Rev 1965 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2 | * Copyright (C) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1248 | jermar | 29 | /** |
30 | * @file btree.c |
||
31 | * @brief B+tree implementation. |
||
1101 | jermar | 32 | * |
1248 | jermar | 33 | * This file implements B+tree type and operations. |
34 | * |
||
35 | * The B+tree has the following properties: |
||
36 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
37 | * @li values (i.e. pointers to values) are stored only in leaves |
||
38 | * @li leaves are linked in a list |
||
39 | * |
||
1134 | jermar | 40 | * Be carefull when using these trees. They need to allocate |
41 | * and deallocate memory for their index nodes and as such |
||
42 | * can sleep. |
||
1101 | jermar | 43 | */ |
44 | |||
45 | #include <adt/btree.h> |
||
46 | #include <adt/list.h> |
||
47 | #include <mm/slab.h> |
||
48 | #include <debug.h> |
||
49 | #include <panic.h> |
||
50 | #include <typedefs.h> |
||
51 | #include <print.h> |
||
52 | |||
1483 | jermar | 53 | static void btree_destroy_subtree(btree_node_t *root); |
1177 | jermar | 54 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
55 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
1101 | jermar | 56 | static void node_initialize(btree_node_t *node); |
1177 | jermar | 57 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
58 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
59 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
60 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
61 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
1142 | jermar | 62 | static btree_node_t *node_combine(btree_node_t *node); |
1136 | jermar | 63 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
1142 | jermar | 64 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
65 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
1177 | jermar | 66 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
67 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
1142 | jermar | 68 | static bool try_rotation_from_left(btree_node_t *rnode); |
69 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
1101 | jermar | 70 | |
71 | #define ROOT_NODE(n) (!(n)->parent) |
||
72 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
73 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
74 | |||
1140 | jermar | 75 | #define FILL_FACTOR ((BTREE_M-1)/2) |
76 | |||
1101 | jermar | 77 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
78 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
79 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
80 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
81 | |||
1164 | jermar | 82 | static slab_cache_t *btree_node_slab; |
83 | |||
84 | /** Initialize B-trees. */ |
||
85 | void btree_init(void) |
||
86 | { |
||
87 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
88 | } |
||
89 | |||
1101 | jermar | 90 | /** Create empty B-tree. |
91 | * |
||
92 | * @param t B-tree. |
||
93 | */ |
||
94 | void btree_create(btree_t *t) |
||
95 | { |
||
96 | list_initialize(&t->leaf_head); |
||
1164 | jermar | 97 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 98 | node_initialize(t->root); |
99 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
100 | } |
||
101 | |||
102 | /** Destroy empty B-tree. */ |
||
103 | void btree_destroy(btree_t *t) |
||
104 | { |
||
1483 | jermar | 105 | btree_destroy_subtree(t->root); |
1101 | jermar | 106 | } |
107 | |||
108 | /** Insert key-value pair into B-tree. |
||
109 | * |
||
110 | * @param t B-tree. |
||
111 | * @param key Key to be inserted. |
||
112 | * @param value Value to be inserted. |
||
113 | * @param leaf_node Leaf node where the insertion should begin. |
||
114 | */ |
||
1177 | jermar | 115 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
1101 | jermar | 116 | { |
117 | btree_node_t *lnode; |
||
118 | |||
119 | ASSERT(value); |
||
120 | |||
121 | lnode = leaf_node; |
||
122 | if (!lnode) { |
||
123 | if (btree_search(t, key, &lnode)) { |
||
1221 | decky | 124 | panic("B-tree %p already contains key %d\n", t, key); |
1101 | jermar | 125 | } |
126 | } |
||
127 | |||
128 | _btree_insert(t, key, value, NULL, lnode); |
||
129 | } |
||
130 | |||
1483 | jermar | 131 | /** Destroy subtree rooted in a node. |
132 | * |
||
133 | * @param root Root of the subtree. |
||
134 | */ |
||
135 | void btree_destroy_subtree(btree_node_t *root) |
||
136 | { |
||
137 | int i; |
||
138 | |||
139 | if (root->keys) { |
||
140 | for (i = 0; i < root->keys + 1; i++) { |
||
141 | if (root->subtree[i]) |
||
142 | btree_destroy_subtree(root->subtree[i]); |
||
143 | } |
||
144 | } |
||
145 | slab_free(btree_node_slab, root); |
||
146 | } |
||
147 | |||
1101 | jermar | 148 | /** Recursively insert into B-tree. |
149 | * |
||
150 | * @param t B-tree. |
||
151 | * @param key Key to be inserted. |
||
152 | * @param value Value to be inserted. |
||
153 | * @param rsubtree Right subtree of the inserted key. |
||
154 | * @param node Start inserting into this node. |
||
155 | */ |
||
1177 | jermar | 156 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
1101 | jermar | 157 | { |
158 | if (node->keys < BTREE_MAX_KEYS) { |
||
159 | /* |
||
160 | * Node conatins enough space, the key can be stored immediately. |
||
161 | */ |
||
1142 | jermar | 162 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
163 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
1136 | jermar | 164 | /* |
165 | * The key-value-rsubtree triplet has been inserted because |
||
166 | * some keys could have been moved to the left sibling. |
||
167 | */ |
||
1142 | jermar | 168 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
1136 | jermar | 169 | /* |
170 | * The key-value-rsubtree triplet has been inserted because |
||
171 | * some keys could have been moved to the right sibling. |
||
172 | */ |
||
1101 | jermar | 173 | } else { |
174 | btree_node_t *rnode; |
||
1177 | jermar | 175 | btree_key_t median; |
1101 | jermar | 176 | |
177 | /* |
||
1136 | jermar | 178 | * Node is full and both siblings (if both exist) are full too. |
179 | * Split the node and insert the smallest key from the node containing |
||
180 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 181 | */ |
182 | |||
183 | rnode = node_split(node, key, value, rsubtree, &median); |
||
184 | |||
185 | if (LEAF_NODE(node)) { |
||
1144 | jermar | 186 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
1101 | jermar | 187 | } |
188 | |||
189 | if (ROOT_NODE(node)) { |
||
190 | /* |
||
191 | * We split the root node. Create new root. |
||
192 | */ |
||
1164 | jermar | 193 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 194 | node->parent = t->root; |
195 | rnode->parent = t->root; |
||
196 | node_initialize(t->root); |
||
197 | |||
198 | /* |
||
199 | * Left-hand side subtree will be the old root (i.e. node). |
||
200 | * Right-hand side subtree will be rnode. |
||
201 | */ |
||
202 | t->root->subtree[0] = node; |
||
203 | |||
204 | t->root->depth = node->depth + 1; |
||
205 | } |
||
206 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
207 | } |
||
208 | |||
209 | } |
||
210 | |||
1140 | jermar | 211 | /** Remove B-tree node. |
212 | * |
||
213 | * @param B-tree. |
||
214 | * @param key Key to be removed from the B-tree along with its associated value. |
||
215 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
216 | */ |
||
1177 | jermar | 217 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
1101 | jermar | 218 | { |
1140 | jermar | 219 | btree_node_t *lnode; |
220 | |||
221 | lnode = leaf_node; |
||
222 | if (!lnode) { |
||
223 | if (!btree_search(t, key, &lnode)) { |
||
1221 | decky | 224 | panic("B-tree %p does not contain key %d\n", t, key); |
1140 | jermar | 225 | } |
226 | } |
||
227 | |||
1142 | jermar | 228 | _btree_remove(t, key, lnode); |
229 | } |
||
1140 | jermar | 230 | |
1142 | jermar | 231 | /** Recursively remove B-tree node. |
232 | * |
||
233 | * @param B-tree. |
||
234 | * @param key Key to be removed from the B-tree along with its associated value. |
||
235 | * @param node Node where the key being removed resides. |
||
236 | */ |
||
1177 | jermar | 237 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
1142 | jermar | 238 | { |
239 | if (ROOT_NODE(node)) { |
||
240 | if (node->keys == 1 && node->subtree[0]) { |
||
241 | /* |
||
242 | * Free the current root and set new root. |
||
243 | */ |
||
244 | t->root = node->subtree[0]; |
||
245 | t->root->parent = NULL; |
||
1164 | jermar | 246 | slab_free(btree_node_slab, node); |
1142 | jermar | 247 | } else { |
248 | /* |
||
249 | * Remove the key from the root node. |
||
250 | * Note that the right subtree is removed because when |
||
251 | * combining two nodes, the left-side sibling is preserved |
||
252 | * and the right-side sibling is freed. |
||
253 | */ |
||
254 | node_remove_key_and_rsubtree(node, key); |
||
255 | } |
||
256 | return; |
||
257 | } |
||
258 | |||
259 | if (node->keys <= FILL_FACTOR) { |
||
260 | /* |
||
261 | * If the node is below the fill factor, |
||
262 | * try to borrow keys from left or right sibling. |
||
263 | */ |
||
264 | if (!try_rotation_from_left(node)) |
||
265 | try_rotation_from_right(node); |
||
266 | } |
||
267 | |||
268 | if (node->keys > FILL_FACTOR) { |
||
269 | int i; |
||
270 | |||
271 | /* |
||
272 | * The key can be immediatelly removed. |
||
273 | * |
||
274 | * Note that the right subtree is removed because when |
||
275 | * combining two nodes, the left-side sibling is preserved |
||
276 | * and the right-side sibling is freed. |
||
277 | */ |
||
278 | node_remove_key_and_rsubtree(node, key); |
||
279 | for (i = 0; i < node->parent->keys; i++) { |
||
280 | if (node->parent->key[i] == key) |
||
281 | node->parent->key[i] = node->key[0]; |
||
282 | } |
||
283 | |||
284 | } else { |
||
285 | index_t idx; |
||
286 | btree_node_t *rnode, *parent; |
||
287 | |||
288 | /* |
||
289 | * The node is below the fill factor as well as its left and right sibling. |
||
290 | * Resort to combining the node with one of its siblings. |
||
291 | * The node which is on the left is preserved and the node on the right is |
||
292 | * freed. |
||
293 | */ |
||
294 | parent = node->parent; |
||
295 | node_remove_key_and_rsubtree(node, key); |
||
296 | rnode = node_combine(node); |
||
297 | if (LEAF_NODE(rnode)) |
||
298 | list_remove(&rnode->leaf_link); |
||
299 | idx = find_key_by_subtree(parent, rnode, true); |
||
300 | ASSERT((int) idx != -1); |
||
1164 | jermar | 301 | slab_free(btree_node_slab, rnode); |
1142 | jermar | 302 | _btree_remove(t, parent->key[idx], parent); |
303 | } |
||
1101 | jermar | 304 | } |
305 | |||
306 | /** Search key in a B-tree. |
||
307 | * |
||
308 | * @param t B-tree. |
||
309 | * @param key Key to be searched. |
||
310 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
311 | * |
||
312 | * @return Pointer to value or NULL if there is no such key. |
||
313 | */ |
||
1177 | jermar | 314 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
1101 | jermar | 315 | { |
316 | btree_node_t *cur, *next; |
||
317 | |||
318 | /* |
||
1134 | jermar | 319 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 320 | */ |
321 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 322 | |
1101 | jermar | 323 | /* Last iteration will set this with proper leaf node address. */ |
324 | *leaf_node = cur; |
||
1134 | jermar | 325 | |
326 | /* |
||
327 | * The key can be in the leftmost subtree. |
||
328 | * Test it separately. |
||
329 | */ |
||
330 | if (key < cur->key[0]) { |
||
331 | next = cur->subtree[0]; |
||
332 | continue; |
||
333 | } else { |
||
334 | void *val; |
||
335 | int i; |
||
336 | |||
337 | /* |
||
338 | * Now if the key is smaller than cur->key[i] |
||
339 | * it can only mean that the value is in cur->subtree[i] |
||
340 | * or it is not in the tree at all. |
||
341 | */ |
||
342 | for (i = 1; i < cur->keys; i++) { |
||
343 | if (key < cur->key[i]) { |
||
344 | next = cur->subtree[i]; |
||
345 | val = cur->value[i - 1]; |
||
346 | |||
347 | if (LEAF_NODE(cur)) |
||
348 | return key == cur->key[i - 1] ? val : NULL; |
||
349 | |||
350 | goto descend; |
||
351 | } |
||
1101 | jermar | 352 | } |
1134 | jermar | 353 | |
354 | /* |
||
355 | * Last possibility is that the key is in the rightmost subtree. |
||
356 | */ |
||
357 | next = cur->subtree[i]; |
||
358 | val = cur->value[i - 1]; |
||
359 | if (LEAF_NODE(cur)) |
||
360 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 361 | } |
1134 | jermar | 362 | descend: |
363 | ; |
||
1101 | jermar | 364 | } |
365 | |||
366 | /* |
||
1134 | jermar | 367 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 368 | */ |
369 | return NULL; |
||
370 | } |
||
371 | |||
1150 | jermar | 372 | /** Return pointer to B-tree leaf node's left neighbour. |
1147 | jermar | 373 | * |
374 | * @param t B-tree. |
||
1150 | jermar | 375 | * @param node Node whose left neighbour will be returned. |
1147 | jermar | 376 | * |
1150 | jermar | 377 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
1147 | jermar | 378 | */ |
1150 | jermar | 379 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 380 | { |
381 | ASSERT(LEAF_NODE(node)); |
||
382 | if (node->leaf_link.prev != &t->leaf_head) |
||
383 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
384 | else |
||
385 | return NULL; |
||
386 | } |
||
387 | |||
1150 | jermar | 388 | /** Return pointer to B-tree leaf node's right neighbour. |
1147 | jermar | 389 | * |
390 | * @param t B-tree. |
||
1150 | jermar | 391 | * @param node Node whose right neighbour will be returned. |
1147 | jermar | 392 | * |
1150 | jermar | 393 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
1147 | jermar | 394 | */ |
1150 | jermar | 395 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 396 | { |
397 | ASSERT(LEAF_NODE(node)); |
||
398 | if (node->leaf_link.next != &t->leaf_head) |
||
399 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
400 | else |
||
401 | return NULL; |
||
402 | } |
||
403 | |||
1101 | jermar | 404 | /** Initialize B-tree node. |
405 | * |
||
406 | * @param node B-tree node. |
||
407 | */ |
||
408 | void node_initialize(btree_node_t *node) |
||
409 | { |
||
410 | int i; |
||
411 | |||
412 | node->keys = 0; |
||
413 | |||
414 | /* Clean also space for the extra key. */ |
||
415 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
416 | node->key[i] = 0; |
||
417 | node->value[i] = NULL; |
||
418 | node->subtree[i] = NULL; |
||
419 | } |
||
420 | node->subtree[i] = NULL; |
||
421 | |||
422 | node->parent = NULL; |
||
423 | |||
424 | link_initialize(&node->leaf_link); |
||
425 | |||
426 | link_initialize(&node->bfs_link); |
||
427 | node->depth = 0; |
||
428 | } |
||
429 | |||
1136 | jermar | 430 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 431 | * |
432 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 433 | * This feature is used during insert by right rotation. |
434 | * |
||
435 | * @param node B-tree node into wich the new key is to be inserted. |
||
436 | * @param key The key to be inserted. |
||
437 | * @param value Pointer to value to be inserted. |
||
438 | * @param lsubtree Pointer to the left subtree. |
||
439 | */ |
||
1177 | jermar | 440 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
1136 | jermar | 441 | { |
442 | int i; |
||
443 | |||
444 | for (i = 0; i < node->keys; i++) { |
||
445 | if (key < node->key[i]) { |
||
446 | int j; |
||
447 | |||
448 | for (j = node->keys; j > i; j--) { |
||
449 | node->key[j] = node->key[j - 1]; |
||
450 | node->value[j] = node->value[j - 1]; |
||
451 | node->subtree[j + 1] = node->subtree[j]; |
||
452 | } |
||
453 | node->subtree[j + 1] = node->subtree[j]; |
||
454 | break; |
||
455 | } |
||
456 | } |
||
457 | node->key[i] = key; |
||
458 | node->value[i] = value; |
||
459 | node->subtree[i] = lsubtree; |
||
460 | |||
461 | node->keys++; |
||
462 | } |
||
463 | |||
464 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
465 | * |
||
466 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 467 | * This feature is used during splitting the node when the |
1136 | jermar | 468 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
469 | * also makes use of this feature. |
||
1101 | jermar | 470 | * |
471 | * @param node B-tree node into wich the new key is to be inserted. |
||
472 | * @param key The key to be inserted. |
||
473 | * @param value Pointer to value to be inserted. |
||
474 | * @param rsubtree Pointer to the right subtree. |
||
475 | */ |
||
1177 | jermar | 476 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 477 | { |
478 | int i; |
||
479 | |||
480 | for (i = 0; i < node->keys; i++) { |
||
481 | if (key < node->key[i]) { |
||
482 | int j; |
||
483 | |||
484 | for (j = node->keys; j > i; j--) { |
||
485 | node->key[j] = node->key[j - 1]; |
||
486 | node->value[j] = node->value[j - 1]; |
||
487 | node->subtree[j + 1] = node->subtree[j]; |
||
488 | } |
||
489 | break; |
||
490 | } |
||
491 | } |
||
492 | node->key[i] = key; |
||
493 | node->value[i] = value; |
||
494 | node->subtree[i + 1] = rsubtree; |
||
495 | |||
496 | node->keys++; |
||
497 | } |
||
498 | |||
1144 | jermar | 499 | /** Remove key and its left subtree pointer from B-tree node. |
500 | * |
||
501 | * Remove the key and eliminate gaps in node->key array. |
||
502 | * Note that the value pointer and the left subtree pointer |
||
503 | * is removed from the node as well. |
||
504 | * |
||
505 | * @param node B-tree node. |
||
506 | * @param key Key to be removed. |
||
507 | */ |
||
1177 | jermar | 508 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 509 | { |
510 | int i, j; |
||
511 | |||
512 | for (i = 0; i < node->keys; i++) { |
||
513 | if (key == node->key[i]) { |
||
514 | for (j = i + 1; j < node->keys; j++) { |
||
515 | node->key[j - 1] = node->key[j]; |
||
516 | node->value[j - 1] = node->value[j]; |
||
517 | node->subtree[j - 1] = node->subtree[j]; |
||
518 | } |
||
519 | node->subtree[j - 1] = node->subtree[j]; |
||
520 | node->keys--; |
||
521 | return; |
||
522 | } |
||
523 | } |
||
1221 | decky | 524 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 525 | } |
526 | |||
527 | /** Remove key and its right subtree pointer from B-tree node. |
||
528 | * |
||
529 | * Remove the key and eliminate gaps in node->key array. |
||
530 | * Note that the value pointer and the right subtree pointer |
||
531 | * is removed from the node as well. |
||
532 | * |
||
533 | * @param node B-tree node. |
||
534 | * @param key Key to be removed. |
||
535 | */ |
||
1177 | jermar | 536 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 537 | { |
538 | int i, j; |
||
539 | |||
540 | for (i = 0; i < node->keys; i++) { |
||
541 | if (key == node->key[i]) { |
||
542 | for (j = i + 1; j < node->keys; j++) { |
||
543 | node->key[j - 1] = node->key[j]; |
||
544 | node->value[j - 1] = node->value[j]; |
||
545 | node->subtree[j] = node->subtree[j + 1]; |
||
546 | } |
||
547 | node->keys--; |
||
548 | return; |
||
549 | } |
||
550 | } |
||
1221 | decky | 551 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 552 | } |
553 | |||
1134 | jermar | 554 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 555 | * |
556 | * This function will split a node and return pointer to a newly created |
||
1134 | jermar | 557 | * node containing keys greater than or equal to the greater of medians |
558 | * (or median) of the old keys and the newly added key. It will also write |
||
559 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 560 | * |
1134 | jermar | 561 | * If the node being split is an index node, the median will not be |
562 | * included in the new node. If the node is a leaf node, |
||
563 | * the median will be copied there. |
||
1101 | jermar | 564 | * |
565 | * @param node B-tree node wich is going to be split. |
||
566 | * @param key The key to be inserted. |
||
567 | * @param value Pointer to the value to be inserted. |
||
568 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
569 | * @param median Address in memory, where the median key will be stored. |
||
570 | * |
||
571 | * @return Newly created right sibling of node. |
||
572 | */ |
||
1177 | jermar | 573 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
1101 | jermar | 574 | { |
575 | btree_node_t *rnode; |
||
576 | int i, j; |
||
577 | |||
578 | ASSERT(median); |
||
579 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 580 | |
1101 | jermar | 581 | /* |
582 | * Use the extra space to store the extra node. |
||
583 | */ |
||
1142 | jermar | 584 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
1101 | jermar | 585 | |
586 | /* |
||
587 | * Compute median of keys. |
||
588 | */ |
||
1134 | jermar | 589 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 590 | |
1134 | jermar | 591 | /* |
592 | * Allocate and initialize new right sibling. |
||
593 | */ |
||
1164 | jermar | 594 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 595 | node_initialize(rnode); |
596 | rnode->parent = node->parent; |
||
597 | rnode->depth = node->depth; |
||
598 | |||
599 | /* |
||
600 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 601 | * If this is an index node, do not copy the median. |
1101 | jermar | 602 | */ |
1134 | jermar | 603 | i = (int) INDEX_NODE(node); |
604 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
1101 | jermar | 605 | rnode->key[j] = node->key[i]; |
606 | rnode->value[j] = node->value[i]; |
||
607 | rnode->subtree[j] = node->subtree[i]; |
||
608 | |||
609 | /* |
||
610 | * Fix parent links in subtrees. |
||
611 | */ |
||
612 | if (rnode->subtree[j]) |
||
613 | rnode->subtree[j]->parent = rnode; |
||
614 | |||
615 | } |
||
616 | rnode->subtree[j] = node->subtree[i]; |
||
617 | if (rnode->subtree[j]) |
||
618 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 619 | |
620 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
621 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 622 | |
623 | return rnode; |
||
624 | } |
||
625 | |||
1142 | jermar | 626 | /** Combine node with any of its siblings. |
627 | * |
||
628 | * The siblings are required to be below the fill factor. |
||
629 | * |
||
630 | * @param node Node to combine with one of its siblings. |
||
631 | * |
||
632 | * @return Pointer to the rightmost of the two nodes. |
||
633 | */ |
||
634 | btree_node_t *node_combine(btree_node_t *node) |
||
635 | { |
||
636 | index_t idx; |
||
637 | btree_node_t *rnode; |
||
638 | int i; |
||
639 | |||
640 | ASSERT(!ROOT_NODE(node)); |
||
641 | |||
642 | idx = find_key_by_subtree(node->parent, node, false); |
||
643 | if (idx == node->parent->keys) { |
||
644 | /* |
||
645 | * Rightmost subtree of its parent, combine with the left sibling. |
||
646 | */ |
||
647 | idx--; |
||
648 | rnode = node; |
||
649 | node = node->parent->subtree[idx]; |
||
650 | } else { |
||
651 | rnode = node->parent->subtree[idx + 1]; |
||
652 | } |
||
653 | |||
654 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
655 | if (INDEX_NODE(node)) |
||
656 | node->key[node->keys++] = node->parent->key[idx]; |
||
657 | |||
658 | /* Copy the key-value-subtree triplets from the right node. */ |
||
659 | for (i = 0; i < rnode->keys; i++) { |
||
660 | node->key[node->keys + i] = rnode->key[i]; |
||
661 | node->value[node->keys + i] = rnode->value[i]; |
||
662 | if (INDEX_NODE(node)) { |
||
663 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
664 | rnode->subtree[i]->parent = node; |
||
665 | } |
||
666 | } |
||
667 | if (INDEX_NODE(node)) { |
||
668 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
669 | rnode->subtree[i]->parent = node; |
||
670 | } |
||
671 | |||
672 | node->keys += rnode->keys; |
||
673 | |||
674 | return rnode; |
||
675 | } |
||
676 | |||
1136 | jermar | 677 | /** Find key by its left or right subtree. |
678 | * |
||
679 | * @param node B-tree node. |
||
680 | * @param subtree Left or right subtree of a key found in node. |
||
681 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
682 | * |
||
683 | * @return Index of the key associated with the subtree. |
||
684 | */ |
||
685 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
686 | { |
||
687 | int i; |
||
688 | |||
689 | for (i = 0; i < node->keys + 1; i++) { |
||
690 | if (subtree == node->subtree[i]) |
||
691 | return i - (int) (right != false); |
||
692 | } |
||
1221 | decky | 693 | panic("node %p does not contain subtree %p\n", node, subtree); |
1136 | jermar | 694 | } |
695 | |||
1142 | jermar | 696 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
697 | * |
||
698 | * The biggest key and its value and right subtree is rotated from the left node |
||
699 | * to the right. If the node is an index node, than the parent node key belonging to |
||
700 | * the left node takes part in the rotation. |
||
701 | * |
||
702 | * @param lnode Left sibling. |
||
703 | * @param rnode Right sibling. |
||
704 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
705 | */ |
||
706 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
707 | { |
||
1177 | jermar | 708 | btree_key_t key; |
1142 | jermar | 709 | |
710 | key = lnode->key[lnode->keys - 1]; |
||
711 | |||
712 | if (LEAF_NODE(lnode)) { |
||
713 | void *value; |
||
714 | |||
715 | value = lnode->value[lnode->keys - 1]; |
||
716 | node_remove_key_and_rsubtree(lnode, key); |
||
717 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
718 | lnode->parent->key[idx] = key; |
||
719 | } else { |
||
720 | btree_node_t *rsubtree; |
||
721 | |||
722 | rsubtree = lnode->subtree[lnode->keys]; |
||
723 | node_remove_key_and_rsubtree(lnode, key); |
||
724 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
725 | lnode->parent->key[idx] = key; |
||
726 | |||
727 | /* Fix parent link of the reconnected right subtree. */ |
||
728 | rsubtree->parent = rnode; |
||
729 | } |
||
730 | |||
731 | } |
||
732 | |||
733 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
734 | * |
||
735 | * The smallest key and its value and left subtree is rotated from the right node |
||
736 | * to the left. If the node is an index node, than the parent node key belonging to |
||
737 | * the right node takes part in the rotation. |
||
738 | * |
||
739 | * @param lnode Left sibling. |
||
740 | * @param rnode Right sibling. |
||
741 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
742 | */ |
||
743 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
744 | { |
||
1177 | jermar | 745 | btree_key_t key; |
1142 | jermar | 746 | |
747 | key = rnode->key[0]; |
||
748 | |||
749 | if (LEAF_NODE(rnode)) { |
||
750 | void *value; |
||
751 | |||
752 | value = rnode->value[0]; |
||
753 | node_remove_key_and_lsubtree(rnode, key); |
||
754 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
755 | rnode->parent->key[idx] = rnode->key[0]; |
||
756 | } else { |
||
757 | btree_node_t *lsubtree; |
||
758 | |||
759 | lsubtree = rnode->subtree[0]; |
||
760 | node_remove_key_and_lsubtree(rnode, key); |
||
761 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
762 | rnode->parent->key[idx] = key; |
||
763 | |||
764 | /* Fix parent link of the reconnected left subtree. */ |
||
765 | lsubtree->parent = lnode; |
||
766 | } |
||
767 | |||
768 | } |
||
769 | |||
1136 | jermar | 770 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
771 | * |
||
772 | * Left sibling of the node (if it exists) is checked for free space. |
||
773 | * If there is free space, the key is inserted and the smallest key of |
||
774 | * the node is moved there. The index node which is the parent of both |
||
775 | * nodes is fixed. |
||
776 | * |
||
777 | * @param node B-tree node. |
||
778 | * @param inskey Key to be inserted. |
||
779 | * @param insvalue Value to be inserted. |
||
780 | * @param rsubtree Right subtree of inskey. |
||
781 | * |
||
782 | * @return True if the rotation was performed, false otherwise. |
||
783 | */ |
||
1177 | jermar | 784 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 785 | { |
786 | index_t idx; |
||
787 | btree_node_t *lnode; |
||
788 | |||
789 | /* |
||
790 | * If this is root node, the rotation can not be done. |
||
791 | */ |
||
792 | if (ROOT_NODE(node)) |
||
793 | return false; |
||
794 | |||
795 | idx = find_key_by_subtree(node->parent, node, true); |
||
796 | if ((int) idx == -1) { |
||
797 | /* |
||
798 | * If this node is the leftmost subtree of its parent, |
||
799 | * the rotation can not be done. |
||
800 | */ |
||
801 | return false; |
||
802 | } |
||
803 | |||
804 | lnode = node->parent->subtree[idx]; |
||
805 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
806 | /* |
||
807 | * The rotaion can be done. The left sibling has free space. |
||
808 | */ |
||
1142 | jermar | 809 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
810 | rotate_from_right(lnode, node, idx); |
||
1136 | jermar | 811 | return true; |
812 | } |
||
813 | |||
814 | return false; |
||
815 | } |
||
816 | |||
817 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
818 | * |
||
819 | * Right sibling of the node (if it exists) is checked for free space. |
||
820 | * If there is free space, the key is inserted and the biggest key of |
||
821 | * the node is moved there. The index node which is the parent of both |
||
822 | * nodes is fixed. |
||
823 | * |
||
824 | * @param node B-tree node. |
||
825 | * @param inskey Key to be inserted. |
||
826 | * @param insvalue Value to be inserted. |
||
827 | * @param rsubtree Right subtree of inskey. |
||
828 | * |
||
829 | * @return True if the rotation was performed, false otherwise. |
||
830 | */ |
||
1177 | jermar | 831 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 832 | { |
833 | index_t idx; |
||
834 | btree_node_t *rnode; |
||
835 | |||
836 | /* |
||
837 | * If this is root node, the rotation can not be done. |
||
838 | */ |
||
839 | if (ROOT_NODE(node)) |
||
840 | return false; |
||
841 | |||
842 | idx = find_key_by_subtree(node->parent, node, false); |
||
843 | if (idx == node->parent->keys) { |
||
844 | /* |
||
845 | * If this node is the rightmost subtree of its parent, |
||
846 | * the rotation can not be done. |
||
847 | */ |
||
848 | return false; |
||
849 | } |
||
850 | |||
851 | rnode = node->parent->subtree[idx + 1]; |
||
852 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
853 | /* |
||
854 | * The rotaion can be done. The right sibling has free space. |
||
855 | */ |
||
1142 | jermar | 856 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
857 | rotate_from_left(node, rnode, idx); |
||
858 | return true; |
||
859 | } |
||
1136 | jermar | 860 | |
1142 | jermar | 861 | return false; |
862 | } |
||
1136 | jermar | 863 | |
1142 | jermar | 864 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
865 | * |
||
866 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
867 | * |
||
868 | * @return True if the rotation was performed, false otherwise. |
||
869 | */ |
||
870 | bool try_rotation_from_left(btree_node_t *rnode) |
||
871 | { |
||
872 | index_t idx; |
||
873 | btree_node_t *lnode; |
||
1136 | jermar | 874 | |
1142 | jermar | 875 | /* |
876 | * If this is root node, the rotation can not be done. |
||
877 | */ |
||
878 | if (ROOT_NODE(rnode)) |
||
879 | return false; |
||
880 | |||
881 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
882 | if ((int) idx == -1) { |
||
883 | /* |
||
884 | * If this node is the leftmost subtree of its parent, |
||
885 | * the rotation can not be done. |
||
886 | */ |
||
887 | return false; |
||
888 | } |
||
889 | |||
890 | lnode = rnode->parent->subtree[idx]; |
||
891 | if (lnode->keys > FILL_FACTOR) { |
||
892 | rotate_from_left(lnode, rnode, idx); |
||
1136 | jermar | 893 | return true; |
894 | } |
||
1142 | jermar | 895 | |
896 | return false; |
||
897 | } |
||
1136 | jermar | 898 | |
1142 | jermar | 899 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
900 | * |
||
901 | * @param rnode Node into which to add key from its right sibling or from the index node. |
||
902 | * |
||
903 | * @return True if the rotation was performed, false otherwise. |
||
904 | */ |
||
905 | bool try_rotation_from_right(btree_node_t *lnode) |
||
906 | { |
||
907 | index_t idx; |
||
908 | btree_node_t *rnode; |
||
909 | |||
910 | /* |
||
911 | * If this is root node, the rotation can not be done. |
||
912 | */ |
||
913 | if (ROOT_NODE(lnode)) |
||
914 | return false; |
||
915 | |||
916 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
917 | if (idx == lnode->parent->keys) { |
||
918 | /* |
||
919 | * If this node is the rightmost subtree of its parent, |
||
920 | * the rotation can not be done. |
||
921 | */ |
||
922 | return false; |
||
923 | } |
||
924 | |||
925 | rnode = lnode->parent->subtree[idx + 1]; |
||
926 | if (rnode->keys > FILL_FACTOR) { |
||
927 | rotate_from_right(lnode, rnode, idx); |
||
928 | return true; |
||
929 | } |
||
930 | |||
1136 | jermar | 931 | return false; |
932 | } |
||
933 | |||
1101 | jermar | 934 | /** Print B-tree. |
935 | * |
||
936 | * @param t Print out B-tree. |
||
937 | */ |
||
938 | void btree_print(btree_t *t) |
||
939 | { |
||
940 | int i, depth = t->root->depth; |
||
1144 | jermar | 941 | link_t head, *cur; |
942 | |||
943 | printf("Printing B-tree:\n"); |
||
1101 | jermar | 944 | list_initialize(&head); |
945 | list_append(&t->root->bfs_link, &head); |
||
946 | |||
947 | /* |
||
948 | * Use BFS search to print out the tree. |
||
949 | * Levels are distinguished from one another by node->depth. |
||
950 | */ |
||
951 | while (!list_empty(&head)) { |
||
952 | link_t *hlp; |
||
953 | btree_node_t *node; |
||
954 | |||
955 | hlp = head.next; |
||
956 | ASSERT(hlp != &head); |
||
957 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
958 | list_remove(hlp); |
||
959 | |||
960 | ASSERT(node); |
||
961 | |||
962 | if (node->depth != depth) { |
||
963 | printf("\n"); |
||
964 | depth = node->depth; |
||
965 | } |
||
966 | |||
967 | printf("("); |
||
968 | for (i = 0; i < node->keys; i++) { |
||
1196 | cejka | 969 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1101 | jermar | 970 | if (node->depth && node->subtree[i]) { |
971 | list_append(&node->subtree[i]->bfs_link, &head); |
||
972 | } |
||
973 | } |
||
974 | if (node->depth && node->subtree[i]) { |
||
975 | list_append(&node->subtree[i]->bfs_link, &head); |
||
976 | } |
||
977 | printf(")"); |
||
978 | } |
||
979 | printf("\n"); |
||
1144 | jermar | 980 | |
981 | printf("Printing list of leaves:\n"); |
||
982 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
983 | btree_node_t *node; |
||
984 | |||
985 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
986 | |||
987 | ASSERT(node); |
||
988 | |||
989 | printf("("); |
||
990 | for (i = 0; i < node->keys; i++) |
||
1196 | cejka | 991 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1144 | jermar | 992 | printf(")"); |
993 | } |
||
994 | printf("\n"); |
||
1101 | jermar | 995 | } |