Rev 1483 | Rev 1704 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1101 | jermar | 1 | /* |
| 2 | * Copyright (C) 2006 Jakub Jermar |
||
| 3 | * All rights reserved. |
||
| 4 | * |
||
| 5 | * Redistribution and use in source and binary forms, with or without |
||
| 6 | * modification, are permitted provided that the following conditions |
||
| 7 | * are met: |
||
| 8 | * |
||
| 9 | * - Redistributions of source code must retain the above copyright |
||
| 10 | * notice, this list of conditions and the following disclaimer. |
||
| 11 | * - Redistributions in binary form must reproduce the above copyright |
||
| 12 | * notice, this list of conditions and the following disclaimer in the |
||
| 13 | * documentation and/or other materials provided with the distribution. |
||
| 14 | * - The name of the author may not be used to endorse or promote products |
||
| 15 | * derived from this software without specific prior written permission. |
||
| 16 | * |
||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | */ |
||
| 28 | |||
| 1702 | cejka | 29 | /** @addtogroup genericadt |
| 30 | * @{ |
||
| 31 | */ |
||
| 32 | |||
| 1248 | jermar | 33 | /** |
| 34 | * @file btree.c |
||
| 35 | * @brief B+tree implementation. |
||
| 1101 | jermar | 36 | * |
| 1248 | jermar | 37 | * This file implements B+tree type and operations. |
| 38 | * |
||
| 39 | * The B+tree has the following properties: |
||
| 40 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
| 41 | * @li values (i.e. pointers to values) are stored only in leaves |
||
| 42 | * @li leaves are linked in a list |
||
| 43 | * |
||
| 1134 | jermar | 44 | * Be carefull when using these trees. They need to allocate |
| 45 | * and deallocate memory for their index nodes and as such |
||
| 46 | * can sleep. |
||
| 1101 | jermar | 47 | */ |
| 48 | |||
| 49 | #include <adt/btree.h> |
||
| 50 | #include <adt/list.h> |
||
| 51 | #include <mm/slab.h> |
||
| 52 | #include <debug.h> |
||
| 53 | #include <panic.h> |
||
| 54 | #include <typedefs.h> |
||
| 55 | #include <print.h> |
||
| 56 | |||
| 1483 | jermar | 57 | static void btree_destroy_subtree(btree_node_t *root); |
| 1177 | jermar | 58 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
| 59 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
| 1101 | jermar | 60 | static void node_initialize(btree_node_t *node); |
| 1177 | jermar | 61 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
| 62 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
| 63 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
| 64 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
| 65 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
| 1142 | jermar | 66 | static btree_node_t *node_combine(btree_node_t *node); |
| 1136 | jermar | 67 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
| 1142 | jermar | 68 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
| 69 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
| 1177 | jermar | 70 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
| 71 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
| 1142 | jermar | 72 | static bool try_rotation_from_left(btree_node_t *rnode); |
| 73 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
| 1101 | jermar | 74 | |
| 75 | #define ROOT_NODE(n) (!(n)->parent) |
||
| 76 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
| 77 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
| 78 | |||
| 1140 | jermar | 79 | #define FILL_FACTOR ((BTREE_M-1)/2) |
| 80 | |||
| 1101 | jermar | 81 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
| 82 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
| 83 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
| 84 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
| 85 | |||
| 1164 | jermar | 86 | static slab_cache_t *btree_node_slab; |
| 87 | |||
| 88 | /** Initialize B-trees. */ |
||
| 89 | void btree_init(void) |
||
| 90 | { |
||
| 91 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
| 92 | } |
||
| 93 | |||
| 1101 | jermar | 94 | /** Create empty B-tree. |
| 95 | * |
||
| 96 | * @param t B-tree. |
||
| 97 | */ |
||
| 98 | void btree_create(btree_t *t) |
||
| 99 | { |
||
| 100 | list_initialize(&t->leaf_head); |
||
| 1164 | jermar | 101 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 102 | node_initialize(t->root); |
| 103 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
| 104 | } |
||
| 105 | |||
| 106 | /** Destroy empty B-tree. */ |
||
| 107 | void btree_destroy(btree_t *t) |
||
| 108 | { |
||
| 1483 | jermar | 109 | btree_destroy_subtree(t->root); |
| 1101 | jermar | 110 | } |
| 111 | |||
| 112 | /** Insert key-value pair into B-tree. |
||
| 113 | * |
||
| 114 | * @param t B-tree. |
||
| 115 | * @param key Key to be inserted. |
||
| 116 | * @param value Value to be inserted. |
||
| 117 | * @param leaf_node Leaf node where the insertion should begin. |
||
| 118 | */ |
||
| 1177 | jermar | 119 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
| 1101 | jermar | 120 | { |
| 121 | btree_node_t *lnode; |
||
| 122 | |||
| 123 | ASSERT(value); |
||
| 124 | |||
| 125 | lnode = leaf_node; |
||
| 126 | if (!lnode) { |
||
| 127 | if (btree_search(t, key, &lnode)) { |
||
| 1221 | decky | 128 | panic("B-tree %p already contains key %d\n", t, key); |
| 1101 | jermar | 129 | } |
| 130 | } |
||
| 131 | |||
| 132 | _btree_insert(t, key, value, NULL, lnode); |
||
| 133 | } |
||
| 134 | |||
| 1483 | jermar | 135 | /** Destroy subtree rooted in a node. |
| 136 | * |
||
| 137 | * @param root Root of the subtree. |
||
| 138 | */ |
||
| 139 | void btree_destroy_subtree(btree_node_t *root) |
||
| 140 | { |
||
| 141 | int i; |
||
| 142 | |||
| 143 | if (root->keys) { |
||
| 144 | for (i = 0; i < root->keys + 1; i++) { |
||
| 145 | if (root->subtree[i]) |
||
| 146 | btree_destroy_subtree(root->subtree[i]); |
||
| 147 | } |
||
| 148 | } |
||
| 149 | slab_free(btree_node_slab, root); |
||
| 150 | } |
||
| 151 | |||
| 1101 | jermar | 152 | /** Recursively insert into B-tree. |
| 153 | * |
||
| 154 | * @param t B-tree. |
||
| 155 | * @param key Key to be inserted. |
||
| 156 | * @param value Value to be inserted. |
||
| 157 | * @param rsubtree Right subtree of the inserted key. |
||
| 158 | * @param node Start inserting into this node. |
||
| 159 | */ |
||
| 1177 | jermar | 160 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
| 1101 | jermar | 161 | { |
| 162 | if (node->keys < BTREE_MAX_KEYS) { |
||
| 163 | /* |
||
| 164 | * Node conatins enough space, the key can be stored immediately. |
||
| 165 | */ |
||
| 1142 | jermar | 166 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
| 167 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
| 1136 | jermar | 168 | /* |
| 169 | * The key-value-rsubtree triplet has been inserted because |
||
| 170 | * some keys could have been moved to the left sibling. |
||
| 171 | */ |
||
| 1142 | jermar | 172 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
| 1136 | jermar | 173 | /* |
| 174 | * The key-value-rsubtree triplet has been inserted because |
||
| 175 | * some keys could have been moved to the right sibling. |
||
| 176 | */ |
||
| 1101 | jermar | 177 | } else { |
| 178 | btree_node_t *rnode; |
||
| 1177 | jermar | 179 | btree_key_t median; |
| 1101 | jermar | 180 | |
| 181 | /* |
||
| 1136 | jermar | 182 | * Node is full and both siblings (if both exist) are full too. |
| 183 | * Split the node and insert the smallest key from the node containing |
||
| 184 | * bigger keys (i.e. the new node) into its parent. |
||
| 1101 | jermar | 185 | */ |
| 186 | |||
| 187 | rnode = node_split(node, key, value, rsubtree, &median); |
||
| 188 | |||
| 189 | if (LEAF_NODE(node)) { |
||
| 1144 | jermar | 190 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
| 1101 | jermar | 191 | } |
| 192 | |||
| 193 | if (ROOT_NODE(node)) { |
||
| 194 | /* |
||
| 195 | * We split the root node. Create new root. |
||
| 196 | */ |
||
| 1164 | jermar | 197 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 198 | node->parent = t->root; |
| 199 | rnode->parent = t->root; |
||
| 200 | node_initialize(t->root); |
||
| 201 | |||
| 202 | /* |
||
| 203 | * Left-hand side subtree will be the old root (i.e. node). |
||
| 204 | * Right-hand side subtree will be rnode. |
||
| 205 | */ |
||
| 206 | t->root->subtree[0] = node; |
||
| 207 | |||
| 208 | t->root->depth = node->depth + 1; |
||
| 209 | } |
||
| 210 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
| 211 | } |
||
| 212 | |||
| 213 | } |
||
| 214 | |||
| 1140 | jermar | 215 | /** Remove B-tree node. |
| 216 | * |
||
| 217 | * @param B-tree. |
||
| 218 | * @param key Key to be removed from the B-tree along with its associated value. |
||
| 219 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
| 220 | */ |
||
| 1177 | jermar | 221 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
| 1101 | jermar | 222 | { |
| 1140 | jermar | 223 | btree_node_t *lnode; |
| 224 | |||
| 225 | lnode = leaf_node; |
||
| 226 | if (!lnode) { |
||
| 227 | if (!btree_search(t, key, &lnode)) { |
||
| 1221 | decky | 228 | panic("B-tree %p does not contain key %d\n", t, key); |
| 1140 | jermar | 229 | } |
| 230 | } |
||
| 231 | |||
| 1142 | jermar | 232 | _btree_remove(t, key, lnode); |
| 233 | } |
||
| 1140 | jermar | 234 | |
| 1142 | jermar | 235 | /** Recursively remove B-tree node. |
| 236 | * |
||
| 237 | * @param B-tree. |
||
| 238 | * @param key Key to be removed from the B-tree along with its associated value. |
||
| 239 | * @param node Node where the key being removed resides. |
||
| 240 | */ |
||
| 1177 | jermar | 241 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
| 1142 | jermar | 242 | { |
| 243 | if (ROOT_NODE(node)) { |
||
| 244 | if (node->keys == 1 && node->subtree[0]) { |
||
| 245 | /* |
||
| 246 | * Free the current root and set new root. |
||
| 247 | */ |
||
| 248 | t->root = node->subtree[0]; |
||
| 249 | t->root->parent = NULL; |
||
| 1164 | jermar | 250 | slab_free(btree_node_slab, node); |
| 1142 | jermar | 251 | } else { |
| 252 | /* |
||
| 253 | * Remove the key from the root node. |
||
| 254 | * Note that the right subtree is removed because when |
||
| 255 | * combining two nodes, the left-side sibling is preserved |
||
| 256 | * and the right-side sibling is freed. |
||
| 257 | */ |
||
| 258 | node_remove_key_and_rsubtree(node, key); |
||
| 259 | } |
||
| 260 | return; |
||
| 261 | } |
||
| 262 | |||
| 263 | if (node->keys <= FILL_FACTOR) { |
||
| 264 | /* |
||
| 265 | * If the node is below the fill factor, |
||
| 266 | * try to borrow keys from left or right sibling. |
||
| 267 | */ |
||
| 268 | if (!try_rotation_from_left(node)) |
||
| 269 | try_rotation_from_right(node); |
||
| 270 | } |
||
| 271 | |||
| 272 | if (node->keys > FILL_FACTOR) { |
||
| 273 | int i; |
||
| 274 | |||
| 275 | /* |
||
| 276 | * The key can be immediatelly removed. |
||
| 277 | * |
||
| 278 | * Note that the right subtree is removed because when |
||
| 279 | * combining two nodes, the left-side sibling is preserved |
||
| 280 | * and the right-side sibling is freed. |
||
| 281 | */ |
||
| 282 | node_remove_key_and_rsubtree(node, key); |
||
| 283 | for (i = 0; i < node->parent->keys; i++) { |
||
| 284 | if (node->parent->key[i] == key) |
||
| 285 | node->parent->key[i] = node->key[0]; |
||
| 286 | } |
||
| 287 | |||
| 288 | } else { |
||
| 289 | index_t idx; |
||
| 290 | btree_node_t *rnode, *parent; |
||
| 291 | |||
| 292 | /* |
||
| 293 | * The node is below the fill factor as well as its left and right sibling. |
||
| 294 | * Resort to combining the node with one of its siblings. |
||
| 295 | * The node which is on the left is preserved and the node on the right is |
||
| 296 | * freed. |
||
| 297 | */ |
||
| 298 | parent = node->parent; |
||
| 299 | node_remove_key_and_rsubtree(node, key); |
||
| 300 | rnode = node_combine(node); |
||
| 301 | if (LEAF_NODE(rnode)) |
||
| 302 | list_remove(&rnode->leaf_link); |
||
| 303 | idx = find_key_by_subtree(parent, rnode, true); |
||
| 304 | ASSERT((int) idx != -1); |
||
| 1164 | jermar | 305 | slab_free(btree_node_slab, rnode); |
| 1142 | jermar | 306 | _btree_remove(t, parent->key[idx], parent); |
| 307 | } |
||
| 1101 | jermar | 308 | } |
| 309 | |||
| 310 | /** Search key in a B-tree. |
||
| 311 | * |
||
| 312 | * @param t B-tree. |
||
| 313 | * @param key Key to be searched. |
||
| 314 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
| 315 | * |
||
| 316 | * @return Pointer to value or NULL if there is no such key. |
||
| 317 | */ |
||
| 1177 | jermar | 318 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
| 1101 | jermar | 319 | { |
| 320 | btree_node_t *cur, *next; |
||
| 321 | |||
| 322 | /* |
||
| 1134 | jermar | 323 | * Iteratively descend to the leaf that can contain the searched key. |
| 1101 | jermar | 324 | */ |
| 325 | for (cur = t->root; cur; cur = next) { |
||
| 1134 | jermar | 326 | |
| 1101 | jermar | 327 | /* Last iteration will set this with proper leaf node address. */ |
| 328 | *leaf_node = cur; |
||
| 1134 | jermar | 329 | |
| 330 | /* |
||
| 331 | * The key can be in the leftmost subtree. |
||
| 332 | * Test it separately. |
||
| 333 | */ |
||
| 334 | if (key < cur->key[0]) { |
||
| 335 | next = cur->subtree[0]; |
||
| 336 | continue; |
||
| 337 | } else { |
||
| 338 | void *val; |
||
| 339 | int i; |
||
| 340 | |||
| 341 | /* |
||
| 342 | * Now if the key is smaller than cur->key[i] |
||
| 343 | * it can only mean that the value is in cur->subtree[i] |
||
| 344 | * or it is not in the tree at all. |
||
| 345 | */ |
||
| 346 | for (i = 1; i < cur->keys; i++) { |
||
| 347 | if (key < cur->key[i]) { |
||
| 348 | next = cur->subtree[i]; |
||
| 349 | val = cur->value[i - 1]; |
||
| 350 | |||
| 351 | if (LEAF_NODE(cur)) |
||
| 352 | return key == cur->key[i - 1] ? val : NULL; |
||
| 353 | |||
| 354 | goto descend; |
||
| 355 | } |
||
| 1101 | jermar | 356 | } |
| 1134 | jermar | 357 | |
| 358 | /* |
||
| 359 | * Last possibility is that the key is in the rightmost subtree. |
||
| 360 | */ |
||
| 361 | next = cur->subtree[i]; |
||
| 362 | val = cur->value[i - 1]; |
||
| 363 | if (LEAF_NODE(cur)) |
||
| 364 | return key == cur->key[i - 1] ? val : NULL; |
||
| 1101 | jermar | 365 | } |
| 1134 | jermar | 366 | descend: |
| 367 | ; |
||
| 1101 | jermar | 368 | } |
| 369 | |||
| 370 | /* |
||
| 1134 | jermar | 371 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
| 1101 | jermar | 372 | */ |
| 373 | return NULL; |
||
| 374 | } |
||
| 375 | |||
| 1150 | jermar | 376 | /** Return pointer to B-tree leaf node's left neighbour. |
| 1147 | jermar | 377 | * |
| 378 | * @param t B-tree. |
||
| 1150 | jermar | 379 | * @param node Node whose left neighbour will be returned. |
| 1147 | jermar | 380 | * |
| 1150 | jermar | 381 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
| 1147 | jermar | 382 | */ |
| 1150 | jermar | 383 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
| 1147 | jermar | 384 | { |
| 385 | ASSERT(LEAF_NODE(node)); |
||
| 386 | if (node->leaf_link.prev != &t->leaf_head) |
||
| 387 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
| 388 | else |
||
| 389 | return NULL; |
||
| 390 | } |
||
| 391 | |||
| 1150 | jermar | 392 | /** Return pointer to B-tree leaf node's right neighbour. |
| 1147 | jermar | 393 | * |
| 394 | * @param t B-tree. |
||
| 1150 | jermar | 395 | * @param node Node whose right neighbour will be returned. |
| 1147 | jermar | 396 | * |
| 1150 | jermar | 397 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
| 1147 | jermar | 398 | */ |
| 1150 | jermar | 399 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
| 1147 | jermar | 400 | { |
| 401 | ASSERT(LEAF_NODE(node)); |
||
| 402 | if (node->leaf_link.next != &t->leaf_head) |
||
| 403 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
| 404 | else |
||
| 405 | return NULL; |
||
| 406 | } |
||
| 407 | |||
| 1101 | jermar | 408 | /** Initialize B-tree node. |
| 409 | * |
||
| 410 | * @param node B-tree node. |
||
| 411 | */ |
||
| 412 | void node_initialize(btree_node_t *node) |
||
| 413 | { |
||
| 414 | int i; |
||
| 415 | |||
| 416 | node->keys = 0; |
||
| 417 | |||
| 418 | /* Clean also space for the extra key. */ |
||
| 419 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
| 420 | node->key[i] = 0; |
||
| 421 | node->value[i] = NULL; |
||
| 422 | node->subtree[i] = NULL; |
||
| 423 | } |
||
| 424 | node->subtree[i] = NULL; |
||
| 425 | |||
| 426 | node->parent = NULL; |
||
| 427 | |||
| 428 | link_initialize(&node->leaf_link); |
||
| 429 | |||
| 430 | link_initialize(&node->bfs_link); |
||
| 431 | node->depth = 0; |
||
| 432 | } |
||
| 433 | |||
| 1136 | jermar | 434 | /** Insert key-value-lsubtree triplet into B-tree node. |
| 1101 | jermar | 435 | * |
| 436 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
| 1136 | jermar | 437 | * This feature is used during insert by right rotation. |
| 438 | * |
||
| 439 | * @param node B-tree node into wich the new key is to be inserted. |
||
| 440 | * @param key The key to be inserted. |
||
| 441 | * @param value Pointer to value to be inserted. |
||
| 442 | * @param lsubtree Pointer to the left subtree. |
||
| 443 | */ |
||
| 1177 | jermar | 444 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
| 1136 | jermar | 445 | { |
| 446 | int i; |
||
| 447 | |||
| 448 | for (i = 0; i < node->keys; i++) { |
||
| 449 | if (key < node->key[i]) { |
||
| 450 | int j; |
||
| 451 | |||
| 452 | for (j = node->keys; j > i; j--) { |
||
| 453 | node->key[j] = node->key[j - 1]; |
||
| 454 | node->value[j] = node->value[j - 1]; |
||
| 455 | node->subtree[j + 1] = node->subtree[j]; |
||
| 456 | } |
||
| 457 | node->subtree[j + 1] = node->subtree[j]; |
||
| 458 | break; |
||
| 459 | } |
||
| 460 | } |
||
| 461 | node->key[i] = key; |
||
| 462 | node->value[i] = value; |
||
| 463 | node->subtree[i] = lsubtree; |
||
| 464 | |||
| 465 | node->keys++; |
||
| 466 | } |
||
| 467 | |||
| 468 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
| 469 | * |
||
| 470 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
| 1101 | jermar | 471 | * This feature is used during splitting the node when the |
| 1136 | jermar | 472 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
| 473 | * also makes use of this feature. |
||
| 1101 | jermar | 474 | * |
| 475 | * @param node B-tree node into wich the new key is to be inserted. |
||
| 476 | * @param key The key to be inserted. |
||
| 477 | * @param value Pointer to value to be inserted. |
||
| 478 | * @param rsubtree Pointer to the right subtree. |
||
| 479 | */ |
||
| 1177 | jermar | 480 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
| 1101 | jermar | 481 | { |
| 482 | int i; |
||
| 483 | |||
| 484 | for (i = 0; i < node->keys; i++) { |
||
| 485 | if (key < node->key[i]) { |
||
| 486 | int j; |
||
| 487 | |||
| 488 | for (j = node->keys; j > i; j--) { |
||
| 489 | node->key[j] = node->key[j - 1]; |
||
| 490 | node->value[j] = node->value[j - 1]; |
||
| 491 | node->subtree[j + 1] = node->subtree[j]; |
||
| 492 | } |
||
| 493 | break; |
||
| 494 | } |
||
| 495 | } |
||
| 496 | node->key[i] = key; |
||
| 497 | node->value[i] = value; |
||
| 498 | node->subtree[i + 1] = rsubtree; |
||
| 499 | |||
| 500 | node->keys++; |
||
| 501 | } |
||
| 502 | |||
| 1144 | jermar | 503 | /** Remove key and its left subtree pointer from B-tree node. |
| 504 | * |
||
| 505 | * Remove the key and eliminate gaps in node->key array. |
||
| 506 | * Note that the value pointer and the left subtree pointer |
||
| 507 | * is removed from the node as well. |
||
| 508 | * |
||
| 509 | * @param node B-tree node. |
||
| 510 | * @param key Key to be removed. |
||
| 511 | */ |
||
| 1177 | jermar | 512 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
| 1144 | jermar | 513 | { |
| 514 | int i, j; |
||
| 515 | |||
| 516 | for (i = 0; i < node->keys; i++) { |
||
| 517 | if (key == node->key[i]) { |
||
| 518 | for (j = i + 1; j < node->keys; j++) { |
||
| 519 | node->key[j - 1] = node->key[j]; |
||
| 520 | node->value[j - 1] = node->value[j]; |
||
| 521 | node->subtree[j - 1] = node->subtree[j]; |
||
| 522 | } |
||
| 523 | node->subtree[j - 1] = node->subtree[j]; |
||
| 524 | node->keys--; |
||
| 525 | return; |
||
| 526 | } |
||
| 527 | } |
||
| 1221 | decky | 528 | panic("node %p does not contain key %d\n", node, key); |
| 1144 | jermar | 529 | } |
| 530 | |||
| 531 | /** Remove key and its right subtree pointer from B-tree node. |
||
| 532 | * |
||
| 533 | * Remove the key and eliminate gaps in node->key array. |
||
| 534 | * Note that the value pointer and the right subtree pointer |
||
| 535 | * is removed from the node as well. |
||
| 536 | * |
||
| 537 | * @param node B-tree node. |
||
| 538 | * @param key Key to be removed. |
||
| 539 | */ |
||
| 1177 | jermar | 540 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
| 1144 | jermar | 541 | { |
| 542 | int i, j; |
||
| 543 | |||
| 544 | for (i = 0; i < node->keys; i++) { |
||
| 545 | if (key == node->key[i]) { |
||
| 546 | for (j = i + 1; j < node->keys; j++) { |
||
| 547 | node->key[j - 1] = node->key[j]; |
||
| 548 | node->value[j - 1] = node->value[j]; |
||
| 549 | node->subtree[j] = node->subtree[j + 1]; |
||
| 550 | } |
||
| 551 | node->keys--; |
||
| 552 | return; |
||
| 553 | } |
||
| 554 | } |
||
| 1221 | decky | 555 | panic("node %p does not contain key %d\n", node, key); |
| 1144 | jermar | 556 | } |
| 557 | |||
| 1134 | jermar | 558 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
| 1101 | jermar | 559 | * |
| 560 | * This function will split a node and return pointer to a newly created |
||
| 1134 | jermar | 561 | * node containing keys greater than or equal to the greater of medians |
| 562 | * (or median) of the old keys and the newly added key. It will also write |
||
| 563 | * the median key to a memory address supplied by the caller. |
||
| 1101 | jermar | 564 | * |
| 1134 | jermar | 565 | * If the node being split is an index node, the median will not be |
| 566 | * included in the new node. If the node is a leaf node, |
||
| 567 | * the median will be copied there. |
||
| 1101 | jermar | 568 | * |
| 569 | * @param node B-tree node wich is going to be split. |
||
| 570 | * @param key The key to be inserted. |
||
| 571 | * @param value Pointer to the value to be inserted. |
||
| 572 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
| 573 | * @param median Address in memory, where the median key will be stored. |
||
| 574 | * |
||
| 575 | * @return Newly created right sibling of node. |
||
| 576 | */ |
||
| 1177 | jermar | 577 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
| 1101 | jermar | 578 | { |
| 579 | btree_node_t *rnode; |
||
| 580 | int i, j; |
||
| 581 | |||
| 582 | ASSERT(median); |
||
| 583 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
| 1136 | jermar | 584 | |
| 1101 | jermar | 585 | /* |
| 586 | * Use the extra space to store the extra node. |
||
| 587 | */ |
||
| 1142 | jermar | 588 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
| 1101 | jermar | 589 | |
| 590 | /* |
||
| 591 | * Compute median of keys. |
||
| 592 | */ |
||
| 1134 | jermar | 593 | *median = MEDIAN_HIGH(node); |
| 1101 | jermar | 594 | |
| 1134 | jermar | 595 | /* |
| 596 | * Allocate and initialize new right sibling. |
||
| 597 | */ |
||
| 1164 | jermar | 598 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 599 | node_initialize(rnode); |
| 600 | rnode->parent = node->parent; |
||
| 601 | rnode->depth = node->depth; |
||
| 602 | |||
| 603 | /* |
||
| 604 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
| 1134 | jermar | 605 | * If this is an index node, do not copy the median. |
| 1101 | jermar | 606 | */ |
| 1134 | jermar | 607 | i = (int) INDEX_NODE(node); |
| 608 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
| 1101 | jermar | 609 | rnode->key[j] = node->key[i]; |
| 610 | rnode->value[j] = node->value[i]; |
||
| 611 | rnode->subtree[j] = node->subtree[i]; |
||
| 612 | |||
| 613 | /* |
||
| 614 | * Fix parent links in subtrees. |
||
| 615 | */ |
||
| 616 | if (rnode->subtree[j]) |
||
| 617 | rnode->subtree[j]->parent = rnode; |
||
| 618 | |||
| 619 | } |
||
| 620 | rnode->subtree[j] = node->subtree[i]; |
||
| 621 | if (rnode->subtree[j]) |
||
| 622 | rnode->subtree[j]->parent = rnode; |
||
| 1134 | jermar | 623 | |
| 624 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
| 625 | node->keys /= 2; /* Shrink the old node. */ |
||
| 1101 | jermar | 626 | |
| 627 | return rnode; |
||
| 628 | } |
||
| 629 | |||
| 1142 | jermar | 630 | /** Combine node with any of its siblings. |
| 631 | * |
||
| 632 | * The siblings are required to be below the fill factor. |
||
| 633 | * |
||
| 634 | * @param node Node to combine with one of its siblings. |
||
| 635 | * |
||
| 636 | * @return Pointer to the rightmost of the two nodes. |
||
| 637 | */ |
||
| 638 | btree_node_t *node_combine(btree_node_t *node) |
||
| 639 | { |
||
| 640 | index_t idx; |
||
| 641 | btree_node_t *rnode; |
||
| 642 | int i; |
||
| 643 | |||
| 644 | ASSERT(!ROOT_NODE(node)); |
||
| 645 | |||
| 646 | idx = find_key_by_subtree(node->parent, node, false); |
||
| 647 | if (idx == node->parent->keys) { |
||
| 648 | /* |
||
| 649 | * Rightmost subtree of its parent, combine with the left sibling. |
||
| 650 | */ |
||
| 651 | idx--; |
||
| 652 | rnode = node; |
||
| 653 | node = node->parent->subtree[idx]; |
||
| 654 | } else { |
||
| 655 | rnode = node->parent->subtree[idx + 1]; |
||
| 656 | } |
||
| 657 | |||
| 658 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
| 659 | if (INDEX_NODE(node)) |
||
| 660 | node->key[node->keys++] = node->parent->key[idx]; |
||
| 661 | |||
| 662 | /* Copy the key-value-subtree triplets from the right node. */ |
||
| 663 | for (i = 0; i < rnode->keys; i++) { |
||
| 664 | node->key[node->keys + i] = rnode->key[i]; |
||
| 665 | node->value[node->keys + i] = rnode->value[i]; |
||
| 666 | if (INDEX_NODE(node)) { |
||
| 667 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
| 668 | rnode->subtree[i]->parent = node; |
||
| 669 | } |
||
| 670 | } |
||
| 671 | if (INDEX_NODE(node)) { |
||
| 672 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
| 673 | rnode->subtree[i]->parent = node; |
||
| 674 | } |
||
| 675 | |||
| 676 | node->keys += rnode->keys; |
||
| 677 | |||
| 678 | return rnode; |
||
| 679 | } |
||
| 680 | |||
| 1136 | jermar | 681 | /** Find key by its left or right subtree. |
| 682 | * |
||
| 683 | * @param node B-tree node. |
||
| 684 | * @param subtree Left or right subtree of a key found in node. |
||
| 685 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
| 686 | * |
||
| 687 | * @return Index of the key associated with the subtree. |
||
| 688 | */ |
||
| 689 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
| 690 | { |
||
| 691 | int i; |
||
| 692 | |||
| 693 | for (i = 0; i < node->keys + 1; i++) { |
||
| 694 | if (subtree == node->subtree[i]) |
||
| 695 | return i - (int) (right != false); |
||
| 696 | } |
||
| 1221 | decky | 697 | panic("node %p does not contain subtree %p\n", node, subtree); |
| 1136 | jermar | 698 | } |
| 699 | |||
| 1142 | jermar | 700 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
| 701 | * |
||
| 702 | * The biggest key and its value and right subtree is rotated from the left node |
||
| 703 | * to the right. If the node is an index node, than the parent node key belonging to |
||
| 704 | * the left node takes part in the rotation. |
||
| 705 | * |
||
| 706 | * @param lnode Left sibling. |
||
| 707 | * @param rnode Right sibling. |
||
| 708 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
| 709 | */ |
||
| 710 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
| 711 | { |
||
| 1177 | jermar | 712 | btree_key_t key; |
| 1142 | jermar | 713 | |
| 714 | key = lnode->key[lnode->keys - 1]; |
||
| 715 | |||
| 716 | if (LEAF_NODE(lnode)) { |
||
| 717 | void *value; |
||
| 718 | |||
| 719 | value = lnode->value[lnode->keys - 1]; |
||
| 720 | node_remove_key_and_rsubtree(lnode, key); |
||
| 721 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
| 722 | lnode->parent->key[idx] = key; |
||
| 723 | } else { |
||
| 724 | btree_node_t *rsubtree; |
||
| 725 | |||
| 726 | rsubtree = lnode->subtree[lnode->keys]; |
||
| 727 | node_remove_key_and_rsubtree(lnode, key); |
||
| 728 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
| 729 | lnode->parent->key[idx] = key; |
||
| 730 | |||
| 731 | /* Fix parent link of the reconnected right subtree. */ |
||
| 732 | rsubtree->parent = rnode; |
||
| 733 | } |
||
| 734 | |||
| 735 | } |
||
| 736 | |||
| 737 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
| 738 | * |
||
| 739 | * The smallest key and its value and left subtree is rotated from the right node |
||
| 740 | * to the left. If the node is an index node, than the parent node key belonging to |
||
| 741 | * the right node takes part in the rotation. |
||
| 742 | * |
||
| 743 | * @param lnode Left sibling. |
||
| 744 | * @param rnode Right sibling. |
||
| 745 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
| 746 | */ |
||
| 747 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
| 748 | { |
||
| 1177 | jermar | 749 | btree_key_t key; |
| 1142 | jermar | 750 | |
| 751 | key = rnode->key[0]; |
||
| 752 | |||
| 753 | if (LEAF_NODE(rnode)) { |
||
| 754 | void *value; |
||
| 755 | |||
| 756 | value = rnode->value[0]; |
||
| 757 | node_remove_key_and_lsubtree(rnode, key); |
||
| 758 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
| 759 | rnode->parent->key[idx] = rnode->key[0]; |
||
| 760 | } else { |
||
| 761 | btree_node_t *lsubtree; |
||
| 762 | |||
| 763 | lsubtree = rnode->subtree[0]; |
||
| 764 | node_remove_key_and_lsubtree(rnode, key); |
||
| 765 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
| 766 | rnode->parent->key[idx] = key; |
||
| 767 | |||
| 768 | /* Fix parent link of the reconnected left subtree. */ |
||
| 769 | lsubtree->parent = lnode; |
||
| 770 | } |
||
| 771 | |||
| 772 | } |
||
| 773 | |||
| 1136 | jermar | 774 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
| 775 | * |
||
| 776 | * Left sibling of the node (if it exists) is checked for free space. |
||
| 777 | * If there is free space, the key is inserted and the smallest key of |
||
| 778 | * the node is moved there. The index node which is the parent of both |
||
| 779 | * nodes is fixed. |
||
| 780 | * |
||
| 781 | * @param node B-tree node. |
||
| 782 | * @param inskey Key to be inserted. |
||
| 783 | * @param insvalue Value to be inserted. |
||
| 784 | * @param rsubtree Right subtree of inskey. |
||
| 785 | * |
||
| 786 | * @return True if the rotation was performed, false otherwise. |
||
| 787 | */ |
||
| 1177 | jermar | 788 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
| 1136 | jermar | 789 | { |
| 790 | index_t idx; |
||
| 791 | btree_node_t *lnode; |
||
| 792 | |||
| 793 | /* |
||
| 794 | * If this is root node, the rotation can not be done. |
||
| 795 | */ |
||
| 796 | if (ROOT_NODE(node)) |
||
| 797 | return false; |
||
| 798 | |||
| 799 | idx = find_key_by_subtree(node->parent, node, true); |
||
| 800 | if ((int) idx == -1) { |
||
| 801 | /* |
||
| 802 | * If this node is the leftmost subtree of its parent, |
||
| 803 | * the rotation can not be done. |
||
| 804 | */ |
||
| 805 | return false; |
||
| 806 | } |
||
| 807 | |||
| 808 | lnode = node->parent->subtree[idx]; |
||
| 809 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
| 810 | /* |
||
| 811 | * The rotaion can be done. The left sibling has free space. |
||
| 812 | */ |
||
| 1142 | jermar | 813 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
| 814 | rotate_from_right(lnode, node, idx); |
||
| 1136 | jermar | 815 | return true; |
| 816 | } |
||
| 817 | |||
| 818 | return false; |
||
| 819 | } |
||
| 820 | |||
| 821 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
| 822 | * |
||
| 823 | * Right sibling of the node (if it exists) is checked for free space. |
||
| 824 | * If there is free space, the key is inserted and the biggest key of |
||
| 825 | * the node is moved there. The index node which is the parent of both |
||
| 826 | * nodes is fixed. |
||
| 827 | * |
||
| 828 | * @param node B-tree node. |
||
| 829 | * @param inskey Key to be inserted. |
||
| 830 | * @param insvalue Value to be inserted. |
||
| 831 | * @param rsubtree Right subtree of inskey. |
||
| 832 | * |
||
| 833 | * @return True if the rotation was performed, false otherwise. |
||
| 834 | */ |
||
| 1177 | jermar | 835 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
| 1136 | jermar | 836 | { |
| 837 | index_t idx; |
||
| 838 | btree_node_t *rnode; |
||
| 839 | |||
| 840 | /* |
||
| 841 | * If this is root node, the rotation can not be done. |
||
| 842 | */ |
||
| 843 | if (ROOT_NODE(node)) |
||
| 844 | return false; |
||
| 845 | |||
| 846 | idx = find_key_by_subtree(node->parent, node, false); |
||
| 847 | if (idx == node->parent->keys) { |
||
| 848 | /* |
||
| 849 | * If this node is the rightmost subtree of its parent, |
||
| 850 | * the rotation can not be done. |
||
| 851 | */ |
||
| 852 | return false; |
||
| 853 | } |
||
| 854 | |||
| 855 | rnode = node->parent->subtree[idx + 1]; |
||
| 856 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
| 857 | /* |
||
| 858 | * The rotaion can be done. The right sibling has free space. |
||
| 859 | */ |
||
| 1142 | jermar | 860 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
| 861 | rotate_from_left(node, rnode, idx); |
||
| 862 | return true; |
||
| 863 | } |
||
| 1136 | jermar | 864 | |
| 1142 | jermar | 865 | return false; |
| 866 | } |
||
| 1136 | jermar | 867 | |
| 1142 | jermar | 868 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
| 869 | * |
||
| 870 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
| 871 | * |
||
| 872 | * @return True if the rotation was performed, false otherwise. |
||
| 873 | */ |
||
| 874 | bool try_rotation_from_left(btree_node_t *rnode) |
||
| 875 | { |
||
| 876 | index_t idx; |
||
| 877 | btree_node_t *lnode; |
||
| 1136 | jermar | 878 | |
| 1142 | jermar | 879 | /* |
| 880 | * If this is root node, the rotation can not be done. |
||
| 881 | */ |
||
| 882 | if (ROOT_NODE(rnode)) |
||
| 883 | return false; |
||
| 884 | |||
| 885 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
| 886 | if ((int) idx == -1) { |
||
| 887 | /* |
||
| 888 | * If this node is the leftmost subtree of its parent, |
||
| 889 | * the rotation can not be done. |
||
| 890 | */ |
||
| 891 | return false; |
||
| 892 | } |
||
| 893 | |||
| 894 | lnode = rnode->parent->subtree[idx]; |
||
| 895 | if (lnode->keys > FILL_FACTOR) { |
||
| 896 | rotate_from_left(lnode, rnode, idx); |
||
| 1136 | jermar | 897 | return true; |
| 898 | } |
||
| 1142 | jermar | 899 | |
| 900 | return false; |
||
| 901 | } |
||
| 1136 | jermar | 902 | |
| 1142 | jermar | 903 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
| 904 | * |
||
| 905 | * @param rnode Node into which to add key from its right sibling or from the index node. |
||
| 906 | * |
||
| 907 | * @return True if the rotation was performed, false otherwise. |
||
| 908 | */ |
||
| 909 | bool try_rotation_from_right(btree_node_t *lnode) |
||
| 910 | { |
||
| 911 | index_t idx; |
||
| 912 | btree_node_t *rnode; |
||
| 913 | |||
| 914 | /* |
||
| 915 | * If this is root node, the rotation can not be done. |
||
| 916 | */ |
||
| 917 | if (ROOT_NODE(lnode)) |
||
| 918 | return false; |
||
| 919 | |||
| 920 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
| 921 | if (idx == lnode->parent->keys) { |
||
| 922 | /* |
||
| 923 | * If this node is the rightmost subtree of its parent, |
||
| 924 | * the rotation can not be done. |
||
| 925 | */ |
||
| 926 | return false; |
||
| 927 | } |
||
| 928 | |||
| 929 | rnode = lnode->parent->subtree[idx + 1]; |
||
| 930 | if (rnode->keys > FILL_FACTOR) { |
||
| 931 | rotate_from_right(lnode, rnode, idx); |
||
| 932 | return true; |
||
| 933 | } |
||
| 934 | |||
| 1136 | jermar | 935 | return false; |
| 936 | } |
||
| 937 | |||
| 1101 | jermar | 938 | /** Print B-tree. |
| 939 | * |
||
| 940 | * @param t Print out B-tree. |
||
| 941 | */ |
||
| 942 | void btree_print(btree_t *t) |
||
| 943 | { |
||
| 944 | int i, depth = t->root->depth; |
||
| 1144 | jermar | 945 | link_t head, *cur; |
| 946 | |||
| 947 | printf("Printing B-tree:\n"); |
||
| 1101 | jermar | 948 | list_initialize(&head); |
| 949 | list_append(&t->root->bfs_link, &head); |
||
| 950 | |||
| 951 | /* |
||
| 952 | * Use BFS search to print out the tree. |
||
| 953 | * Levels are distinguished from one another by node->depth. |
||
| 954 | */ |
||
| 955 | while (!list_empty(&head)) { |
||
| 956 | link_t *hlp; |
||
| 957 | btree_node_t *node; |
||
| 958 | |||
| 959 | hlp = head.next; |
||
| 960 | ASSERT(hlp != &head); |
||
| 961 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
| 962 | list_remove(hlp); |
||
| 963 | |||
| 964 | ASSERT(node); |
||
| 965 | |||
| 966 | if (node->depth != depth) { |
||
| 967 | printf("\n"); |
||
| 968 | depth = node->depth; |
||
| 969 | } |
||
| 970 | |||
| 971 | printf("("); |
||
| 972 | for (i = 0; i < node->keys; i++) { |
||
| 1196 | cejka | 973 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
| 1101 | jermar | 974 | if (node->depth && node->subtree[i]) { |
| 975 | list_append(&node->subtree[i]->bfs_link, &head); |
||
| 976 | } |
||
| 977 | } |
||
| 978 | if (node->depth && node->subtree[i]) { |
||
| 979 | list_append(&node->subtree[i]->bfs_link, &head); |
||
| 980 | } |
||
| 981 | printf(")"); |
||
| 982 | } |
||
| 983 | printf("\n"); |
||
| 1144 | jermar | 984 | |
| 985 | printf("Printing list of leaves:\n"); |
||
| 986 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
| 987 | btree_node_t *node; |
||
| 988 | |||
| 989 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
| 990 | |||
| 991 | ASSERT(node); |
||
| 992 | |||
| 993 | printf("("); |
||
| 994 | for (i = 0; i < node->keys; i++) |
||
| 1196 | cejka | 995 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
| 1144 | jermar | 996 | printf(")"); |
| 997 | } |
||
| 998 | printf("\n"); |
||
| 1101 | jermar | 999 | } |
| 1702 | cejka | 1000 | |
| 1001 | /** @} |
||
| 1002 | */ |
||
| 1003 |