Rev 2001 | Rev 2009 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
418 | jermar | 1 | # |
2 | # Copyright (C) 2005 Jakub Jermar |
||
3 | # All rights reserved. |
||
4 | # |
||
5 | # Redistribution and use in source and binary forms, with or without |
||
6 | # modification, are permitted provided that the following conditions |
||
7 | # are met: |
||
8 | # |
||
9 | # - Redistributions of source code must retain the above copyright |
||
10 | # notice, this list of conditions and the following disclaimer. |
||
11 | # - Redistributions in binary form must reproduce the above copyright |
||
12 | # notice, this list of conditions and the following disclaimer in the |
||
13 | # documentation and/or other materials provided with the distribution. |
||
14 | # - The name of the author may not be used to endorse or promote products |
||
15 | # derived from this software without specific prior written permission. |
||
16 | # |
||
17 | # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | # |
||
28 | |||
1903 | jermar | 29 | #include <arch/arch.h> |
1789 | jermar | 30 | #include <arch/regdef.h> |
1823 | jermar | 31 | #include <arch/boot/boot.h> |
1917 | jermar | 32 | #include <arch/stack.h> |
846 | jermar | 33 | |
1823 | jermar | 34 | #include <arch/mm/mmu.h> |
35 | #include <arch/mm/tlb.h> |
||
36 | #include <arch/mm/tte.h> |
||
37 | |||
1903 | jermar | 38 | #ifdef CONFIG_SMP |
39 | #include <arch/context_offset.h> |
||
40 | #endif |
||
41 | |||
426 | jermar | 42 | .register %g2, #scratch |
43 | .register %g3, #scratch |
||
44 | |||
418 | jermar | 45 | .section K_TEXT_START, "ax" |
46 | |||
1978 | jermar | 47 | #define BSP_FLAG 1 |
48 | |||
847 | jermar | 49 | /* |
1978 | jermar | 50 | * Here is where the kernel is passed control from the boot loader. |
1790 | jermar | 51 | * |
52 | * The registers are expected to be in this state: |
||
1978 | jermar | 53 | * - %o0 starting address of physical memory + bootstrap processor flag |
54 | * bits 63...1: physical memory starting address / 2 |
||
55 | * bit 0: non-zero on BSP processor, zero on AP processors |
||
56 | * - %o1 bootinfo structure address (BSP only) |
||
57 | * - %o2 bootinfo structure size (BSP only) |
||
1792 | jermar | 58 | * |
1978 | jermar | 59 | * Moreover, we depend on boot having established the following environment: |
1792 | jermar | 60 | * - TLBs are on |
61 | * - identity mapping for the kernel image |
||
847 | jermar | 62 | */ |
63 | |||
418 | jermar | 64 | .global kernel_image_start |
65 | kernel_image_start: |
||
1978 | jermar | 66 | mov BSP_FLAG, %l0 |
2001 | jermar | 67 | and %o0, %l0, %l7 ! l7 <= bootstrap processor? |
68 | andn %o0, %l0, %l6 ! l6 <= start of physical memory |
||
846 | jermar | 69 | |
1982 | jermar | 70 | ! Get bits 40:13 of physmem_base. |
71 | srlx %l6, 13, %l5 |
||
72 | sllx %l5, 13 + (63 - 40), %l5 |
||
2001 | jermar | 73 | srlx %l5, 63 - 40, %l5 ! l5 <= physmem_base[40:13] |
1978 | jermar | 74 | |
75 | /* |
||
1823 | jermar | 76 | * Setup basic runtime environment. |
1790 | jermar | 77 | */ |
424 | jermar | 78 | |
1954 | jermar | 79 | wrpr %g0, NWINDOWS - 2, %cansave ! set maximum saveable windows |
1917 | jermar | 80 | wrpr %g0, 0, %canrestore ! get rid of windows we will never need again |
81 | wrpr %g0, 0, %otherwin ! make sure the window state is consistent |
||
82 | wrpr %g0, NWINDOWS - 1, %cleanwin ! prevent needless clean_window traps for kernel |
||
1823 | jermar | 83 | |
1881 | jermar | 84 | wrpr %g0, 0, %tl ! TL = 0, primary context register is used |
1823 | jermar | 85 | |
1881 | jermar | 86 | wrpr %g0, PSTATE_PRIV_BIT, %pstate ! Disable interrupts and disable 32-bit address masking. |
1823 | jermar | 87 | |
1881 | jermar | 88 | wrpr %g0, 0, %pil ! intialize %pil |
89 | |||
1790 | jermar | 90 | /* |
1823 | jermar | 91 | * Switch to kernel trap table. |
92 | */ |
||
1880 | jermar | 93 | sethi %hi(trap_table), %g1 |
94 | wrpr %g1, %lo(trap_table), %tba |
||
1823 | jermar | 95 | |
96 | /* |
||
97 | * Take over the DMMU by installing global locked |
||
98 | * TTE entry identically mapping the first 4M |
||
99 | * of memory. |
||
1792 | jermar | 100 | * |
1823 | jermar | 101 | * In case of DMMU, no FLUSH instructions need to be |
102 | * issued. Because of that, the old DTLB contents can |
||
103 | * be demapped pretty straightforwardly and without |
||
104 | * causing any traps. |
||
1792 | jermar | 105 | */ |
106 | |||
1823 | jermar | 107 | wr %g0, ASI_DMMU, %asi |
895 | jermar | 108 | |
1823 | jermar | 109 | #define SET_TLB_DEMAP_CMD(r1, context_id) \ |
110 | set (TLB_DEMAP_CONTEXT<<TLB_DEMAP_TYPE_SHIFT) | (context_id<<TLB_DEMAP_CONTEXT_SHIFT), %r1 |
||
111 | |||
112 | ! demap context 0 |
||
113 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) |
||
114 | stxa %g0, [%g1] ASI_DMMU_DEMAP |
||
115 | membar #Sync |
||
116 | |||
117 | #define SET_TLB_TAG(r1, context) \ |
||
118 | set VMA | (context<<TLB_TAG_ACCESS_CONTEXT_SHIFT), %r1 |
||
119 | |||
120 | ! write DTLB tag |
||
121 | SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) |
||
122 | stxa %g1, [VA_DMMU_TAG_ACCESS] %asi |
||
123 | membar #Sync |
||
124 | |||
1996 | jermar | 125 | #ifdef CONFIG_VIRT_IDX_CACHE |
126 | #define TTE_LOW_DATA(imm) (TTE_CP | TTE_CV | TTE_P | LMA | (imm)) |
||
127 | #else /* CONFIG_VIRT_IDX_CACHE */ |
||
128 | #define TTE_LOW_DATA(imm) (TTE_CP | TTE_P | LMA | (imm)) |
||
129 | #endif /* CONFIG_VIRT_IDX_CACHE */ |
||
130 | |||
1823 | jermar | 131 | #define SET_TLB_DATA(r1, r2, imm) \ |
1996 | jermar | 132 | set TTE_LOW_DATA(imm), %r1; \ |
1978 | jermar | 133 | or %r1, %l5, %r1; \ |
134 | mov PAGESIZE_4M, %r2; \ |
||
1823 | jermar | 135 | sllx %r2, TTE_SIZE_SHIFT, %r2; \ |
136 | or %r1, %r2, %r1; \ |
||
1880 | jermar | 137 | mov 1, %r2; \ |
1823 | jermar | 138 | sllx %r2, TTE_V_SHIFT, %r2; \ |
139 | or %r1, %r2, %r1; |
||
140 | |||
141 | ! write DTLB data and install the kernel mapping |
||
1887 | jermar | 142 | SET_TLB_DATA(g1, g2, TTE_L | TTE_W) ! use non-global mapping |
1823 | jermar | 143 | stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG |
144 | membar #Sync |
||
1868 | jermar | 145 | |
146 | /* |
||
147 | * Because we cannot use global mappings (because we want to |
||
148 | * have separate 64-bit address spaces for both the kernel |
||
149 | * and the userspace), we prepare the identity mapping also in |
||
150 | * context 1. This step is required by the |
||
151 | * code installing the ITLB mapping. |
||
152 | */ |
||
153 | ! write DTLB tag of context 1 (i.e. MEM_CONTEXT_TEMP) |
||
154 | SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) |
||
155 | stxa %g1, [VA_DMMU_TAG_ACCESS] %asi |
||
156 | membar #Sync |
||
157 | |||
158 | ! write DTLB data and install the kernel mapping in context 1 |
||
1887 | jermar | 159 | SET_TLB_DATA(g1, g2, TTE_W) ! use non-global mapping |
1868 | jermar | 160 | stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG |
161 | membar #Sync |
||
1823 | jermar | 162 | |
163 | /* |
||
164 | * Now is time to take over the IMMU. |
||
165 | * Unfortunatelly, it cannot be done as easily as the DMMU, |
||
166 | * because the IMMU is mapping the code it executes. |
||
167 | * |
||
168 | * [ Note that brave experiments with disabling the IMMU |
||
169 | * and using the DMMU approach failed after a dozen |
||
170 | * of desparate days with only little success. ] |
||
171 | * |
||
172 | * The approach used here is inspired from OpenBSD. |
||
173 | * First, the kernel creates IMMU mapping for itself |
||
174 | * in context 1 (MEM_CONTEXT_TEMP) and switches to |
||
175 | * it. Context 0 (MEM_CONTEXT_KERNEL) can be demapped |
||
176 | * afterwards and replaced with the kernel permanent |
||
177 | * mapping. Finally, the kernel switches back to |
||
178 | * context 0 and demaps context 1. |
||
179 | * |
||
180 | * Moreover, the IMMU requires use of the FLUSH instructions. |
||
181 | * But that is OK because we always use operands with |
||
182 | * addresses already mapped by the taken over DTLB. |
||
183 | */ |
||
184 | |||
1852 | jermar | 185 | set kernel_image_start, %g5 |
1823 | jermar | 186 | |
187 | ! write ITLB tag of context 1 |
||
188 | SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) |
||
1880 | jermar | 189 | mov VA_DMMU_TAG_ACCESS, %g2 |
1823 | jermar | 190 | stxa %g1, [%g2] ASI_IMMU |
1852 | jermar | 191 | flush %g5 |
1823 | jermar | 192 | |
193 | ! write ITLB data and install the temporary mapping in context 1 |
||
194 | SET_TLB_DATA(g1, g2, 0) ! use non-global mapping |
||
195 | stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG |
||
1852 | jermar | 196 | flush %g5 |
1823 | jermar | 197 | |
198 | ! switch to context 1 |
||
1880 | jermar | 199 | mov MEM_CONTEXT_TEMP, %g1 |
1823 | jermar | 200 | stxa %g1, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! |
1852 | jermar | 201 | flush %g5 |
1823 | jermar | 202 | |
203 | ! demap context 0 |
||
204 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) |
||
205 | stxa %g0, [%g1] ASI_IMMU_DEMAP |
||
1852 | jermar | 206 | flush %g5 |
1823 | jermar | 207 | |
208 | ! write ITLB tag of context 0 |
||
209 | SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) |
||
1880 | jermar | 210 | mov VA_DMMU_TAG_ACCESS, %g2 |
1823 | jermar | 211 | stxa %g1, [%g2] ASI_IMMU |
1852 | jermar | 212 | flush %g5 |
1823 | jermar | 213 | |
214 | ! write ITLB data and install the permanent kernel mapping in context 0 |
||
1887 | jermar | 215 | SET_TLB_DATA(g1, g2, TTE_L) ! use non-global mapping |
1823 | jermar | 216 | stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG |
1852 | jermar | 217 | flush %g5 |
1823 | jermar | 218 | |
1906 | jermar | 219 | ! enter nucleus - using context 0 |
1823 | jermar | 220 | wrpr %g0, 1, %tl |
221 | |||
222 | ! demap context 1 |
||
223 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_PRIMARY) |
||
224 | stxa %g0, [%g1] ASI_IMMU_DEMAP |
||
1852 | jermar | 225 | flush %g5 |
1823 | jermar | 226 | |
227 | ! set context 0 in the primary context register |
||
228 | stxa %g0, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! |
||
1852 | jermar | 229 | flush %g5 |
1823 | jermar | 230 | |
1906 | jermar | 231 | ! leave nucleus - using primary context, i.e. context 0 |
1823 | jermar | 232 | wrpr %g0, 0, %tl |
1864 | jermar | 233 | |
1903 | jermar | 234 | brz %l7, 1f ! skip if you are not the bootstrap CPU |
235 | nop |
||
1900 | jermar | 236 | |
1917 | jermar | 237 | /* |
1982 | jermar | 238 | * Save physmem_base for use by the mm subsystem. |
239 | * %l6 contains starting physical address |
||
240 | */ |
||
241 | sethi %hi(physmem_base), %l4 |
||
242 | stx %l6, [%l4 + %lo(physmem_base)] |
||
243 | |||
244 | /* |
||
245 | * Precompute kernel 8K TLB data template. |
||
246 | * %l5 contains starting physical address bits [40:13] |
||
247 | */ |
||
248 | sethi %hi(kernel_8k_tlb_data_template), %l4 |
||
249 | ldx [%l4 + %lo(kernel_8k_tlb_data_template)], %l3 |
||
250 | or %l3, %l5, %l3 |
||
251 | stx %l3, [%l4 + %lo(kernel_8k_tlb_data_template)] |
||
252 | |||
253 | /* |
||
2008 | jermar | 254 | * Flush D-Cache. |
255 | */ |
||
256 | call dcache_flush |
||
257 | nop |
||
258 | |||
259 | /* |
||
1917 | jermar | 260 | * So far, we have not touched the stack. |
1975 | jermar | 261 | * It is a good idea to set the kernel stack to a known state now. |
1917 | jermar | 262 | */ |
263 | sethi %hi(temporary_boot_stack), %sp |
||
264 | or %sp, %lo(temporary_boot_stack), %sp |
||
265 | sub %sp, STACK_BIAS, %sp |
||
266 | |||
1906 | jermar | 267 | sethi %hi(bootinfo), %o0 |
268 | call memcpy ! copy bootinfo |
||
269 | or %o0, %lo(bootinfo), %o0 |
||
270 | |||
1864 | jermar | 271 | call arch_pre_main |
272 | nop |
||
1823 | jermar | 273 | |
426 | jermar | 274 | call main_bsp |
275 | nop |
||
276 | |||
277 | /* Not reached. */ |
||
278 | |||
1903 | jermar | 279 | 0: |
280 | ba 0b |
||
281 | nop |
||
282 | |||
283 | |||
284 | /* |
||
285 | * Read MID from the processor. |
||
286 | */ |
||
287 | 1: |
||
288 | ldxa [%g0] ASI_UPA_CONFIG, %g1 |
||
289 | srlx %g1, UPA_CONFIG_MID_SHIFT, %g1 |
||
290 | and %g1, UPA_CONFIG_MID_MASK, %g1 |
||
291 | |||
1905 | jermar | 292 | #ifdef CONFIG_SMP |
1903 | jermar | 293 | /* |
294 | * Active loop for APs until the BSP picks them up. |
||
295 | * A processor cannot leave the loop until the |
||
296 | * global variable 'waking_up_mid' equals its |
||
297 | * MID. |
||
298 | */ |
||
299 | set waking_up_mid, %g2 |
||
424 | jermar | 300 | 2: |
1903 | jermar | 301 | ldx [%g2], %g3 |
302 | cmp %g3, %g1 |
||
303 | bne 2b |
||
424 | jermar | 304 | nop |
1903 | jermar | 305 | |
306 | /* |
||
307 | * Configure stack for the AP. |
||
308 | * The AP is expected to use the stack saved |
||
309 | * in the ctx global variable. |
||
310 | */ |
||
311 | set ctx, %g1 |
||
312 | add %g1, OFFSET_SP, %g1 |
||
313 | ldx [%g1], %o6 |
||
314 | |||
315 | call main_ap |
||
316 | nop |
||
317 | |||
318 | /* Not reached. */ |
||
1905 | jermar | 319 | #endif |
1903 | jermar | 320 | |
321 | 0: |
||
322 | ba 0b |
||
323 | nop |
||
1917 | jermar | 324 | |
325 | |||
326 | .section K_DATA_START, "aw", @progbits |
||
327 | |||
328 | /* |
||
329 | * Create small stack to be used by the bootstrap processor. |
||
330 | * It is going to be used only for a very limited period of |
||
331 | * time, but we switch to it anyway, just to be sure we are |
||
332 | * properly initialized. |
||
333 | * |
||
334 | * What is important is that this piece of memory is covered |
||
335 | * by the 4M DTLB locked entry and therefore there will be |
||
336 | * no surprises like deadly combinations of spill trap and |
||
337 | * and TLB miss on the stack address. |
||
338 | */ |
||
339 | |||
340 | #define INITIAL_STACK_SIZE 1024 |
||
341 | |||
342 | .align STACK_ALIGNMENT |
||
1978 | jermar | 343 | .space INITIAL_STACK_SIZE |
1917 | jermar | 344 | .align STACK_ALIGNMENT |
345 | temporary_boot_stack: |
||
1978 | jermar | 346 | .space STACK_WINDOW_SAVE_AREA_SIZE |
347 | |||
348 | |||
349 | .data |
||
350 | |||
351 | .align 8 |
||
352 | .global physmem_base ! copy of the physical memory base address |
||
353 | physmem_base: |
||
354 | .quad 0 |
||
355 | |||
356 | /* |
||
357 | * This variable is used by the fast_data_MMU_miss trap handler. |
||
1982 | jermar | 358 | * In runtime, it is further modified to reflect the starting address of |
359 | * physical memory. |
||
1978 | jermar | 360 | */ |
361 | .global kernel_8k_tlb_data_template |
||
362 | kernel_8k_tlb_data_template: |
||
1996 | jermar | 363 | #ifdef CONFIG_VIRT_IDX_CACHE |
364 | .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | TTE_CV | TTE_P | TTE_W) |
||
365 | #else /* CONFIG_VIRT_IDX_CACHE */ |
||
366 | .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | TTE_P | TTE_W) |
||
367 | #endif /* CONFIG_VIRT_IDX_CACHE */ |