Subversion Repositories HelenOS-historic

Rev

Rev 1544 | Rev 1594 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1248 jermar 29
/**
30
 * @file    as.c
31
 * @brief   Address space related functions.
32
 *
703 jermar 33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 36
 *
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
39
 * address space areas.
40
 *
41
 * @see page.c
42
 *
703 jermar 43
 */
44
 
45
#include <mm/as.h>
756 jermar 46
#include <arch/mm/as.h>
703 jermar 47
#include <mm/page.h>
48
#include <mm/frame.h>
814 palkovsky 49
#include <mm/slab.h>
703 jermar 50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
1108 jermar 53
#include <genarch/mm/page_ht.h>
727 jermar 54
#include <mm/asid.h>
703 jermar 55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
1380 jermar 57
#include <synch/mutex.h>
788 jermar 58
#include <adt/list.h>
1147 jermar 59
#include <adt/btree.h>
1235 jermar 60
#include <proc/task.h>
1288 jermar 61
#include <proc/thread.h>
1235 jermar 62
#include <arch/asm.h>
703 jermar 63
#include <panic.h>
64
#include <debug.h>
1235 jermar 65
#include <print.h>
703 jermar 66
#include <memstr.h>
1070 jermar 67
#include <macros.h>
703 jermar 68
#include <arch.h>
1235 jermar 69
#include <errno.h>
70
#include <config.h>
1387 jermar 71
#include <align.h>
1235 jermar 72
#include <arch/types.h>
73
#include <typedefs.h>
1288 jermar 74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
703 jermar 76
 
756 jermar 77
as_operations_t *as_operations = NULL;
703 jermar 78
 
1415 jermar 79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 81
 
82
/**
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
757 jermar 88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
90
 
1235 jermar 91
static int area_flags_to_page_flags(int aflags);
977 jermar 92
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 94
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 95
 
756 jermar 96
/** Initialize address space subsystem. */
97
void as_init(void)
98
{
99
    as_arch_init();
789 palkovsky 100
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 101
    if (!AS_KERNEL)
102
        panic("can't create kernel address space\n");
103
 
756 jermar 104
}
105
 
757 jermar 106
/** Create address space.
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
756 jermar 110
as_t *as_create(int flags)
703 jermar 111
{
112
    as_t *as;
113
 
822 palkovsky 114
    as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 115
    link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 116
    mutex_initialize(&as->lock);
1147 jermar 117
    btree_create(&as->as_area_btree);
822 palkovsky 118
 
119
    if (flags & FLAG_AS_KERNEL)
120
        as->asid = ASID_KERNEL;
121
    else
122
        as->asid = ASID_INVALID;
123
 
1468 jermar 124
    as->refcount = 0;
1415 jermar 125
    as->cpu_refcount = 0;
822 palkovsky 126
    as->page_table = page_table_create(flags);
703 jermar 127
 
128
    return as;
129
}
130
 
1468 jermar 131
/** Destroy adress space.
132
 *
133
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
134
 * the address space can be destroyed.
135
 */
136
void as_destroy(as_t *as)
973 palkovsky 137
{
1468 jermar 138
    ipl_t ipl;
1495 jermar 139
    link_t *cur;
973 palkovsky 140
 
1468 jermar 141
    ASSERT(as->refcount == 0);
142
 
143
    /*
144
     * Since there is no reference to this area,
145
     * it is safe not to lock its mutex.
146
     */
147
 
148
    ipl = interrupts_disable();
149
    spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 150
 
151
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
152
        if (!as->cpu_refcount)
153
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 154
        asid_put(as->asid);
155
    }
156
    spinlock_unlock(&inactive_as_with_asid_lock);
157
 
158
    /*
159
     * Destroy address space areas of the address space.
160
     */
1495 jermar 161
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1468 jermar 162
        btree_node_t *node;
1495 jermar 163
        int i;
1468 jermar 164
 
1495 jermar 165
        node = list_get_instance(cur, btree_node_t, leaf_link);
166
        for (i = 0; i < node->keys; i++)
167
            as_area_destroy(as, node->key[i]);
1468 jermar 168
    }
1495 jermar 169
 
1483 jermar 170
    btree_destroy(&as->as_area_btree);
1468 jermar 171
    page_table_destroy(as->page_table);
172
 
173
    interrupts_restore(ipl);
174
 
973 palkovsky 175
    free(as);
176
}
177
 
703 jermar 178
/** Create address space area of common attributes.
179
 *
180
 * The created address space area is added to the target address space.
181
 *
182
 * @param as Target address space.
1239 jermar 183
 * @param flags Flags of the area memory.
1048 jermar 184
 * @param size Size of area.
703 jermar 185
 * @param base Base address of area.
1239 jermar 186
 * @param attrs Attributes of the area.
1409 jermar 187
 * @param backend Address space area backend. NULL if no backend is used.
188
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 189
 *
190
 * @return Address space area on success or NULL on failure.
191
 */
1409 jermar 192
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 193
           mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 194
{
195
    ipl_t ipl;
196
    as_area_t *a;
197
 
198
    if (base % PAGE_SIZE)
1048 jermar 199
        return NULL;
200
 
1233 jermar 201
    if (!size)
202
        return NULL;
203
 
1048 jermar 204
    /* Writeable executable areas are not supported. */
205
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
206
        return NULL;
703 jermar 207
 
208
    ipl = interrupts_disable();
1380 jermar 209
    mutex_lock(&as->lock);
703 jermar 210
 
1048 jermar 211
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 212
        mutex_unlock(&as->lock);
1048 jermar 213
        interrupts_restore(ipl);
214
        return NULL;
215
    }
703 jermar 216
 
822 palkovsky 217
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 218
 
1380 jermar 219
    mutex_initialize(&a->lock);
822 palkovsky 220
 
1424 jermar 221
    a->as = as;
1026 jermar 222
    a->flags = flags;
1239 jermar 223
    a->attributes = attrs;
1048 jermar 224
    a->pages = SIZE2FRAMES(size);
822 palkovsky 225
    a->base = base;
1409 jermar 226
    a->sh_info = NULL;
227
    a->backend = backend;
1424 jermar 228
    if (backend_data)
229
        a->backend_data = *backend_data;
230
    else
231
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
232
 
1387 jermar 233
    btree_create(&a->used_space);
822 palkovsky 234
 
1147 jermar 235
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 236
 
1380 jermar 237
    mutex_unlock(&as->lock);
703 jermar 238
    interrupts_restore(ipl);
704 jermar 239
 
703 jermar 240
    return a;
241
}
242
 
1235 jermar 243
/** Find address space area and change it.
244
 *
245
 * @param as Address space.
246
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
247
 * @param size New size of the virtual memory block starting at address.
248
 * @param flags Flags influencing the remap operation. Currently unused.
249
 *
1306 jermar 250
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 251
 */
1306 jermar 252
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 253
{
1306 jermar 254
    as_area_t *area;
1235 jermar 255
    ipl_t ipl;
256
    size_t pages;
257
 
258
    ipl = interrupts_disable();
1380 jermar 259
    mutex_lock(&as->lock);
1235 jermar 260
 
261
    /*
262
     * Locate the area.
263
     */
264
    area = find_area_and_lock(as, address);
265
    if (!area) {
1380 jermar 266
        mutex_unlock(&as->lock);
1235 jermar 267
        interrupts_restore(ipl);
1306 jermar 268
        return ENOENT;
1235 jermar 269
    }
270
 
1424 jermar 271
    if (area->backend == &phys_backend) {
1235 jermar 272
        /*
273
         * Remapping of address space areas associated
274
         * with memory mapped devices is not supported.
275
         */
1380 jermar 276
        mutex_unlock(&area->lock);
277
        mutex_unlock(&as->lock);
1235 jermar 278
        interrupts_restore(ipl);
1306 jermar 279
        return ENOTSUP;
1235 jermar 280
    }
1409 jermar 281
    if (area->sh_info) {
282
        /*
283
         * Remapping of shared address space areas
284
         * is not supported.
285
         */
286
        mutex_unlock(&area->lock);
287
        mutex_unlock(&as->lock);
288
        interrupts_restore(ipl);
289
        return ENOTSUP;
290
    }
1235 jermar 291
 
292
    pages = SIZE2FRAMES((address - area->base) + size);
293
    if (!pages) {
294
        /*
295
         * Zero size address space areas are not allowed.
296
         */
1380 jermar 297
        mutex_unlock(&area->lock);
298
        mutex_unlock(&as->lock);
1235 jermar 299
        interrupts_restore(ipl);
1306 jermar 300
        return EPERM;
1235 jermar 301
    }
302
 
303
    if (pages < area->pages) {
1403 jermar 304
        bool cond;
305
        __address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 306
 
307
        /*
308
         * Shrinking the area.
309
         * No need to check for overlaps.
310
         */
1403 jermar 311
 
312
        /*
1436 jermar 313
         * Start TLB shootdown sequence.
314
         */
315
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
316
 
317
        /*
1403 jermar 318
         * Remove frames belonging to used space starting from
319
         * the highest addresses downwards until an overlap with
320
         * the resized address space area is found. Note that this
321
         * is also the right way to remove part of the used_space
322
         * B+tree leaf list.
323
         */    
324
        for (cond = true; cond;) {
325
            btree_node_t *node;
326
 
327
            ASSERT(!list_empty(&area->used_space.leaf_head));
328
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
329
            if ((cond = (bool) node->keys)) {
330
                __address b = node->key[node->keys - 1];
331
                count_t c = (count_t) node->value[node->keys - 1];
332
                int i = 0;
1235 jermar 333
 
1403 jermar 334
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
335
 
336
                    if (b + c*PAGE_SIZE <= start_free) {
337
                        /*
338
                         * The whole interval fits completely
339
                         * in the resized address space area.
340
                         */
341
                        break;
342
                    }
343
 
344
                    /*
345
                     * Part of the interval corresponding to b and c
346
                     * overlaps with the resized address space area.
347
                     */
348
 
349
                    cond = false;   /* we are almost done */
350
                    i = (start_free - b) >> PAGE_WIDTH;
351
                    if (!used_space_remove(area, start_free, c - i))
352
                        panic("Could not remove used space.");
353
                } else {
354
                    /*
355
                     * The interval of used space can be completely removed.
356
                     */
357
                    if (!used_space_remove(area, b, c))
358
                        panic("Could not remove used space.\n");
359
                }
360
 
361
                for (; i < c; i++) {
362
                    pte_t *pte;
363
 
364
                    page_table_lock(as, false);
365
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
366
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 367
                    if (area->backend && area->backend->frame_free) {
368
                        area->backend->frame_free(area,
1409 jermar 369
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
370
                    }
1403 jermar 371
                    page_mapping_remove(as, b + i*PAGE_SIZE);
372
                    page_table_unlock(as, false);
373
                }
1235 jermar 374
            }
375
        }
1436 jermar 376
 
1235 jermar 377
        /*
1436 jermar 378
         * Finish TLB shootdown sequence.
1235 jermar 379
         */
380
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
381
        tlb_shootdown_finalize();
382
    } else {
383
        /*
384
         * Growing the area.
385
         * Check for overlaps with other address space areas.
386
         */
387
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 388
            mutex_unlock(&area->lock);
389
            mutex_unlock(&as->lock);       
1235 jermar 390
            interrupts_restore(ipl);
1306 jermar 391
            return EADDRNOTAVAIL;
1235 jermar 392
        }
393
    }
394
 
395
    area->pages = pages;
396
 
1380 jermar 397
    mutex_unlock(&area->lock);
398
    mutex_unlock(&as->lock);
1235 jermar 399
    interrupts_restore(ipl);
400
 
1306 jermar 401
    return 0;
1235 jermar 402
}
403
 
1306 jermar 404
/** Destroy address space area.
405
 *
406
 * @param as Address space.
407
 * @param address Address withing the area to be deleted.
408
 *
409
 * @return Zero on success or a value from @ref errno.h on failure.
410
 */
411
int as_area_destroy(as_t *as, __address address)
412
{
413
    as_area_t *area;
414
    __address base;
1495 jermar 415
    link_t *cur;
1306 jermar 416
    ipl_t ipl;
417
 
418
    ipl = interrupts_disable();
1380 jermar 419
    mutex_lock(&as->lock);
1306 jermar 420
 
421
    area = find_area_and_lock(as, address);
422
    if (!area) {
1380 jermar 423
        mutex_unlock(&as->lock);
1306 jermar 424
        interrupts_restore(ipl);
425
        return ENOENT;
426
    }
427
 
1403 jermar 428
    base = area->base;
429
 
1411 jermar 430
    /*
1436 jermar 431
     * Start TLB shootdown sequence.
432
     */
433
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
434
 
435
    /*
1411 jermar 436
     * Visit only the pages mapped by used_space B+tree.
437
     */
1495 jermar 438
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 439
        btree_node_t *node;
1495 jermar 440
        int i;
1403 jermar 441
 
1495 jermar 442
        node = list_get_instance(cur, btree_node_t, leaf_link);
443
        for (i = 0; i < node->keys; i++) {
444
            __address b = node->key[i];
445
            count_t j;
1411 jermar 446
            pte_t *pte;
1403 jermar 447
 
1495 jermar 448
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 449
                page_table_lock(as, false);
1495 jermar 450
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 451
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 452
                if (area->backend && area->backend->frame_free) {
453
                    area->backend->frame_free(area,
1495 jermar 454
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 455
                }
1495 jermar 456
                page_mapping_remove(as, b + j*PAGE_SIZE);
1411 jermar 457
                page_table_unlock(as, false);
1306 jermar 458
            }
459
        }
460
    }
1403 jermar 461
 
1306 jermar 462
    /*
1436 jermar 463
     * Finish TLB shootdown sequence.
1306 jermar 464
     */
465
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
466
    tlb_shootdown_finalize();
1436 jermar 467
 
468
    btree_destroy(&area->used_space);
1306 jermar 469
 
1309 jermar 470
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 471
 
472
    if (area->sh_info)
473
        sh_info_remove_reference(area->sh_info);
474
 
1380 jermar 475
    mutex_unlock(&area->lock);
1306 jermar 476
 
477
    /*
478
     * Remove the empty area from address space.
479
     */
480
    btree_remove(&AS->as_area_btree, base, NULL);
481
 
1309 jermar 482
    free(area);
483
 
1380 jermar 484
    mutex_unlock(&AS->lock);
1306 jermar 485
    interrupts_restore(ipl);
486
    return 0;
487
}
488
 
1413 jermar 489
/** Share address space area with another or the same address space.
1235 jermar 490
 *
1424 jermar 491
 * Address space area mapping is shared with a new address space area.
492
 * If the source address space area has not been shared so far,
493
 * a new sh_info is created. The new address space area simply gets the
494
 * sh_info of the source area. The process of duplicating the
495
 * mapping is done through the backend share function.
1413 jermar 496
 *
1417 jermar 497
 * @param src_as Pointer to source address space.
1239 jermar 498
 * @param src_base Base address of the source address space area.
1417 jermar 499
 * @param acc_size Expected size of the source area.
1428 palkovsky 500
 * @param dst_as Pointer to destination address space.
1417 jermar 501
 * @param dst_base Target base address.
502
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 503
 *
1306 jermar 504
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 505
 *     if there is no such address space area,
506
 *     EPERM if there was a problem in accepting the area or
507
 *     ENOMEM if there was a problem in allocating destination
1413 jermar 508
 *     address space area. ENOTSUP is returned if an attempt
509
 *     to share non-anonymous address space area is detected.
1235 jermar 510
 */
1413 jermar 511
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1428 palkovsky 512
          as_t *dst_as, __address dst_base, int dst_flags_mask)
1235 jermar 513
{
514
    ipl_t ipl;
1239 jermar 515
    int src_flags;
516
    size_t src_size;
517
    as_area_t *src_area, *dst_area;
1413 jermar 518
    share_info_t *sh_info;
1424 jermar 519
    mem_backend_t *src_backend;
520
    mem_backend_data_t src_backend_data;
1434 palkovsky 521
 
1235 jermar 522
    ipl = interrupts_disable();
1380 jermar 523
    mutex_lock(&src_as->lock);
1329 palkovsky 524
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 525
    if (!src_area) {
1238 jermar 526
        /*
527
         * Could not find the source address space area.
528
         */
1380 jermar 529
        mutex_unlock(&src_as->lock);
1238 jermar 530
        interrupts_restore(ipl);
531
        return ENOENT;
532
    }
1413 jermar 533
 
1424 jermar 534
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 535
        /*
1424 jermar 536
         * There is now backend or the backend does not
537
         * know how to share the area.
1413 jermar 538
         */
539
        mutex_unlock(&src_area->lock);
540
        mutex_unlock(&src_as->lock);
541
        interrupts_restore(ipl);
542
        return ENOTSUP;
543
    }
544
 
1239 jermar 545
    src_size = src_area->pages * PAGE_SIZE;
546
    src_flags = src_area->flags;
1424 jermar 547
    src_backend = src_area->backend;
548
    src_backend_data = src_area->backend_data;
1544 palkovsky 549
 
550
    /* Share the cacheable flag from the original mapping */
551
    if (src_flags & AS_AREA_CACHEABLE)
552
        dst_flags_mask |= AS_AREA_CACHEABLE;
553
 
1461 palkovsky 554
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 555
        mutex_unlock(&src_area->lock);
556
        mutex_unlock(&src_as->lock);
1235 jermar 557
        interrupts_restore(ipl);
558
        return EPERM;
559
    }
1413 jermar 560
 
1235 jermar 561
    /*
1413 jermar 562
     * Now we are committed to sharing the area.
563
     * First prepare the area for sharing.
564
     * Then it will be safe to unlock it.
565
     */
566
    sh_info = src_area->sh_info;
567
    if (!sh_info) {
568
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
569
        mutex_initialize(&sh_info->lock);
570
        sh_info->refcount = 2;
571
        btree_create(&sh_info->pagemap);
572
        src_area->sh_info = sh_info;
573
    } else {
574
        mutex_lock(&sh_info->lock);
575
        sh_info->refcount++;
576
        mutex_unlock(&sh_info->lock);
577
    }
578
 
1424 jermar 579
    src_area->backend->share(src_area);
1413 jermar 580
 
581
    mutex_unlock(&src_area->lock);
582
    mutex_unlock(&src_as->lock);
583
 
584
    /*
1239 jermar 585
     * Create copy of the source address space area.
586
     * The destination area is created with AS_AREA_ATTR_PARTIAL
587
     * attribute set which prevents race condition with
588
     * preliminary as_page_fault() calls.
1417 jermar 589
     * The flags of the source area are masked against dst_flags_mask
590
     * to support sharing in less privileged mode.
1235 jermar 591
     */
1461 palkovsky 592
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 593
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 594
    if (!dst_area) {
1235 jermar 595
        /*
596
         * Destination address space area could not be created.
597
         */
1413 jermar 598
        sh_info_remove_reference(sh_info);
599
 
1235 jermar 600
        interrupts_restore(ipl);
601
        return ENOMEM;
602
    }
603
 
604
    /*
1239 jermar 605
     * Now the destination address space area has been
606
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 607
     * attribute and set the sh_info.
1239 jermar 608
     */
1380 jermar 609
    mutex_lock(&dst_area->lock);
1239 jermar 610
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 611
    dst_area->sh_info = sh_info;
1380 jermar 612
    mutex_unlock(&dst_area->lock);
1235 jermar 613
 
614
    interrupts_restore(ipl);
615
 
616
    return 0;
617
}
618
 
1423 jermar 619
/** Check access mode for address space area.
620
 *
621
 * The address space area must be locked prior to this call.
622
 *
623
 * @param area Address space area.
624
 * @param access Access mode.
625
 *
626
 * @return False if access violates area's permissions, true otherwise.
627
 */
628
bool as_area_check_access(as_area_t *area, pf_access_t access)
629
{
630
    int flagmap[] = {
631
        [PF_ACCESS_READ] = AS_AREA_READ,
632
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
633
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
634
    };
635
 
636
    if (!(area->flags & flagmap[access]))
637
        return false;
638
 
639
    return true;
640
}
641
 
703 jermar 642
/** Handle page fault within the current address space.
643
 *
1409 jermar 644
 * This is the high-level page fault handler. It decides
645
 * whether the page fault can be resolved by any backend
646
 * and if so, it invokes the backend to resolve the page
647
 * fault.
648
 *
703 jermar 649
 * Interrupts are assumed disabled.
650
 *
651
 * @param page Faulting page.
1411 jermar 652
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 653
 * @param istate Pointer to interrupted state.
703 jermar 654
 *
1409 jermar 655
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
656
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 657
 */
1411 jermar 658
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 659
{
1044 jermar 660
    pte_t *pte;
977 jermar 661
    as_area_t *area;
703 jermar 662
 
1380 jermar 663
    if (!THREAD)
1409 jermar 664
        return AS_PF_FAULT;
1380 jermar 665
 
703 jermar 666
    ASSERT(AS);
1044 jermar 667
 
1380 jermar 668
    mutex_lock(&AS->lock);
977 jermar 669
    area = find_area_and_lock(AS, page);   
703 jermar 670
    if (!area) {
671
        /*
672
         * No area contained mapping for 'page'.
673
         * Signal page fault to low-level handler.
674
         */
1380 jermar 675
        mutex_unlock(&AS->lock);
1288 jermar 676
        goto page_fault;
703 jermar 677
    }
678
 
1239 jermar 679
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
680
        /*
681
         * The address space area is not fully initialized.
682
         * Avoid possible race by returning error.
683
         */
1380 jermar 684
        mutex_unlock(&area->lock);
685
        mutex_unlock(&AS->lock);
1288 jermar 686
        goto page_fault;       
1239 jermar 687
    }
688
 
1424 jermar 689
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 690
        /*
691
         * The address space area is not backed by any backend
692
         * or the backend cannot handle page faults.
693
         */
694
        mutex_unlock(&area->lock);
695
        mutex_unlock(&AS->lock);
696
        goto page_fault;       
697
    }
1179 jermar 698
 
1044 jermar 699
    page_table_lock(AS, false);
700
 
703 jermar 701
    /*
1044 jermar 702
     * To avoid race condition between two page faults
703
     * on the same address, we need to make sure
704
     * the mapping has not been already inserted.
705
     */
706
    if ((pte = page_mapping_find(AS, page))) {
707
        if (PTE_PRESENT(pte)) {
1423 jermar 708
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
709
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
710
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
711
                page_table_unlock(AS, false);
712
                mutex_unlock(&area->lock);
713
                mutex_unlock(&AS->lock);
714
                return AS_PF_OK;
715
            }
1044 jermar 716
        }
717
    }
1409 jermar 718
 
1044 jermar 719
    /*
1409 jermar 720
     * Resort to the backend page fault handler.
703 jermar 721
     */
1424 jermar 722
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 723
        page_table_unlock(AS, false);
724
        mutex_unlock(&area->lock);
725
        mutex_unlock(&AS->lock);
726
        goto page_fault;
727
    }
703 jermar 728
 
1044 jermar 729
    page_table_unlock(AS, false);
1380 jermar 730
    mutex_unlock(&area->lock);
731
    mutex_unlock(&AS->lock);
1288 jermar 732
    return AS_PF_OK;
733
 
734
page_fault:
735
    if (THREAD->in_copy_from_uspace) {
736
        THREAD->in_copy_from_uspace = false;
737
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
738
    } else if (THREAD->in_copy_to_uspace) {
739
        THREAD->in_copy_to_uspace = false;
740
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
741
    } else {
742
        return AS_PF_FAULT;
743
    }
744
 
745
    return AS_PF_DEFER;
703 jermar 746
}
747
 
823 jermar 748
/** Switch address spaces.
703 jermar 749
 *
1380 jermar 750
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 751
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 752
 *
823 jermar 753
 * @param old Old address space or NULL.
754
 * @param new New address space.
703 jermar 755
 */
823 jermar 756
void as_switch(as_t *old, as_t *new)
703 jermar 757
{
758
    ipl_t ipl;
823 jermar 759
    bool needs_asid = false;
703 jermar 760
 
761
    ipl = interrupts_disable();
1415 jermar 762
    spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 763
 
764
    /*
823 jermar 765
     * First, take care of the old address space.
766
     */
767
    if (old) {
1380 jermar 768
        mutex_lock_active(&old->lock);
1415 jermar 769
        ASSERT(old->cpu_refcount);
770
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 771
            /*
772
             * The old address space is no longer active on
773
             * any processor. It can be appended to the
774
             * list of inactive address spaces with assigned
775
             * ASID.
776
             */
777
             ASSERT(old->asid != ASID_INVALID);
778
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
779
        }
1380 jermar 780
        mutex_unlock(&old->lock);
823 jermar 781
    }
782
 
783
    /*
784
     * Second, prepare the new address space.
785
     */
1380 jermar 786
    mutex_lock_active(&new->lock);
1415 jermar 787
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 788
        if (new->asid != ASID_INVALID)
789
            list_remove(&new->inactive_as_with_asid_link);
790
        else
791
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
792
    }
793
    SET_PTL0_ADDRESS(new->page_table);
1380 jermar 794
    mutex_unlock(&new->lock);
823 jermar 795
 
796
    if (needs_asid) {
797
        /*
798
         * Allocation of new ASID was deferred
799
         * until now in order to avoid deadlock.
800
         */
801
        asid_t asid;
802
 
803
        asid = asid_get();
1380 jermar 804
        mutex_lock_active(&new->lock);
823 jermar 805
        new->asid = asid;
1380 jermar 806
        mutex_unlock(&new->lock);
823 jermar 807
    }
1415 jermar 808
    spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 809
    interrupts_restore(ipl);
810
 
811
    /*
703 jermar 812
     * Perform architecture-specific steps.
727 jermar 813
     * (e.g. write ASID to hardware register etc.)
703 jermar 814
     */
823 jermar 815
    as_install_arch(new);
703 jermar 816
 
823 jermar 817
    AS = new;
703 jermar 818
}
754 jermar 819
 
1235 jermar 820
/** Convert address space area flags to page flags.
754 jermar 821
 *
1235 jermar 822
 * @param aflags Flags of some address space area.
754 jermar 823
 *
1235 jermar 824
 * @return Flags to be passed to page_mapping_insert().
754 jermar 825
 */
1235 jermar 826
int area_flags_to_page_flags(int aflags)
754 jermar 827
{
828
    int flags;
829
 
1178 jermar 830
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 831
 
1235 jermar 832
    if (aflags & AS_AREA_READ)
1026 jermar 833
        flags |= PAGE_READ;
834
 
1235 jermar 835
    if (aflags & AS_AREA_WRITE)
1026 jermar 836
        flags |= PAGE_WRITE;
837
 
1235 jermar 838
    if (aflags & AS_AREA_EXEC)
1026 jermar 839
        flags |= PAGE_EXEC;
840
 
1424 jermar 841
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 842
        flags |= PAGE_CACHEABLE;
843
 
754 jermar 844
    return flags;
845
}
756 jermar 846
 
1235 jermar 847
/** Compute flags for virtual address translation subsytem.
848
 *
849
 * The address space area must be locked.
850
 * Interrupts must be disabled.
851
 *
852
 * @param a Address space area.
853
 *
854
 * @return Flags to be used in page_mapping_insert().
855
 */
1409 jermar 856
int as_area_get_flags(as_area_t *a)
1235 jermar 857
{
858
    return area_flags_to_page_flags(a->flags);
859
}
860
 
756 jermar 861
/** Create page table.
862
 *
863
 * Depending on architecture, create either address space
864
 * private or global page table.
865
 *
866
 * @param flags Flags saying whether the page table is for kernel address space.
867
 *
868
 * @return First entry of the page table.
869
 */
870
pte_t *page_table_create(int flags)
871
{
872
        ASSERT(as_operations);
873
        ASSERT(as_operations->page_table_create);
874
 
875
        return as_operations->page_table_create(flags);
876
}
977 jermar 877
 
1468 jermar 878
/** Destroy page table.
879
 *
880
 * Destroy page table in architecture specific way.
881
 *
882
 * @param page_table Physical address of PTL0.
883
 */
884
void page_table_destroy(pte_t *page_table)
885
{
886
        ASSERT(as_operations);
887
        ASSERT(as_operations->page_table_destroy);
888
 
889
        as_operations->page_table_destroy(page_table);
890
}
891
 
1044 jermar 892
/** Lock page table.
893
 *
894
 * This function should be called before any page_mapping_insert(),
895
 * page_mapping_remove() and page_mapping_find().
896
 *
897
 * Locking order is such that address space areas must be locked
898
 * prior to this call. Address space can be locked prior to this
899
 * call in which case the lock argument is false.
900
 *
901
 * @param as Address space.
1248 jermar 902
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 903
 */
904
void page_table_lock(as_t *as, bool lock)
905
{
906
    ASSERT(as_operations);
907
    ASSERT(as_operations->page_table_lock);
908
 
909
    as_operations->page_table_lock(as, lock);
910
}
911
 
912
/** Unlock page table.
913
 *
914
 * @param as Address space.
1248 jermar 915
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 916
 */
917
void page_table_unlock(as_t *as, bool unlock)
918
{
919
    ASSERT(as_operations);
920
    ASSERT(as_operations->page_table_unlock);
921
 
922
    as_operations->page_table_unlock(as, unlock);
923
}
924
 
977 jermar 925
 
926
/** Find address space area and lock it.
927
 *
928
 * The address space must be locked and interrupts must be disabled.
929
 *
930
 * @param as Address space.
931
 * @param va Virtual address.
932
 *
933
 * @return Locked address space area containing va on success or NULL on failure.
934
 */
935
as_area_t *find_area_and_lock(as_t *as, __address va)
936
{
937
    as_area_t *a;
1147 jermar 938
    btree_node_t *leaf, *lnode;
939
    int i;
977 jermar 940
 
1147 jermar 941
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
942
    if (a) {
943
        /* va is the base address of an address space area */
1380 jermar 944
        mutex_lock(&a->lock);
1147 jermar 945
        return a;
946
    }
947
 
948
    /*
1150 jermar 949
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 950
     * to find out whether this is a miss or va belongs to an address
951
     * space area found there.
952
     */
953
 
954
    /* First, search the leaf node itself. */
955
    for (i = 0; i < leaf->keys; i++) {
956
        a = (as_area_t *) leaf->value[i];
1380 jermar 957
        mutex_lock(&a->lock);
1147 jermar 958
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
959
            return a;
960
        }
1380 jermar 961
        mutex_unlock(&a->lock);
1147 jermar 962
    }
977 jermar 963
 
1147 jermar 964
    /*
1150 jermar 965
     * Second, locate the left neighbour and test its last record.
1148 jermar 966
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 967
     */
1150 jermar 968
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 969
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 970
        mutex_lock(&a->lock);
1147 jermar 971
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 972
            return a;
1147 jermar 973
        }
1380 jermar 974
        mutex_unlock(&a->lock);
977 jermar 975
    }
976
 
977
    return NULL;
978
}
1048 jermar 979
 
980
/** Check area conflicts with other areas.
981
 *
982
 * The address space must be locked and interrupts must be disabled.
983
 *
984
 * @param as Address space.
985
 * @param va Starting virtual address of the area being tested.
986
 * @param size Size of the area being tested.
987
 * @param avoid_area Do not touch this area.
988
 *
989
 * @return True if there is no conflict, false otherwise.
990
 */
991
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
992
{
993
    as_area_t *a;
1147 jermar 994
    btree_node_t *leaf, *node;
995
    int i;
1048 jermar 996
 
1070 jermar 997
    /*
998
     * We don't want any area to have conflicts with NULL page.
999
     */
1000
    if (overlaps(va, size, NULL, PAGE_SIZE))
1001
        return false;
1002
 
1147 jermar 1003
    /*
1004
     * The leaf node is found in O(log n), where n is proportional to
1005
     * the number of address space areas belonging to as.
1006
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1007
     * record in the left neighbour, the leftmost record in the right
1008
     * neighbour and all records in the leaf node itself.
1147 jermar 1009
     */
1048 jermar 1010
 
1147 jermar 1011
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1012
        if (a != avoid_area)
1013
            return false;
1014
    }
1015
 
1016
    /* First, check the two border cases. */
1150 jermar 1017
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1018
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1019
        mutex_lock(&a->lock);
1147 jermar 1020
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1021
            mutex_unlock(&a->lock);
1147 jermar 1022
            return false;
1023
        }
1380 jermar 1024
        mutex_unlock(&a->lock);
1147 jermar 1025
    }
1150 jermar 1026
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1027
        a = (as_area_t *) node->value[0];
1380 jermar 1028
        mutex_lock(&a->lock);
1147 jermar 1029
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1030
            mutex_unlock(&a->lock);
1147 jermar 1031
            return false;
1032
        }
1380 jermar 1033
        mutex_unlock(&a->lock);
1147 jermar 1034
    }
1035
 
1036
    /* Second, check the leaf node. */
1037
    for (i = 0; i < leaf->keys; i++) {
1038
        a = (as_area_t *) leaf->value[i];
1039
 
1048 jermar 1040
        if (a == avoid_area)
1041
            continue;
1147 jermar 1042
 
1380 jermar 1043
        mutex_lock(&a->lock);
1147 jermar 1044
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1045
            mutex_unlock(&a->lock);
1147 jermar 1046
            return false;
1047
        }
1380 jermar 1048
        mutex_unlock(&a->lock);
1048 jermar 1049
    }
1050
 
1070 jermar 1051
    /*
1052
     * So far, the area does not conflict with other areas.
1053
     * Check if it doesn't conflict with kernel address space.
1054
     */  
1055
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1056
        return !overlaps(va, size,
1057
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1058
    }
1059
 
1048 jermar 1060
    return true;
1061
}
1235 jermar 1062
 
1380 jermar 1063
/** Return size of the address space area with given base.  */
1329 palkovsky 1064
size_t as_get_size(__address base)
1065
{
1066
    ipl_t ipl;
1067
    as_area_t *src_area;
1068
    size_t size;
1069
 
1070
    ipl = interrupts_disable();
1071
    src_area = find_area_and_lock(AS, base);
1072
    if (src_area){
1073
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1074
        mutex_unlock(&src_area->lock);
1329 palkovsky 1075
    } else {
1076
        size = 0;
1077
    }
1078
    interrupts_restore(ipl);
1079
    return size;
1080
}
1081
 
1387 jermar 1082
/** Mark portion of address space area as used.
1083
 *
1084
 * The address space area must be already locked.
1085
 *
1086
 * @param a Address space area.
1087
 * @param page First page to be marked.
1088
 * @param count Number of page to be marked.
1089
 *
1090
 * @return 0 on failure and 1 on success.
1091
 */
1092
int used_space_insert(as_area_t *a, __address page, count_t count)
1093
{
1094
    btree_node_t *leaf, *node;
1095
    count_t pages;
1096
    int i;
1097
 
1098
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1099
    ASSERT(count);
1100
 
1101
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1102
    if (pages) {
1103
        /*
1104
         * We hit the beginning of some used space.
1105
         */
1106
        return 0;
1107
    }
1108
 
1437 jermar 1109
    if (!leaf->keys) {
1110
        btree_insert(&a->used_space, page, (void *) count, leaf);
1111
        return 1;
1112
    }
1113
 
1387 jermar 1114
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1115
    if (node) {
1116
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1117
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1118
 
1119
        /*
1120
         * Examine the possibility that the interval fits
1121
         * somewhere between the rightmost interval of
1122
         * the left neigbour and the first interval of the leaf.
1123
         */
1124
 
1125
        if (page >= right_pg) {
1126
            /* Do nothing. */
1127
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1128
            /* The interval intersects with the left interval. */
1129
            return 0;
1130
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1131
            /* The interval intersects with the right interval. */
1132
            return 0;          
1133
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1134
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1135
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1136
            btree_remove(&a->used_space, right_pg, leaf);
1137
            return 1;
1138
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1139
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1140
            node->value[node->keys - 1] += count;
1387 jermar 1141
            return 1;
1142
        } else if (page + count*PAGE_SIZE == right_pg) {
1143
            /*
1144
             * The interval can be addded by simply moving base of the right
1145
             * interval down and increasing its size accordingly.
1146
             */
1403 jermar 1147
            leaf->value[0] += count;
1387 jermar 1148
            leaf->key[0] = page;
1149
            return 1;
1150
        } else {
1151
            /*
1152
             * The interval is between both neigbouring intervals,
1153
             * but cannot be merged with any of them.
1154
             */
1155
            btree_insert(&a->used_space, page, (void *) count, leaf);
1156
            return 1;
1157
        }
1158
    } else if (page < leaf->key[0]) {
1159
        __address right_pg = leaf->key[0];
1160
        count_t right_cnt = (count_t) leaf->value[0];
1161
 
1162
        /*
1163
         * Investigate the border case in which the left neighbour does not
1164
         * exist but the interval fits from the left.
1165
         */
1166
 
1167
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1168
            /* The interval intersects with the right interval. */
1169
            return 0;
1170
        } else if (page + count*PAGE_SIZE == right_pg) {
1171
            /*
1172
             * The interval can be added by moving the base of the right interval down
1173
             * and increasing its size accordingly.
1174
             */
1175
            leaf->key[0] = page;
1403 jermar 1176
            leaf->value[0] += count;
1387 jermar 1177
            return 1;
1178
        } else {
1179
            /*
1180
             * The interval doesn't adjoin with the right interval.
1181
             * It must be added individually.
1182
             */
1183
            btree_insert(&a->used_space, page, (void *) count, leaf);
1184
            return 1;
1185
        }
1186
    }
1187
 
1188
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1189
    if (node) {
1190
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1191
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1192
 
1193
        /*
1194
         * Examine the possibility that the interval fits
1195
         * somewhere between the leftmost interval of
1196
         * the right neigbour and the last interval of the leaf.
1197
         */
1198
 
1199
        if (page < left_pg) {
1200
            /* Do nothing. */
1201
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1202
            /* The interval intersects with the left interval. */
1203
            return 0;
1204
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1205
            /* The interval intersects with the right interval. */
1206
            return 0;          
1207
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1208
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1209
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1210
            btree_remove(&a->used_space, right_pg, node);
1211
            return 1;
1212
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1213
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1214
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1215
            return 1;
1216
        } else if (page + count*PAGE_SIZE == right_pg) {
1217
            /*
1218
             * The interval can be addded by simply moving base of the right
1219
             * interval down and increasing its size accordingly.
1220
             */
1403 jermar 1221
            node->value[0] += count;
1387 jermar 1222
            node->key[0] = page;
1223
            return 1;
1224
        } else {
1225
            /*
1226
             * The interval is between both neigbouring intervals,
1227
             * but cannot be merged with any of them.
1228
             */
1229
            btree_insert(&a->used_space, page, (void *) count, leaf);
1230
            return 1;
1231
        }
1232
    } else if (page >= leaf->key[leaf->keys - 1]) {
1233
        __address left_pg = leaf->key[leaf->keys - 1];
1234
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1235
 
1236
        /*
1237
         * Investigate the border case in which the right neighbour does not
1238
         * exist but the interval fits from the right.
1239
         */
1240
 
1241
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1242
            /* The interval intersects with the left interval. */
1387 jermar 1243
            return 0;
1244
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1245
            /* The interval can be added by growing the left interval. */
1403 jermar 1246
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1247
            return 1;
1248
        } else {
1249
            /*
1250
             * The interval doesn't adjoin with the left interval.
1251
             * It must be added individually.
1252
             */
1253
            btree_insert(&a->used_space, page, (void *) count, leaf);
1254
            return 1;
1255
        }
1256
    }
1257
 
1258
    /*
1259
     * Note that if the algorithm made it thus far, the interval can fit only
1260
     * between two other intervals of the leaf. The two border cases were already
1261
     * resolved.
1262
     */
1263
    for (i = 1; i < leaf->keys; i++) {
1264
        if (page < leaf->key[i]) {
1265
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1266
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1267
 
1268
            /*
1269
             * The interval fits between left_pg and right_pg.
1270
             */
1271
 
1272
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1273
                /* The interval intersects with the left interval. */
1274
                return 0;
1275
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1276
                /* The interval intersects with the right interval. */
1277
                return 0;          
1278
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1279
                /* The interval can be added by merging the two already present intervals. */
1403 jermar 1280
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1281
                btree_remove(&a->used_space, right_pg, leaf);
1282
                return 1;
1283
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1284
                /* The interval can be added by simply growing the left interval. */
1403 jermar 1285
                leaf->value[i - 1] += count;
1387 jermar 1286
                return 1;
1287
            } else if (page + count*PAGE_SIZE == right_pg) {
1288
                /*
1289
                     * The interval can be addded by simply moving base of the right
1290
                 * interval down and increasing its size accordingly.
1291
                 */
1403 jermar 1292
                leaf->value[i] += count;
1387 jermar 1293
                leaf->key[i] = page;
1294
                return 1;
1295
            } else {
1296
                /*
1297
                 * The interval is between both neigbouring intervals,
1298
                 * but cannot be merged with any of them.
1299
                 */
1300
                btree_insert(&a->used_space, page, (void *) count, leaf);
1301
                return 1;
1302
            }
1303
        }
1304
    }
1305
 
1306
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1307
}
1308
 
1309
/** Mark portion of address space area as unused.
1310
 *
1311
 * The address space area must be already locked.
1312
 *
1313
 * @param a Address space area.
1314
 * @param page First page to be marked.
1315
 * @param count Number of page to be marked.
1316
 *
1317
 * @return 0 on failure and 1 on success.
1318
 */
1319
int used_space_remove(as_area_t *a, __address page, count_t count)
1320
{
1321
    btree_node_t *leaf, *node;
1322
    count_t pages;
1323
    int i;
1324
 
1325
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1326
    ASSERT(count);
1327
 
1328
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1329
    if (pages) {
1330
        /*
1331
         * We are lucky, page is the beginning of some interval.
1332
         */
1333
        if (count > pages) {
1334
            return 0;
1335
        } else if (count == pages) {
1336
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1337
            return 1;
1387 jermar 1338
        } else {
1339
            /*
1340
             * Find the respective interval.
1341
             * Decrease its size and relocate its start address.
1342
             */
1343
            for (i = 0; i < leaf->keys; i++) {
1344
                if (leaf->key[i] == page) {
1345
                    leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1346
                    leaf->value[i] -= count;
1387 jermar 1347
                    return 1;
1348
                }
1349
            }
1350
            goto error;
1351
        }
1352
    }
1353
 
1354
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1355
    if (node && page < leaf->key[0]) {
1356
        __address left_pg = node->key[node->keys - 1];
1357
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1358
 
1359
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1360
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1361
                /*
1362
                 * The interval is contained in the rightmost interval
1363
                 * of the left neighbour and can be removed by
1364
                 * updating the size of the bigger interval.
1365
                 */
1403 jermar 1366
                node->value[node->keys - 1] -= count;
1387 jermar 1367
                return 1;
1368
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1369
                count_t new_cnt;
1387 jermar 1370
 
1371
                /*
1372
                 * The interval is contained in the rightmost interval
1373
                 * of the left neighbour but its removal requires
1374
                 * both updating the size of the original interval and
1375
                 * also inserting a new interval.
1376
                 */
1403 jermar 1377
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1378
                node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1379
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1380
                return 1;
1381
            }
1382
        }
1383
        return 0;
1384
    } else if (page < leaf->key[0]) {
1385
        return 0;
1386
    }
1387
 
1388
    if (page > leaf->key[leaf->keys - 1]) {
1389
        __address left_pg = leaf->key[leaf->keys - 1];
1390
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1391
 
1392
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1393
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1394
                /*
1395
                 * The interval is contained in the rightmost interval
1396
                 * of the leaf and can be removed by updating the size
1397
                 * of the bigger interval.
1398
                 */
1403 jermar 1399
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1400
                return 1;
1401
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1402
                count_t new_cnt;
1387 jermar 1403
 
1404
                /*
1405
                 * The interval is contained in the rightmost interval
1406
                 * of the leaf but its removal requires both updating
1407
                 * the size of the original interval and
1408
                 * also inserting a new interval.
1409
                 */
1403 jermar 1410
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1411
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1412
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1413
                return 1;
1414
            }
1415
        }
1416
        return 0;
1417
    }  
1418
 
1419
    /*
1420
     * The border cases have been already resolved.
1421
     * Now the interval can be only between intervals of the leaf.
1422
     */
1423
    for (i = 1; i < leaf->keys - 1; i++) {
1424
        if (page < leaf->key[i]) {
1425
            __address left_pg = leaf->key[i - 1];
1426
            count_t left_cnt = (count_t) leaf->value[i - 1];
1427
 
1428
            /*
1429
             * Now the interval is between intervals corresponding to (i - 1) and i.
1430
             */
1431
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1432
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1433
                    /*
1434
                    * The interval is contained in the interval (i - 1)
1435
                     * of the leaf and can be removed by updating the size
1436
                     * of the bigger interval.
1437
                     */
1403 jermar 1438
                    leaf->value[i - 1] -= count;
1387 jermar 1439
                    return 1;
1440
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1441
                    count_t new_cnt;
1387 jermar 1442
 
1443
                    /*
1444
                     * The interval is contained in the interval (i - 1)
1445
                     * of the leaf but its removal requires both updating
1446
                     * the size of the original interval and
1447
                     * also inserting a new interval.
1448
                     */
1403 jermar 1449
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1450
                    leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1451
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1452
                    return 1;
1453
                }
1454
            }
1455
            return 0;
1456
        }
1457
    }
1458
 
1459
error:
1460
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1461
}
1462
 
1409 jermar 1463
/** Remove reference to address space area share info.
1464
 *
1465
 * If the reference count drops to 0, the sh_info is deallocated.
1466
 *
1467
 * @param sh_info Pointer to address space area share info.
1468
 */
1469
void sh_info_remove_reference(share_info_t *sh_info)
1470
{
1471
    bool dealloc = false;
1472
 
1473
    mutex_lock(&sh_info->lock);
1474
    ASSERT(sh_info->refcount);
1475
    if (--sh_info->refcount == 0) {
1476
        dealloc = true;
1495 jermar 1477
        link_t *cur;
1409 jermar 1478
 
1479
        /*
1480
         * Now walk carefully the pagemap B+tree and free/remove
1481
         * reference from all frames found there.
1482
         */
1495 jermar 1483
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1484
            btree_node_t *node;
1495 jermar 1485
            int i;
1409 jermar 1486
 
1495 jermar 1487
            node = list_get_instance(cur, btree_node_t, leaf_link);
1488
            for (i = 0; i < node->keys; i++)
1489
                frame_free(ADDR2PFN((__address) node->value[i]));
1409 jermar 1490
        }
1491
 
1492
    }
1493
    mutex_unlock(&sh_info->lock);
1494
 
1495
    if (dealloc) {
1496
        btree_destroy(&sh_info->pagemap);
1497
        free(sh_info);
1498
    }
1499
}
1500
 
1235 jermar 1501
/*
1502
 * Address space related syscalls.
1503
 */
1504
 
1505
/** Wrapper for as_area_create(). */
1506
__native sys_as_area_create(__address address, size_t size, int flags)
1507
{
1424 jermar 1508
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1509
        return (__native) address;
1510
    else
1511
        return (__native) -1;
1512
}
1513
 
1514
/** Wrapper for as_area_resize. */
1515
__native sys_as_area_resize(__address address, size_t size, int flags)
1516
{
1306 jermar 1517
    return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1518
}
1519
 
1306 jermar 1520
/** Wrapper for as_area_destroy. */
1521
__native sys_as_area_destroy(__address address)
1522
{
1523
    return (__native) as_area_destroy(AS, address);
1524
}