Rev 1702 | Rev 1708 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1 | jermar | 1 | /* |
| 2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
| 3 | * All rights reserved. |
||
| 4 | * |
||
| 5 | * Redistribution and use in source and binary forms, with or without |
||
| 6 | * modification, are permitted provided that the following conditions |
||
| 7 | * are met: |
||
| 8 | * |
||
| 9 | * - Redistributions of source code must retain the above copyright |
||
| 10 | * notice, this list of conditions and the following disclaimer. |
||
| 11 | * - Redistributions in binary form must reproduce the above copyright |
||
| 12 | * notice, this list of conditions and the following disclaimer in the |
||
| 13 | * documentation and/or other materials provided with the distribution. |
||
| 14 | * - The name of the author may not be used to endorse or promote products |
||
| 15 | * derived from this software without specific prior written permission. |
||
| 16 | * |
||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | */ |
||
| 28 | |||
| 1702 | cejka | 29 | |
| 1705 | cejka | 30 | /** @addtogroup genericproc |
| 1702 | cejka | 31 | * @{ |
| 32 | */ |
||
| 33 | |||
| 1248 | jermar | 34 | /** |
| 1702 | cejka | 35 | * @file |
| 1248 | jermar | 36 | * @brief Scheduler and load balancing. |
| 37 | * |
||
| 1264 | jermar | 38 | * This file contains the scheduler and kcpulb kernel thread which |
| 1248 | jermar | 39 | * performs load-balancing of per-CPU run queues. |
| 40 | */ |
||
| 41 | |||
| 1 | jermar | 42 | #include <proc/scheduler.h> |
| 43 | #include <proc/thread.h> |
||
| 44 | #include <proc/task.h> |
||
| 378 | jermar | 45 | #include <mm/frame.h> |
| 46 | #include <mm/page.h> |
||
| 703 | jermar | 47 | #include <mm/as.h> |
| 1571 | jermar | 48 | #include <time/delay.h> |
| 378 | jermar | 49 | #include <arch/asm.h> |
| 50 | #include <arch/faddr.h> |
||
| 1104 | jermar | 51 | #include <atomic.h> |
| 378 | jermar | 52 | #include <synch/spinlock.h> |
| 1 | jermar | 53 | #include <config.h> |
| 54 | #include <context.h> |
||
| 55 | #include <func.h> |
||
| 56 | #include <arch.h> |
||
| 788 | jermar | 57 | #include <adt/list.h> |
| 68 | decky | 58 | #include <panic.h> |
| 1 | jermar | 59 | #include <typedefs.h> |
| 378 | jermar | 60 | #include <cpu.h> |
| 195 | vana | 61 | #include <print.h> |
| 227 | jermar | 62 | #include <debug.h> |
| 1 | jermar | 63 | |
| 1187 | jermar | 64 | static void before_task_runs(void); |
| 65 | static void before_thread_runs(void); |
||
| 66 | static void after_thread_ran(void); |
||
| 898 | jermar | 67 | static void scheduler_separated_stack(void); |
| 195 | vana | 68 | |
| 898 | jermar | 69 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
| 70 | |||
| 1187 | jermar | 71 | /** Carry out actions before new task runs. */ |
| 72 | void before_task_runs(void) |
||
| 73 | { |
||
| 74 | before_task_runs_arch(); |
||
| 75 | } |
||
| 76 | |||
| 897 | jermar | 77 | /** Take actions before new thread runs. |
| 107 | decky | 78 | * |
| 118 | jermar | 79 | * Perform actions that need to be |
| 80 | * taken before the newly selected |
||
| 81 | * tread is passed control. |
||
| 107 | decky | 82 | * |
| 827 | palkovsky | 83 | * THREAD->lock is locked on entry |
| 84 | * |
||
| 107 | decky | 85 | */ |
| 52 | vana | 86 | void before_thread_runs(void) |
| 87 | { |
||
| 309 | palkovsky | 88 | before_thread_runs_arch(); |
| 906 | palkovsky | 89 | #ifdef CONFIG_FPU_LAZY |
| 309 | palkovsky | 90 | if(THREAD==CPU->fpu_owner) |
| 91 | fpu_enable(); |
||
| 92 | else |
||
| 93 | fpu_disable(); |
||
| 906 | palkovsky | 94 | #else |
| 309 | palkovsky | 95 | fpu_enable(); |
| 96 | if (THREAD->fpu_context_exists) |
||
| 906 | palkovsky | 97 | fpu_context_restore(THREAD->saved_fpu_context); |
| 309 | palkovsky | 98 | else { |
| 906 | palkovsky | 99 | fpu_init(); |
| 309 | palkovsky | 100 | THREAD->fpu_context_exists=1; |
| 101 | } |
||
| 906 | palkovsky | 102 | #endif |
| 52 | vana | 103 | } |
| 104 | |||
| 898 | jermar | 105 | /** Take actions after THREAD had run. |
| 897 | jermar | 106 | * |
| 107 | * Perform actions that need to be |
||
| 108 | * taken after the running thread |
||
| 898 | jermar | 109 | * had been preempted by the scheduler. |
| 897 | jermar | 110 | * |
| 111 | * THREAD->lock is locked on entry |
||
| 112 | * |
||
| 113 | */ |
||
| 114 | void after_thread_ran(void) |
||
| 115 | { |
||
| 116 | after_thread_ran_arch(); |
||
| 117 | } |
||
| 118 | |||
| 458 | decky | 119 | #ifdef CONFIG_FPU_LAZY |
| 309 | palkovsky | 120 | void scheduler_fpu_lazy_request(void) |
| 121 | { |
||
| 907 | palkovsky | 122 | restart: |
| 309 | palkovsky | 123 | fpu_enable(); |
| 827 | palkovsky | 124 | spinlock_lock(&CPU->lock); |
| 125 | |||
| 126 | /* Save old context */ |
||
| 309 | palkovsky | 127 | if (CPU->fpu_owner != NULL) { |
| 827 | palkovsky | 128 | spinlock_lock(&CPU->fpu_owner->lock); |
| 906 | palkovsky | 129 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
| 309 | palkovsky | 130 | /* don't prevent migration */ |
| 131 | CPU->fpu_owner->fpu_context_engaged=0; |
||
| 827 | palkovsky | 132 | spinlock_unlock(&CPU->fpu_owner->lock); |
| 907 | palkovsky | 133 | CPU->fpu_owner = NULL; |
| 309 | palkovsky | 134 | } |
| 827 | palkovsky | 135 | |
| 136 | spinlock_lock(&THREAD->lock); |
||
| 898 | jermar | 137 | if (THREAD->fpu_context_exists) { |
| 906 | palkovsky | 138 | fpu_context_restore(THREAD->saved_fpu_context); |
| 898 | jermar | 139 | } else { |
| 906 | palkovsky | 140 | /* Allocate FPU context */ |
| 141 | if (!THREAD->saved_fpu_context) { |
||
| 142 | /* Might sleep */ |
||
| 143 | spinlock_unlock(&THREAD->lock); |
||
| 907 | palkovsky | 144 | spinlock_unlock(&CPU->lock); |
| 906 | palkovsky | 145 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, |
| 146 | 0); |
||
| 907 | palkovsky | 147 | /* We may have switched CPUs during slab_alloc */ |
| 148 | goto restart; |
||
| 906 | palkovsky | 149 | } |
| 150 | fpu_init(); |
||
| 309 | palkovsky | 151 | THREAD->fpu_context_exists=1; |
| 152 | } |
||
| 153 | CPU->fpu_owner=THREAD; |
||
| 154 | THREAD->fpu_context_engaged = 1; |
||
| 898 | jermar | 155 | spinlock_unlock(&THREAD->lock); |
| 827 | palkovsky | 156 | |
| 157 | spinlock_unlock(&CPU->lock); |
||
| 309 | palkovsky | 158 | } |
| 159 | #endif |
||
| 52 | vana | 160 | |
| 107 | decky | 161 | /** Initialize scheduler |
| 162 | * |
||
| 163 | * Initialize kernel scheduler. |
||
| 164 | * |
||
| 165 | */ |
||
| 1 | jermar | 166 | void scheduler_init(void) |
| 167 | { |
||
| 168 | } |
||
| 169 | |||
| 107 | decky | 170 | /** Get thread to be scheduled |
| 171 | * |
||
| 172 | * Get the optimal thread to be scheduled |
||
| 109 | jermar | 173 | * according to thread accounting and scheduler |
| 107 | decky | 174 | * policy. |
| 175 | * |
||
| 176 | * @return Thread to be scheduled. |
||
| 177 | * |
||
| 178 | */ |
||
| 483 | jermar | 179 | static thread_t *find_best_thread(void) |
| 1 | jermar | 180 | { |
| 181 | thread_t *t; |
||
| 182 | runq_t *r; |
||
| 783 | palkovsky | 183 | int i; |
| 1 | jermar | 184 | |
| 227 | jermar | 185 | ASSERT(CPU != NULL); |
| 186 | |||
| 1 | jermar | 187 | loop: |
| 413 | jermar | 188 | interrupts_enable(); |
| 1 | jermar | 189 | |
| 783 | palkovsky | 190 | if (atomic_get(&CPU->nrdy) == 0) { |
| 1 | jermar | 191 | /* |
| 192 | * For there was nothing to run, the CPU goes to sleep |
||
| 193 | * until a hardware interrupt or an IPI comes. |
||
| 194 | * This improves energy saving and hyperthreading. |
||
| 195 | */ |
||
| 785 | jermar | 196 | |
| 197 | /* |
||
| 198 | * An interrupt might occur right now and wake up a thread. |
||
| 199 | * In such case, the CPU will continue to go to sleep |
||
| 200 | * even though there is a runnable thread. |
||
| 201 | */ |
||
| 202 | |||
| 1 | jermar | 203 | cpu_sleep(); |
| 204 | goto loop; |
||
| 205 | } |
||
| 206 | |||
| 413 | jermar | 207 | interrupts_disable(); |
| 114 | jermar | 208 | |
| 898 | jermar | 209 | for (i = 0; i<RQ_COUNT; i++) { |
| 15 | jermar | 210 | r = &CPU->rq[i]; |
| 1 | jermar | 211 | spinlock_lock(&r->lock); |
| 212 | if (r->n == 0) { |
||
| 213 | /* |
||
| 214 | * If this queue is empty, try a lower-priority queue. |
||
| 215 | */ |
||
| 216 | spinlock_unlock(&r->lock); |
||
| 217 | continue; |
||
| 218 | } |
||
| 213 | jermar | 219 | |
| 783 | palkovsky | 220 | atomic_dec(&CPU->nrdy); |
| 475 | jermar | 221 | atomic_dec(&nrdy); |
| 1 | jermar | 222 | r->n--; |
| 223 | |||
| 224 | /* |
||
| 225 | * Take the first thread from the queue. |
||
| 226 | */ |
||
| 227 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
| 228 | list_remove(&t->rq_link); |
||
| 229 | |||
| 230 | spinlock_unlock(&r->lock); |
||
| 231 | |||
| 232 | spinlock_lock(&t->lock); |
||
| 15 | jermar | 233 | t->cpu = CPU; |
| 1 | jermar | 234 | |
| 235 | t->ticks = us2ticks((i+1)*10000); |
||
| 898 | jermar | 236 | t->priority = i; /* correct rq index */ |
| 1 | jermar | 237 | |
| 238 | /* |
||
| 239 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
| 240 | */ |
||
| 241 | t->flags &= ~X_STOLEN; |
||
| 242 | spinlock_unlock(&t->lock); |
||
| 243 | |||
| 244 | return t; |
||
| 245 | } |
||
| 246 | goto loop; |
||
| 247 | |||
| 248 | } |
||
| 249 | |||
| 107 | decky | 250 | /** Prevent rq starvation |
| 251 | * |
||
| 252 | * Prevent low priority threads from starving in rq's. |
||
| 253 | * |
||
| 254 | * When the function decides to relink rq's, it reconnects |
||
| 255 | * respective pointers so that in result threads with 'pri' |
||
| 1229 | jermar | 256 | * greater or equal @start are moved to a higher-priority queue. |
| 107 | decky | 257 | * |
| 258 | * @param start Threshold priority. |
||
| 259 | * |
||
| 1 | jermar | 260 | */ |
| 452 | decky | 261 | static void relink_rq(int start) |
| 1 | jermar | 262 | { |
| 263 | link_t head; |
||
| 264 | runq_t *r; |
||
| 265 | int i, n; |
||
| 266 | |||
| 267 | list_initialize(&head); |
||
| 15 | jermar | 268 | spinlock_lock(&CPU->lock); |
| 269 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
| 1 | jermar | 270 | for (i = start; i<RQ_COUNT-1; i++) { |
| 271 | /* remember and empty rq[i + 1] */ |
||
| 15 | jermar | 272 | r = &CPU->rq[i + 1]; |
| 1 | jermar | 273 | spinlock_lock(&r->lock); |
| 274 | list_concat(&head, &r->rq_head); |
||
| 275 | n = r->n; |
||
| 276 | r->n = 0; |
||
| 277 | spinlock_unlock(&r->lock); |
||
| 278 | |||
| 279 | /* append rq[i + 1] to rq[i] */ |
||
| 15 | jermar | 280 | r = &CPU->rq[i]; |
| 1 | jermar | 281 | spinlock_lock(&r->lock); |
| 282 | list_concat(&r->rq_head, &head); |
||
| 283 | r->n += n; |
||
| 284 | spinlock_unlock(&r->lock); |
||
| 285 | } |
||
| 15 | jermar | 286 | CPU->needs_relink = 0; |
| 1 | jermar | 287 | } |
| 784 | palkovsky | 288 | spinlock_unlock(&CPU->lock); |
| 1 | jermar | 289 | |
| 290 | } |
||
| 291 | |||
| 898 | jermar | 292 | /** The scheduler |
| 293 | * |
||
| 294 | * The thread scheduling procedure. |
||
| 295 | * Passes control directly to |
||
| 296 | * scheduler_separated_stack(). |
||
| 297 | * |
||
| 298 | */ |
||
| 299 | void scheduler(void) |
||
| 300 | { |
||
| 301 | volatile ipl_t ipl; |
||
| 107 | decky | 302 | |
| 898 | jermar | 303 | ASSERT(CPU != NULL); |
| 304 | |||
| 305 | ipl = interrupts_disable(); |
||
| 306 | |||
| 307 | if (atomic_get(&haltstate)) |
||
| 308 | halt(); |
||
| 1007 | decky | 309 | |
| 898 | jermar | 310 | if (THREAD) { |
| 311 | spinlock_lock(&THREAD->lock); |
||
| 906 | palkovsky | 312 | #ifndef CONFIG_FPU_LAZY |
| 313 | fpu_context_save(THREAD->saved_fpu_context); |
||
| 314 | #endif |
||
| 898 | jermar | 315 | if (!context_save(&THREAD->saved_context)) { |
| 316 | /* |
||
| 317 | * This is the place where threads leave scheduler(); |
||
| 318 | */ |
||
| 319 | spinlock_unlock(&THREAD->lock); |
||
| 320 | interrupts_restore(THREAD->saved_context.ipl); |
||
| 1007 | decky | 321 | |
| 898 | jermar | 322 | return; |
| 323 | } |
||
| 324 | |||
| 325 | /* |
||
| 326 | * Interrupt priority level of preempted thread is recorded here |
||
| 327 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
| 328 | * code (e.g. waitq_sleep_timeout()). |
||
| 329 | */ |
||
| 330 | THREAD->saved_context.ipl = ipl; |
||
| 331 | } |
||
| 332 | |||
| 333 | /* |
||
| 334 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
| 335 | * and preemption counter. At this point THE could be coming either |
||
| 336 | * from THREAD's or CPU's stack. |
||
| 337 | */ |
||
| 338 | the_copy(THE, (the_t *) CPU->stack); |
||
| 339 | |||
| 340 | /* |
||
| 341 | * We may not keep the old stack. |
||
| 342 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
| 343 | * find_best_thread(), the old thread could get rescheduled by another |
||
| 344 | * CPU and overwrite the part of its own stack that was also used by |
||
| 345 | * the scheduler on this CPU. |
||
| 346 | * |
||
| 347 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
| 348 | * which is fooled by SP being set to the very top of the stack. |
||
| 349 | * Therefore the scheduler() function continues in |
||
| 350 | * scheduler_separated_stack(). |
||
| 351 | */ |
||
| 352 | context_save(&CPU->saved_context); |
||
| 353 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
| 354 | context_restore(&CPU->saved_context); |
||
| 355 | /* not reached */ |
||
| 356 | } |
||
| 357 | |||
| 107 | decky | 358 | /** Scheduler stack switch wrapper |
| 359 | * |
||
| 360 | * Second part of the scheduler() function |
||
| 361 | * using new stack. Handling the actual context |
||
| 362 | * switch to a new thread. |
||
| 363 | * |
||
| 787 | palkovsky | 364 | * Assume THREAD->lock is held. |
| 107 | decky | 365 | */ |
| 898 | jermar | 366 | void scheduler_separated_stack(void) |
| 1 | jermar | 367 | { |
| 368 | int priority; |
||
| 1007 | decky | 369 | |
| 227 | jermar | 370 | ASSERT(CPU != NULL); |
| 1007 | decky | 371 | |
| 15 | jermar | 372 | if (THREAD) { |
| 898 | jermar | 373 | /* must be run after the switch to scheduler stack */ |
| 897 | jermar | 374 | after_thread_ran(); |
| 375 | |||
| 15 | jermar | 376 | switch (THREAD->state) { |
| 1 | jermar | 377 | case Running: |
| 125 | jermar | 378 | spinlock_unlock(&THREAD->lock); |
| 379 | thread_ready(THREAD); |
||
| 380 | break; |
||
| 1 | jermar | 381 | |
| 382 | case Exiting: |
||
| 1571 | jermar | 383 | repeat: |
| 384 | if (THREAD->detached) { |
||
| 385 | thread_destroy(THREAD); |
||
| 386 | } else { |
||
| 387 | /* |
||
| 388 | * The thread structure is kept allocated until somebody |
||
| 389 | * calls thread_detach() on it. |
||
| 390 | */ |
||
| 391 | if (!spinlock_trylock(&THREAD->join_wq.lock)) { |
||
| 392 | /* |
||
| 393 | * Avoid deadlock. |
||
| 394 | */ |
||
| 395 | spinlock_unlock(&THREAD->lock); |
||
| 396 | delay(10); |
||
| 397 | spinlock_lock(&THREAD->lock); |
||
| 398 | goto repeat; |
||
| 399 | } |
||
| 400 | _waitq_wakeup_unsafe(&THREAD->join_wq, false); |
||
| 401 | spinlock_unlock(&THREAD->join_wq.lock); |
||
| 402 | |||
| 403 | THREAD->state = Undead; |
||
| 404 | spinlock_unlock(&THREAD->lock); |
||
| 405 | } |
||
| 125 | jermar | 406 | break; |
| 787 | palkovsky | 407 | |
| 1 | jermar | 408 | case Sleeping: |
| 125 | jermar | 409 | /* |
| 410 | * Prefer the thread after it's woken up. |
||
| 411 | */ |
||
| 413 | jermar | 412 | THREAD->priority = -1; |
| 1 | jermar | 413 | |
| 125 | jermar | 414 | /* |
| 415 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
| 416 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
| 417 | */ |
||
| 418 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
| 1 | jermar | 419 | |
| 125 | jermar | 420 | /* |
| 421 | * Check for possible requests for out-of-context invocation. |
||
| 422 | */ |
||
| 423 | if (THREAD->call_me) { |
||
| 424 | THREAD->call_me(THREAD->call_me_with); |
||
| 425 | THREAD->call_me = NULL; |
||
| 426 | THREAD->call_me_with = NULL; |
||
| 427 | } |
||
| 1 | jermar | 428 | |
| 125 | jermar | 429 | spinlock_unlock(&THREAD->lock); |
| 1 | jermar | 430 | |
| 125 | jermar | 431 | break; |
| 432 | |||
| 1 | jermar | 433 | default: |
| 125 | jermar | 434 | /* |
| 435 | * Entering state is unexpected. |
||
| 436 | */ |
||
| 437 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
| 438 | break; |
||
| 1 | jermar | 439 | } |
| 897 | jermar | 440 | |
| 15 | jermar | 441 | THREAD = NULL; |
| 1 | jermar | 442 | } |
| 198 | jermar | 443 | |
| 15 | jermar | 444 | THREAD = find_best_thread(); |
| 1 | jermar | 445 | |
| 15 | jermar | 446 | spinlock_lock(&THREAD->lock); |
| 413 | jermar | 447 | priority = THREAD->priority; |
| 15 | jermar | 448 | spinlock_unlock(&THREAD->lock); |
| 192 | jermar | 449 | |
| 1 | jermar | 450 | relink_rq(priority); |
| 451 | |||
| 452 | /* |
||
| 453 | * If both the old and the new task are the same, lots of work is avoided. |
||
| 454 | */ |
||
| 15 | jermar | 455 | if (TASK != THREAD->task) { |
| 703 | jermar | 456 | as_t *as1 = NULL; |
| 457 | as_t *as2; |
||
| 1 | jermar | 458 | |
| 15 | jermar | 459 | if (TASK) { |
| 460 | spinlock_lock(&TASK->lock); |
||
| 703 | jermar | 461 | as1 = TASK->as; |
| 15 | jermar | 462 | spinlock_unlock(&TASK->lock); |
| 1 | jermar | 463 | } |
| 464 | |||
| 15 | jermar | 465 | spinlock_lock(&THREAD->task->lock); |
| 703 | jermar | 466 | as2 = THREAD->task->as; |
| 15 | jermar | 467 | spinlock_unlock(&THREAD->task->lock); |
| 1 | jermar | 468 | |
| 469 | /* |
||
| 703 | jermar | 470 | * Note that it is possible for two tasks to share one address space. |
| 1 | jermar | 471 | */ |
| 703 | jermar | 472 | if (as1 != as2) { |
| 1 | jermar | 473 | /* |
| 703 | jermar | 474 | * Both tasks and address spaces are different. |
| 1 | jermar | 475 | * Replace the old one with the new one. |
| 476 | */ |
||
| 823 | jermar | 477 | as_switch(as1, as2); |
| 1 | jermar | 478 | } |
| 906 | palkovsky | 479 | TASK = THREAD->task; |
| 1187 | jermar | 480 | before_task_runs(); |
| 1 | jermar | 481 | } |
| 482 | |||
| 1380 | jermar | 483 | spinlock_lock(&THREAD->lock); |
| 15 | jermar | 484 | THREAD->state = Running; |
| 1 | jermar | 485 | |
| 906 | palkovsky | 486 | #ifdef SCHEDULER_VERBOSE |
| 1196 | cejka | 487 | printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy)); |
| 906 | palkovsky | 488 | #endif |
| 1 | jermar | 489 | |
| 213 | jermar | 490 | /* |
| 897 | jermar | 491 | * Some architectures provide late kernel PA2KA(identity) |
| 492 | * mapping in a page fault handler. However, the page fault |
||
| 493 | * handler uses the kernel stack of the running thread and |
||
| 494 | * therefore cannot be used to map it. The kernel stack, if |
||
| 495 | * necessary, is to be mapped in before_thread_runs(). This |
||
| 496 | * function must be executed before the switch to the new stack. |
||
| 497 | */ |
||
| 498 | before_thread_runs(); |
||
| 499 | |||
| 500 | /* |
||
| 213 | jermar | 501 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
| 502 | */ |
||
| 184 | jermar | 503 | the_copy(THE, (the_t *) THREAD->kstack); |
| 504 | |||
| 15 | jermar | 505 | context_restore(&THREAD->saved_context); |
| 1 | jermar | 506 | /* not reached */ |
| 507 | } |
||
| 508 | |||
| 458 | decky | 509 | #ifdef CONFIG_SMP |
| 107 | decky | 510 | /** Load balancing thread |
| 511 | * |
||
| 512 | * SMP load balancing thread, supervising thread supplies |
||
| 513 | * for the CPU it's wired to. |
||
| 514 | * |
||
| 515 | * @param arg Generic thread argument (unused). |
||
| 516 | * |
||
| 1 | jermar | 517 | */ |
| 518 | void kcpulb(void *arg) |
||
| 519 | { |
||
| 520 | thread_t *t; |
||
| 783 | palkovsky | 521 | int count, average, i, j, k = 0; |
| 413 | jermar | 522 | ipl_t ipl; |
| 1 | jermar | 523 | |
| 1576 | jermar | 524 | /* |
| 525 | * Detach kcpulb as nobody will call thread_join_timeout() on it. |
||
| 526 | */ |
||
| 527 | thread_detach(THREAD); |
||
| 528 | |||
| 1 | jermar | 529 | loop: |
| 530 | /* |
||
| 779 | jermar | 531 | * Work in 1s intervals. |
| 1 | jermar | 532 | */ |
| 779 | jermar | 533 | thread_sleep(1); |
| 1 | jermar | 534 | |
| 535 | not_satisfied: |
||
| 536 | /* |
||
| 537 | * Calculate the number of threads that will be migrated/stolen from |
||
| 538 | * other CPU's. Note that situation can have changed between two |
||
| 539 | * passes. Each time get the most up to date counts. |
||
| 540 | */ |
||
| 784 | palkovsky | 541 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
| 783 | palkovsky | 542 | count = average - atomic_get(&CPU->nrdy); |
| 1 | jermar | 543 | |
| 784 | palkovsky | 544 | if (count <= 0) |
| 1 | jermar | 545 | goto satisfied; |
| 546 | |||
| 547 | /* |
||
| 548 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
| 549 | */ |
||
| 550 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
| 551 | for (i=0; i < config.cpu_active; i++) { |
||
| 552 | link_t *l; |
||
| 553 | runq_t *r; |
||
| 554 | cpu_t *cpu; |
||
| 555 | |||
| 556 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
| 557 | |||
| 558 | /* |
||
| 559 | * Not interested in ourselves. |
||
| 560 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
| 561 | */ |
||
| 15 | jermar | 562 | if (CPU == cpu) |
| 783 | palkovsky | 563 | continue; |
| 564 | if (atomic_get(&cpu->nrdy) <= average) |
||
| 565 | continue; |
||
| 1 | jermar | 566 | |
| 784 | palkovsky | 567 | ipl = interrupts_disable(); |
| 115 | jermar | 568 | r = &cpu->rq[j]; |
| 1 | jermar | 569 | spinlock_lock(&r->lock); |
| 570 | if (r->n == 0) { |
||
| 571 | spinlock_unlock(&r->lock); |
||
| 413 | jermar | 572 | interrupts_restore(ipl); |
| 1 | jermar | 573 | continue; |
| 574 | } |
||
| 575 | |||
| 576 | t = NULL; |
||
| 577 | l = r->rq_head.prev; /* search rq from the back */ |
||
| 578 | while (l != &r->rq_head) { |
||
| 579 | t = list_get_instance(l, thread_t, rq_link); |
||
| 580 | /* |
||
| 125 | jermar | 581 | * We don't want to steal CPU-wired threads neither threads already stolen. |
| 1 | jermar | 582 | * The latter prevents threads from migrating between CPU's without ever being run. |
| 125 | jermar | 583 | * We don't want to steal threads whose FPU context is still in CPU. |
| 73 | vana | 584 | */ |
| 1 | jermar | 585 | spinlock_lock(&t->lock); |
| 73 | vana | 586 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
| 1 | jermar | 587 | /* |
| 588 | * Remove t from r. |
||
| 589 | */ |
||
| 590 | spinlock_unlock(&t->lock); |
||
| 591 | |||
| 783 | palkovsky | 592 | atomic_dec(&cpu->nrdy); |
| 475 | jermar | 593 | atomic_dec(&nrdy); |
| 1 | jermar | 594 | |
| 125 | jermar | 595 | r->n--; |
| 1 | jermar | 596 | list_remove(&t->rq_link); |
| 597 | |||
| 598 | break; |
||
| 599 | } |
||
| 600 | spinlock_unlock(&t->lock); |
||
| 601 | l = l->prev; |
||
| 602 | t = NULL; |
||
| 603 | } |
||
| 604 | spinlock_unlock(&r->lock); |
||
| 605 | |||
| 606 | if (t) { |
||
| 607 | /* |
||
| 608 | * Ready t on local CPU |
||
| 609 | */ |
||
| 610 | spinlock_lock(&t->lock); |
||
| 906 | palkovsky | 611 | #ifdef KCPULB_VERBOSE |
| 1196 | cejka | 612 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active); |
| 906 | palkovsky | 613 | #endif |
| 1 | jermar | 614 | t->flags |= X_STOLEN; |
| 1115 | jermar | 615 | t->state = Entering; |
| 1 | jermar | 616 | spinlock_unlock(&t->lock); |
| 617 | |||
| 618 | thread_ready(t); |
||
| 619 | |||
| 413 | jermar | 620 | interrupts_restore(ipl); |
| 1 | jermar | 621 | |
| 622 | if (--count == 0) |
||
| 623 | goto satisfied; |
||
| 624 | |||
| 625 | /* |
||
| 125 | jermar | 626 | * We are not satisfied yet, focus on another CPU next time. |
| 1 | jermar | 627 | */ |
| 628 | k++; |
||
| 629 | |||
| 630 | continue; |
||
| 631 | } |
||
| 413 | jermar | 632 | interrupts_restore(ipl); |
| 1 | jermar | 633 | } |
| 634 | } |
||
| 635 | |||
| 783 | palkovsky | 636 | if (atomic_get(&CPU->nrdy)) { |
| 1 | jermar | 637 | /* |
| 638 | * Be a little bit light-weight and let migrated threads run. |
||
| 639 | */ |
||
| 640 | scheduler(); |
||
| 779 | jermar | 641 | } else { |
| 1 | jermar | 642 | /* |
| 643 | * We failed to migrate a single thread. |
||
| 779 | jermar | 644 | * Give up this turn. |
| 1 | jermar | 645 | */ |
| 779 | jermar | 646 | goto loop; |
| 1 | jermar | 647 | } |
| 648 | |||
| 649 | goto not_satisfied; |
||
| 125 | jermar | 650 | |
| 1 | jermar | 651 | satisfied: |
| 652 | goto loop; |
||
| 653 | } |
||
| 654 | |||
| 458 | decky | 655 | #endif /* CONFIG_SMP */ |
| 775 | palkovsky | 656 | |
| 657 | |||
| 658 | /** Print information about threads & scheduler queues */ |
||
| 659 | void sched_print_list(void) |
||
| 660 | { |
||
| 661 | ipl_t ipl; |
||
| 662 | int cpu,i; |
||
| 663 | runq_t *r; |
||
| 664 | thread_t *t; |
||
| 665 | link_t *cur; |
||
| 666 | |||
| 667 | /* We are going to mess with scheduler structures, |
||
| 668 | * let's not be interrupted */ |
||
| 669 | ipl = interrupts_disable(); |
||
| 670 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
| 898 | jermar | 671 | |
| 775 | palkovsky | 672 | if (!cpus[cpu].active) |
| 673 | continue; |
||
| 898 | jermar | 674 | |
| 775 | palkovsky | 675 | spinlock_lock(&cpus[cpu].lock); |
| 1221 | decky | 676 | printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n", |
| 1062 | jermar | 677 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
| 775 | palkovsky | 678 | |
| 679 | for (i=0; i<RQ_COUNT; i++) { |
||
| 680 | r = &cpus[cpu].rq[i]; |
||
| 681 | spinlock_lock(&r->lock); |
||
| 682 | if (!r->n) { |
||
| 683 | spinlock_unlock(&r->lock); |
||
| 684 | continue; |
||
| 685 | } |
||
| 898 | jermar | 686 | printf("\trq[%d]: ", i); |
| 775 | palkovsky | 687 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
| 688 | t = list_get_instance(cur, thread_t, rq_link); |
||
| 689 | printf("%d(%s) ", t->tid, |
||
| 690 | thread_states[t->state]); |
||
| 691 | } |
||
| 692 | printf("\n"); |
||
| 693 | spinlock_unlock(&r->lock); |
||
| 694 | } |
||
| 695 | spinlock_unlock(&cpus[cpu].lock); |
||
| 696 | } |
||
| 697 | |||
| 698 | interrupts_restore(ipl); |
||
| 699 | } |
||
| 1702 | cejka | 700 | |
| 701 | /** @} |
||
| 702 | */ |
||
| 703 |