Rev 3823 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1018 | decky | 1 | /* |
2071 | jermar | 2 | * Copyright (c) 2005 Martin Decky |
3 | * Copyright (c) 2006 Jakub Jermar |
||
1018 | decky | 4 | * All rights reserved. |
5 | * |
||
6 | * Redistribution and use in source and binary forms, with or without |
||
7 | * modification, are permitted provided that the following conditions |
||
8 | * are met: |
||
9 | * |
||
10 | * - Redistributions of source code must retain the above copyright |
||
11 | * notice, this list of conditions and the following disclaimer. |
||
12 | * - Redistributions in binary form must reproduce the above copyright |
||
13 | * notice, this list of conditions and the following disclaimer in the |
||
14 | * documentation and/or other materials provided with the distribution. |
||
15 | * - The name of the author may not be used to endorse or promote products |
||
16 | * derived from this software without specific prior written permission. |
||
17 | * |
||
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
28 | */ |
||
29 | |||
30 | #include "main.h" |
||
1764 | jermar | 31 | #include <printf.h> |
1018 | decky | 32 | #include "asm.h" |
1685 | decky | 33 | #include "_components.h" |
1894 | jermar | 34 | #include <balloc.h> |
1782 | jermar | 35 | #include <ofw.h> |
1894 | jermar | 36 | #include <ofw_tree.h> |
1837 | jermar | 37 | #include "ofwarch.h" |
1789 | jermar | 38 | #include <align.h> |
3408 | jermar | 39 | #include <string.h> |
1018 | decky | 40 | |
1782 | jermar | 41 | bootinfo_t bootinfo; |
3672 | jermar | 42 | |
1972 | jermar | 43 | component_t components[COMPONENTS]; |
1782 | jermar | 44 | |
1997 | decky | 45 | char *release = RELEASE; |
46 | |||
47 | #ifdef REVISION |
||
48 | char *revision = ", revision " REVISION; |
||
49 | #else |
||
50 | char *revision = ""; |
||
51 | #endif |
||
52 | |||
53 | #ifdef TIMESTAMP |
||
54 | char *timestamp = "\nBuilt on " TIMESTAMP; |
||
55 | #else |
||
56 | char *timestamp = ""; |
||
57 | #endif |
||
58 | |||
3672 | jermar | 59 | /** UltraSPARC subarchitecture - 1 for US, 3 for US3 */ |
60 | uint8_t subarchitecture; |
||
61 | |||
62 | /** |
||
63 | * mask of the MID field inside the ICBUS_CONFIG register shifted by |
||
64 | * MID_SHIFT bits to the right |
||
65 | */ |
||
66 | uint16_t mid_mask; |
||
67 | |||
1997 | decky | 68 | /** Print version information. */ |
69 | static void version_print(void) |
||
70 | { |
||
3388 | jermar | 71 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n" |
72 | "Copyright (c) 2006 HelenOS project\n", |
||
73 | release, revision, timestamp); |
||
1997 | decky | 74 | } |
75 | |||
3672 | jermar | 76 | /* the lowest ID (read from the VER register) of some US3 CPU model */ |
77 | #define FIRST_US3_CPU 0x14 |
||
78 | |||
79 | /* the greatest ID (read from the VER register) of some US3 CPU model */ |
||
80 | #define LAST_US3_CPU 0x19 |
||
81 | |||
82 | /* UltraSPARC IIIi processor implementation code */ |
||
83 | #define US_IIIi_CODE 0x15 |
||
84 | |||
85 | /** |
||
86 | * Sets the global variables "subarchitecture" and "mid_mask" to |
||
87 | * correct values. |
||
88 | */ |
||
89 | static void detect_subarchitecture(void) |
||
90 | { |
||
91 | uint64_t v; |
||
92 | asm volatile ("rdpr %%ver, %0\n" : "=r" (v)); |
||
93 | |||
94 | v = (v << 16) >> 48; |
||
95 | if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) { |
||
96 | subarchitecture = SUBARCH_US3; |
||
97 | if (v == US_IIIi_CODE) |
||
98 | mid_mask = (1 << 5) - 1; |
||
99 | else |
||
100 | mid_mask = (1 << 10) - 1; |
||
101 | } else if (v < FIRST_US3_CPU) { |
||
102 | subarchitecture = SUBARCH_US; |
||
103 | mid_mask = (1 << 5) - 1; |
||
104 | } else { |
||
105 | printf("\nThis CPU is not supported by HelenOS."); |
||
106 | } |
||
107 | } |
||
108 | |||
1018 | decky | 109 | void bootstrap(void) |
110 | { |
||
3399 | jermar | 111 | void *base = (void *) KERNEL_VIRTUAL_ADDRESS; |
112 | void *balloc_base; |
||
113 | unsigned int top = 0; |
||
114 | int i, j; |
||
115 | |||
1997 | decky | 116 | version_print(); |
1972 | jermar | 117 | |
3672 | jermar | 118 | detect_subarchitecture(); |
1685 | decky | 119 | init_components(components); |
1782 | jermar | 120 | |
1978 | jermar | 121 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { |
122 | printf("Error: unable to get start of physical memory.\n"); |
||
123 | halt(); |
||
124 | } |
||
125 | |||
1789 | jermar | 126 | if (!ofw_memmap(&bootinfo.memmap)) { |
127 | printf("Error: unable to get memory map, halting.\n"); |
||
128 | halt(); |
||
129 | } |
||
3672 | jermar | 130 | |
1789 | jermar | 131 | if (bootinfo.memmap.total == 0) { |
132 | printf("Error: no memory detected, halting.\n"); |
||
133 | halt(); |
||
134 | } |
||
3388 | jermar | 135 | |
136 | /* |
||
137 | * SILO for some reason adds 0x400000 and subtracts |
||
138 | * bootinfo.physmem_start to/from silo_ramdisk_image. |
||
139 | * We just need plain physical address so we fix it up. |
||
140 | */ |
||
141 | if (silo_ramdisk_image) { |
||
142 | silo_ramdisk_image += bootinfo.physmem_start; |
||
143 | silo_ramdisk_image -= 0x400000; |
||
3399 | jermar | 144 | /* Install 1:1 mapping for the ramdisk. */ |
3823 | decky | 145 | if (ofw_map((void *)((uintptr_t) silo_ramdisk_image), |
146 | (void *)((uintptr_t) silo_ramdisk_image), |
||
3399 | jermar | 147 | silo_ramdisk_size, -1) != 0) { |
148 | printf("Failed to map ramdisk.\n"); |
||
149 | halt(); |
||
150 | } |
||
3388 | jermar | 151 | } |
1789 | jermar | 152 | |
1899 | jermar | 153 | printf("\nSystem info\n"); |
1978 | jermar | 154 | printf(" memory: %dM starting at %P\n", |
3388 | jermar | 155 | bootinfo.memmap.total >> 20, bootinfo.physmem_start); |
1789 | jermar | 156 | |
1685 | decky | 157 | printf("\nMemory statistics\n"); |
1789 | jermar | 158 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); |
159 | printf(" %P: boot info structure\n", &bootinfo); |
||
1685 | decky | 160 | |
3399 | jermar | 161 | /* |
162 | * Figure out destination address for each component. |
||
163 | * In this phase, we don't copy the components yet because we want to |
||
164 | * to be careful not to overwrite anything, especially the components |
||
165 | * which haven't been copied yet. |
||
166 | */ |
||
167 | bootinfo.taskmap.count = 0; |
||
168 | for (i = 0; i < COMPONENTS; i++) { |
||
1978 | jermar | 169 | printf(" %P: %s image (size %d bytes)\n", components[i].start, |
2250 | jermar | 170 | components[i].name, components[i].size); |
3399 | jermar | 171 | top = ALIGN_UP(top, PAGE_SIZE); |
172 | if (i > 0) { |
||
173 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
||
174 | printf("Skipping superfluous components.\n"); |
||
175 | break; |
||
176 | } |
||
177 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
||
178 | base + top; |
||
179 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
||
180 | components[i].size; |
||
181 | bootinfo.taskmap.count++; |
||
182 | } |
||
183 | top += components[i].size; |
||
184 | } |
||
1782 | jermar | 185 | |
3399 | jermar | 186 | j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */ |
1894 | jermar | 187 | |
3399 | jermar | 188 | if (silo_ramdisk_image) { |
189 | /* Treat the ramdisk as the last bootinfo task. */ |
||
190 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
||
191 | printf("Skipping ramdisk.\n"); |
||
192 | goto skip_ramdisk; |
||
193 | } |
||
1685 | decky | 194 | top = ALIGN_UP(top, PAGE_SIZE); |
3399 | jermar | 195 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
196 | base + top; |
||
197 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
||
198 | silo_ramdisk_size; |
||
199 | bootinfo.taskmap.count++; |
||
200 | printf("\nCopying ramdisk..."); |
||
201 | /* |
||
202 | * Claim and map the whole ramdisk as it may exceed the area |
||
203 | * given to us by SILO. |
||
204 | */ |
||
205 | (void) ofw_claim_phys(base + top, silo_ramdisk_size); |
||
3823 | decky | 206 | (void) ofw_map(bootinfo.physmem_start + base + top, base + top, |
207 | silo_ramdisk_size, -1); |
||
3408 | jermar | 208 | memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image), |
3399 | jermar | 209 | silo_ramdisk_size); |
210 | printf("done.\n"); |
||
211 | top += silo_ramdisk_size; |
||
212 | } |
||
213 | skip_ramdisk: |
||
2250 | jermar | 214 | |
3399 | jermar | 215 | /* |
216 | * Now we can proceed to copy the components. We do it in reverse order |
||
217 | * so that we don't overwrite anything even if the components overlap |
||
218 | * with base. |
||
219 | */ |
||
220 | printf("\nCopying bootinfo tasks\n"); |
||
221 | for (i = COMPONENTS - 1; i > 0; i--, j--) { |
||
222 | printf(" %s...", components[i].name); |
||
223 | |||
2250 | jermar | 224 | /* |
225 | * At this point, we claim the physical memory that we are |
||
226 | * going to use. We should be safe in case of the virtual |
||
227 | * address space because the OpenFirmware, according to its |
||
228 | * SPARC binding, should restrict its use of virtual memory |
||
229 | * to addresses from [0xffd00000; 0xffefffff] and |
||
230 | * [0xfe000000; 0xfeffffff]. |
||
3399 | jermar | 231 | * |
232 | * XXX We don't map this piece of memory. We simply rely on |
||
233 | * SILO to have it done for us already in this case. |
||
2250 | jermar | 234 | */ |
3399 | jermar | 235 | (void) ofw_claim_phys(bootinfo.physmem_start + |
236 | bootinfo.taskmap.tasks[j].addr, |
||
2250 | jermar | 237 | ALIGN_UP(components[i].size, PAGE_SIZE)); |
238 | |||
3399 | jermar | 239 | memcpy((void *)bootinfo.taskmap.tasks[j].addr, |
240 | components[i].start, components[i].size); |
||
1685 | decky | 241 | printf("done.\n"); |
1018 | decky | 242 | } |
1782 | jermar | 243 | |
3399 | jermar | 244 | printf("\nCopying kernel..."); |
245 | (void) ofw_claim_phys(bootinfo.physmem_start + base, |
||
246 | ALIGN_UP(components[0].size, PAGE_SIZE)); |
||
247 | memcpy(base, components[0].start, components[0].size); |
||
248 | printf("done.\n"); |
||
249 | |||
2250 | jermar | 250 | /* |
3399 | jermar | 251 | * Claim and map the physical memory for the boot allocator. |
2250 | jermar | 252 | * Initialize the boot allocator. |
253 | */ |
||
3399 | jermar | 254 | balloc_base = base + ALIGN_UP(top, PAGE_SIZE); |
255 | (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base, |
||
256 | BALLOC_MAX_SIZE); |
||
3823 | decky | 257 | (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base, |
258 | BALLOC_MAX_SIZE, -1); |
||
3399 | jermar | 259 | balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base); |
1894 | jermar | 260 | |
261 | printf("\nCanonizing OpenFirmware device tree..."); |
||
262 | bootinfo.ofw_root = ofw_tree_build(); |
||
263 | printf("done.\n"); |
||
264 | |||
3808 | decky | 265 | #ifdef CONFIG_AP |
1899 | jermar | 266 | printf("\nChecking for secondary processors..."); |
267 | if (!ofw_cpu()) |
||
1978 | jermar | 268 | printf("Error: unable to get CPU properties\n"); |
1899 | jermar | 269 | printf("done.\n"); |
1979 | jermar | 270 | #endif |
1899 | jermar | 271 | |
3861 | decky | 272 | ofw_setup_palette(); |
3678 | rimsky | 273 | |
1018 | decky | 274 | printf("\nBooting the kernel...\n"); |
1978 | jermar | 275 | jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS, |
2250 | jermar | 276 | bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo, |
277 | sizeof(bootinfo)); |
||
1018 | decky | 278 | } |