
	if (--sh_info->refcount == 0) {
1486
		dealloc = true;
1495 jermar 1487
		link_t *cur;
1409 jermar 1488
 
1489
		/*
1490
		 * Now walk carefully the pagemap B+tree and free/remove
1491
		 * reference from all frames found there.
1492
		 */
1495 jermar 1493
		for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1494
			btree_node_t *node;
1495 jermar 1495
			int i;
1409 jermar 1496
 
1495 jermar 1497
			node = list_get_instance(cur, btree_node_t, leaf_link);
1498
			for (i = 0; i < node->keys; i++) 
1780 jermar 1499
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1500
		}
1501
 
1502
	}
1503
	mutex_unlock(&sh_info->lock);
1504
 
1505
	if (dealloc) {
1506
		btree_destroy(&sh_info->pagemap);
1507
		free(sh_info);
1508
	}
1509
}
1510
 
1235 jermar 1511
/*
1512
 * Address space related syscalls.
1513
 */
1514
 
1515
/** Wrapper for as_area_create(). */
1780 jermar 1516
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1517
{
1424 jermar 1518
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1519
		return (unative_t) address;
1235 jermar 1520
	else
1780 jermar 1521
		return (unative_t) -1;
1235 jermar 1522
}
1523
 
1793 jermar 1524
/** Wrapper for as_area_resize(). */
1780 jermar 1525
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1526
{
1780 jermar 1527
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1528
}
1529
 
1793 jermar 1530
/** Wrapper for as_area_destroy(). */
1780 jermar 1531
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1532
{
1780 jermar 1533
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1534
}
1702 cejka 1535
 
1757 jermar 1536
/** @}
1702 cejka 1537
 */