Rev 1248 | Rev 1702 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1101 | jermar | 1 | /* |
| 2 | * Copyright (C) 2006 Jakub Jermar |
||
| 3 | * All rights reserved. |
||
| 4 | * |
||
| 5 | * Redistribution and use in source and binary forms, with or without |
||
| 6 | * modification, are permitted provided that the following conditions |
||
| 7 | * are met: |
||
| 8 | * |
||
| 9 | * - Redistributions of source code must retain the above copyright |
||
| 10 | * notice, this list of conditions and the following disclaimer. |
||
| 11 | * - Redistributions in binary form must reproduce the above copyright |
||
| 12 | * notice, this list of conditions and the following disclaimer in the |
||
| 13 | * documentation and/or other materials provided with the distribution. |
||
| 14 | * - The name of the author may not be used to endorse or promote products |
||
| 15 | * derived from this software without specific prior written permission. |
||
| 16 | * |
||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | */ |
||
| 28 | |||
| 1248 | jermar | 29 | /** |
| 30 | * @file btree.c |
||
| 31 | * @brief B+tree implementation. |
||
| 1101 | jermar | 32 | * |
| 1248 | jermar | 33 | * This file implements B+tree type and operations. |
| 34 | * |
||
| 35 | * The B+tree has the following properties: |
||
| 36 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
| 37 | * @li values (i.e. pointers to values) are stored only in leaves |
||
| 38 | * @li leaves are linked in a list |
||
| 39 | * |
||
| 1134 | jermar | 40 | * Be carefull when using these trees. They need to allocate |
| 41 | * and deallocate memory for their index nodes and as such |
||
| 42 | * can sleep. |
||
| 1101 | jermar | 43 | */ |
| 44 | |||
| 45 | #include <adt/btree.h> |
||
| 46 | #include <adt/list.h> |
||
| 47 | #include <mm/slab.h> |
||
| 48 | #include <debug.h> |
||
| 49 | #include <panic.h> |
||
| 50 | #include <typedefs.h> |
||
| 51 | #include <print.h> |
||
| 52 | |||
| 1483 | jermar | 53 | static void btree_destroy_subtree(btree_node_t *root); |
| 1177 | jermar | 54 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
| 55 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
| 1101 | jermar | 56 | static void node_initialize(btree_node_t *node); |
| 1177 | jermar | 57 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
| 58 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
| 59 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
| 60 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
| 61 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
| 1142 | jermar | 62 | static btree_node_t *node_combine(btree_node_t *node); |
| 1136 | jermar | 63 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
| 1142 | jermar | 64 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
| 65 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
| 1177 | jermar | 66 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
| 67 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
| 1142 | jermar | 68 | static bool try_rotation_from_left(btree_node_t *rnode); |
| 69 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
| 1101 | jermar | 70 | |
| 71 | #define ROOT_NODE(n) (!(n)->parent) |
||
| 72 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
| 73 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
| 74 | |||
| 1140 | jermar | 75 | #define FILL_FACTOR ((BTREE_M-1)/2) |
| 76 | |||
| 1101 | jermar | 77 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
| 78 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
| 79 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
| 80 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
| 81 | |||
| 1164 | jermar | 82 | static slab_cache_t *btree_node_slab; |
| 83 | |||
| 84 | /** Initialize B-trees. */ |
||
| 85 | void btree_init(void) |
||
| 86 | { |
||
| 87 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
| 88 | } |
||
| 89 | |||
| 1101 | jermar | 90 | /** Create empty B-tree. |
| 91 | * |
||
| 92 | * @param t B-tree. |
||
| 93 | */ |
||
| 94 | void btree_create(btree_t *t) |
||
| 95 | { |
||
| 96 | list_initialize(&t->leaf_head); |
||
| 1164 | jermar | 97 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 98 | node_initialize(t->root); |
| 99 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
| 100 | } |
||
| 101 | |||
| 102 | /** Destroy empty B-tree. */ |
||
| 103 | void btree_destroy(btree_t *t) |
||
| 104 | { |
||
| 1483 | jermar | 105 | btree_destroy_subtree(t->root); |
| 1101 | jermar | 106 | } |
| 107 | |||
| 108 | /** Insert key-value pair into B-tree. |
||
| 109 | * |
||
| 110 | * @param t B-tree. |
||
| 111 | * @param key Key to be inserted. |
||
| 112 | * @param value Value to be inserted. |
||
| 113 | * @param leaf_node Leaf node where the insertion should begin. |
||
| 114 | */ |
||
| 1177 | jermar | 115 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
| 1101 | jermar | 116 | { |
| 117 | btree_node_t *lnode; |
||
| 118 | |||
| 119 | ASSERT(value); |
||
| 120 | |||
| 121 | lnode = leaf_node; |
||
| 122 | if (!lnode) { |
||
| 123 | if (btree_search(t, key, &lnode)) { |
||
| 1221 | decky | 124 | panic("B-tree %p already contains key %d\n", t, key); |
| 1101 | jermar | 125 | } |
| 126 | } |
||
| 127 | |||
| 128 | _btree_insert(t, key, value, NULL, lnode); |
||
| 129 | } |
||
| 130 | |||
| 1483 | jermar | 131 | /** Destroy subtree rooted in a node. |
| 132 | * |
||
| 133 | * @param root Root of the subtree. |
||
| 134 | */ |
||
| 135 | void btree_destroy_subtree(btree_node_t *root) |
||
| 136 | { |
||
| 137 | int i; |
||
| 138 | |||
| 139 | if (root->keys) { |
||
| 140 | for (i = 0; i < root->keys + 1; i++) { |
||
| 141 | if (root->subtree[i]) |
||
| 142 | btree_destroy_subtree(root->subtree[i]); |
||
| 143 | } |
||
| 144 | } |
||
| 145 | slab_free(btree_node_slab, root); |
||
| 146 | } |
||
| 147 | |||
| 1101 | jermar | 148 | /** Recursively insert into B-tree. |
| 149 | * |
||
| 150 | * @param t B-tree. |
||
| 151 | * @param key Key to be inserted. |
||
| 152 | * @param value Value to be inserted. |
||
| 153 | * @param rsubtree Right subtree of the inserted key. |
||
| 154 | * @param node Start inserting into this node. |
||
| 155 | */ |
||
| 1177 | jermar | 156 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
| 1101 | jermar | 157 | { |
| 158 | if (node->keys < BTREE_MAX_KEYS) { |
||
| 159 | /* |
||
| 160 | * Node conatins enough space, the key can be stored immediately. |
||
| 161 | */ |
||
| 1142 | jermar | 162 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
| 163 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
| 1136 | jermar | 164 | /* |
| 165 | * The key-value-rsubtree triplet has been inserted because |
||
| 166 | * some keys could have been moved to the left sibling. |
||
| 167 | */ |
||
| 1142 | jermar | 168 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
| 1136 | jermar | 169 | /* |
| 170 | * The key-value-rsubtree triplet has been inserted because |
||
| 171 | * some keys could have been moved to the right sibling. |
||
| 172 | */ |
||
| 1101 | jermar | 173 | } else { |
| 174 | btree_node_t *rnode; |
||
| 1177 | jermar | 175 | btree_key_t median; |
| 1101 | jermar | 176 | |
| 177 | /* |
||
| 1136 | jermar | 178 | * Node is full and both siblings (if both exist) are full too. |
| 179 | * Split the node and insert the smallest key from the node containing |
||
| 180 | * bigger keys (i.e. the new node) into its parent. |
||
| 1101 | jermar | 181 | */ |
| 182 | |||
| 183 | rnode = node_split(node, key, value, rsubtree, &median); |
||
| 184 | |||
| 185 | if (LEAF_NODE(node)) { |
||
| 1144 | jermar | 186 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
| 1101 | jermar | 187 | } |
| 188 | |||
| 189 | if (ROOT_NODE(node)) { |
||
| 190 | /* |
||
| 191 | * We split the root node. Create new root. |
||
| 192 | */ |
||
| 1164 | jermar | 193 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 194 | node->parent = t->root; |
| 195 | rnode->parent = t->root; |
||
| 196 | node_initialize(t->root); |
||
| 197 | |||
| 198 | /* |
||
| 199 | * Left-hand side subtree will be the old root (i.e. node). |
||
| 200 | * Right-hand side subtree will be rnode. |
||
| 201 | */ |
||
| 202 | t->root->subtree[0] = node; |
||
| 203 | |||
| 204 | t->root->depth = node->depth + 1; |
||
| 205 | } |
||
| 206 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
| 207 | } |
||
| 208 | |||
| 209 | } |
||
| 210 | |||
| 1140 | jermar | 211 | /** Remove B-tree node. |
| 212 | * |
||
| 213 | * @param B-tree. |
||
| 214 | * @param key Key to be removed from the B-tree along with its associated value. |
||
| 215 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
| 216 | */ |
||
| 1177 | jermar | 217 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
| 1101 | jermar | 218 | { |
| 1140 | jermar | 219 | btree_node_t *lnode; |
| 220 | |||
| 221 | lnode = leaf_node; |
||
| 222 | if (!lnode) { |
||
| 223 | if (!btree_search(t, key, &lnode)) { |
||
| 1221 | decky | 224 | panic("B-tree %p does not contain key %d\n", t, key); |
| 1140 | jermar | 225 | } |
| 226 | } |
||
| 227 | |||
| 1142 | jermar | 228 | _btree_remove(t, key, lnode); |
| 229 | } |
||
| 1140 | jermar | 230 | |
| 1142 | jermar | 231 | /** Recursively remove B-tree node. |
| 232 | * |
||
| 233 | * @param B-tree. |
||
| 234 | * @param key Key to be removed from the B-tree along with its associated value. |
||
| 235 | * @param node Node where the key being removed resides. |
||
| 236 | */ |
||
| 1177 | jermar | 237 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
| 1142 | jermar | 238 | { |
| 239 | if (ROOT_NODE(node)) { |
||
| 240 | if (node->keys == 1 && node->subtree[0]) { |
||
| 241 | /* |
||
| 242 | * Free the current root and set new root. |
||
| 243 | */ |
||
| 244 | t->root = node->subtree[0]; |
||
| 245 | t->root->parent = NULL; |
||
| 1164 | jermar | 246 | slab_free(btree_node_slab, node); |
| 1142 | jermar | 247 | } else { |
| 248 | /* |
||
| 249 | * Remove the key from the root node. |
||
| 250 | * Note that the right subtree is removed because when |
||
| 251 | * combining two nodes, the left-side sibling is preserved |
||
| 252 | * and the right-side sibling is freed. |
||
| 253 | */ |
||
| 254 | node_remove_key_and_rsubtree(node, key); |
||
| 255 | } |
||
| 256 | return; |
||
| 257 | } |
||
| 258 | |||
| 259 | if (node->keys <= FILL_FACTOR) { |
||
| 260 | /* |
||
| 261 | * If the node is below the fill factor, |
||
| 262 | * try to borrow keys from left or right sibling. |
||
| 263 | */ |
||
| 264 | if (!try_rotation_from_left(node)) |
||
| 265 | try_rotation_from_right(node); |
||
| 266 | } |
||
| 267 | |||
| 268 | if (node->keys > FILL_FACTOR) { |
||
| 269 | int i; |
||
| 270 | |||
| 271 | /* |
||
| 272 | * The key can be immediatelly removed. |
||
| 273 | * |
||
| 274 | * Note that the right subtree is removed because when |
||
| 275 | * combining two nodes, the left-side sibling is preserved |
||
| 276 | * and the right-side sibling is freed. |
||
| 277 | */ |
||
| 278 | node_remove_key_and_rsubtree(node, key); |
||
| 279 | for (i = 0; i < node->parent->keys; i++) { |
||
| 280 | if (node->parent->key[i] == key) |
||
| 281 | node->parent->key[i] = node->key[0]; |
||
| 282 | } |
||
| 283 | |||
| 284 | } else { |
||
| 285 | index_t idx; |
||
| 286 | btree_node_t *rnode, *parent; |
||
| 287 | |||
| 288 | /* |
||
| 289 | * The node is below the fill factor as well as its left and right sibling. |
||
| 290 | * Resort to combining the node with one of its siblings. |
||
| 291 | * The node which is on the left is preserved and the node on the right is |
||
| 292 | * freed. |
||
| 293 | */ |
||
| 294 | parent = node->parent; |
||
| 295 | node_remove_key_and_rsubtree(node, key); |
||
| 296 | rnode = node_combine(node); |
||
| 297 | if (LEAF_NODE(rnode)) |
||
| 298 | list_remove(&rnode->leaf_link); |
||
| 299 | idx = find_key_by_subtree(parent, rnode, true); |
||
| 300 | ASSERT((int) idx != -1); |
||
| 1164 | jermar | 301 | slab_free(btree_node_slab, rnode); |
| 1142 | jermar | 302 | _btree_remove(t, parent->key[idx], parent); |
| 303 | } |
||
| 1101 | jermar | 304 | } |
| 305 | |||
| 306 | /** Search key in a B-tree. |
||
| 307 | * |
||
| 308 | * @param t B-tree. |
||
| 309 | * @param key Key to be searched. |
||
| 310 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
| 311 | * |
||
| 312 | * @return Pointer to value or NULL if there is no such key. |
||
| 313 | */ |
||
| 1177 | jermar | 314 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
| 1101 | jermar | 315 | { |
| 316 | btree_node_t *cur, *next; |
||
| 317 | |||
| 318 | /* |
||
| 1134 | jermar | 319 | * Iteratively descend to the leaf that can contain the searched key. |
| 1101 | jermar | 320 | */ |
| 321 | for (cur = t->root; cur; cur = next) { |
||
| 1134 | jermar | 322 | |
| 1101 | jermar | 323 | /* Last iteration will set this with proper leaf node address. */ |
| 324 | *leaf_node = cur; |
||
| 1134 | jermar | 325 | |
| 326 | /* |
||
| 327 | * The key can be in the leftmost subtree. |
||
| 328 | * Test it separately. |
||
| 329 | */ |
||
| 330 | if (key < cur->key[0]) { |
||
| 331 | next = cur->subtree[0]; |
||
| 332 | continue; |
||
| 333 | } else { |
||
| 334 | void *val; |
||
| 335 | int i; |
||
| 336 | |||
| 337 | /* |
||
| 338 | * Now if the key is smaller than cur->key[i] |
||
| 339 | * it can only mean that the value is in cur->subtree[i] |
||
| 340 | * or it is not in the tree at all. |
||
| 341 | */ |
||
| 342 | for (i = 1; i < cur->keys; i++) { |
||
| 343 | if (key < cur->key[i]) { |
||
| 344 | next = cur->subtree[i]; |
||
| 345 | val = cur->value[i - 1]; |
||
| 346 | |||
| 347 | if (LEAF_NODE(cur)) |
||
| 348 | return key == cur->key[i - 1] ? val : NULL; |
||
| 349 | |||
| 350 | goto descend; |
||
| 351 | } |
||
| 1101 | jermar | 352 | } |
| 1134 | jermar | 353 | |
| 354 | /* |
||
| 355 | * Last possibility is that the key is in the rightmost subtree. |
||
| 356 | */ |
||
| 357 | next = cur->subtree[i]; |
||
| 358 | val = cur->value[i - 1]; |
||
| 359 | if (LEAF_NODE(cur)) |
||
| 360 | return key == cur->key[i - 1] ? val : NULL; |
||
| 1101 | jermar | 361 | } |
| 1134 | jermar | 362 | descend: |
| 363 | ; |
||
| 1101 | jermar | 364 | } |
| 365 | |||
| 366 | /* |
||
| 1134 | jermar | 367 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
| 1101 | jermar | 368 | */ |
| 369 | return NULL; |
||
| 370 | } |
||
| 371 | |||
| 1150 | jermar | 372 | /** Return pointer to B-tree leaf node's left neighbour. |
| 1147 | jermar | 373 | * |
| 374 | * @param t B-tree. |
||
| 1150 | jermar | 375 | * @param node Node whose left neighbour will be returned. |
| 1147 | jermar | 376 | * |
| 1150 | jermar | 377 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
| 1147 | jermar | 378 | */ |
| 1150 | jermar | 379 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
| 1147 | jermar | 380 | { |
| 381 | ASSERT(LEAF_NODE(node)); |
||
| 382 | if (node->leaf_link.prev != &t->leaf_head) |
||
| 383 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
| 384 | else |
||
| 385 | return NULL; |
||
| 386 | } |
||
| 387 | |||
| 1150 | jermar | 388 | /** Return pointer to B-tree leaf node's right neighbour. |
| 1147 | jermar | 389 | * |
| 390 | * @param t B-tree. |
||
| 1150 | jermar | 391 | * @param node Node whose right neighbour will be returned. |
| 1147 | jermar | 392 | * |
| 1150 | jermar | 393 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
| 1147 | jermar | 394 | */ |
| 1150 | jermar | 395 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
| 1147 | jermar | 396 | { |
| 397 | ASSERT(LEAF_NODE(node)); |
||
| 398 | if (node->leaf_link.next != &t->leaf_head) |
||
| 399 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
| 400 | else |
||
| 401 | return NULL; |
||
| 402 | } |
||
| 403 | |||
| 1101 | jermar | 404 | /** Initialize B-tree node. |
| 405 | * |
||
| 406 | * @param node B-tree node. |
||
| 407 | */ |
||
| 408 | void node_initialize(btree_node_t *node) |
||
| 409 | { |
||
| 410 | int i; |
||
| 411 | |||
| 412 | node->keys = 0; |
||
| 413 | |||
| 414 | /* Clean also space for the extra key. */ |
||
| 415 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
| 416 | node->key[i] = 0; |
||
| 417 | node->value[i] = NULL; |
||
| 418 | node->subtree[i] = NULL; |
||
| 419 | } |
||
| 420 | node->subtree[i] = NULL; |
||
| 421 | |||
| 422 | node->parent = NULL; |
||
| 423 | |||
| 424 | link_initialize(&node->leaf_link); |
||
| 425 | |||
| 426 | link_initialize(&node->bfs_link); |
||
| 427 | node->depth = 0; |
||
| 428 | } |
||
| 429 | |||
| 1136 | jermar | 430 | /** Insert key-value-lsubtree triplet into B-tree node. |
| 1101 | jermar | 431 | * |
| 432 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
| 1136 | jermar | 433 | * This feature is used during insert by right rotation. |
| 434 | * |
||
| 435 | * @param node B-tree node into wich the new key is to be inserted. |
||
| 436 | * @param key The key to be inserted. |
||
| 437 | * @param value Pointer to value to be inserted. |
||
| 438 | * @param lsubtree Pointer to the left subtree. |
||
| 439 | */ |
||
| 1177 | jermar | 440 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
| 1136 | jermar | 441 | { |
| 442 | int i; |
||
| 443 | |||
| 444 | for (i = 0; i < node->keys; i++) { |
||
| 445 | if (key < node->key[i]) { |
||
| 446 | int j; |
||
| 447 | |||
| 448 | for (j = node->keys; j > i; j--) { |
||
| 449 | node->key[j] = node->key[j - 1]; |
||
| 450 | node->value[j] = node->value[j - 1]; |
||
| 451 | node->subtree[j + 1] = node->subtree[j]; |
||
| 452 | } |
||
| 453 | node->subtree[j + 1] = node->subtree[j]; |
||
| 454 | break; |
||
| 455 | } |
||
| 456 | } |
||
| 457 | node->key[i] = key; |
||
| 458 | node->value[i] = value; |
||
| 459 | node->subtree[i] = lsubtree; |
||
| 460 | |||
| 461 | node->keys++; |
||
| 462 | } |
||
| 463 | |||
| 464 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
| 465 | * |
||
| 466 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
| 1101 | jermar | 467 | * This feature is used during splitting the node when the |
| 1136 | jermar | 468 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
| 469 | * also makes use of this feature. |
||
| 1101 | jermar | 470 | * |
| 471 | * @param node B-tree node into wich the new key is to be inserted. |
||
| 472 | * @param key The key to be inserted. |
||
| 473 | * @param value Pointer to value to be inserted. |
||
| 474 | * @param rsubtree Pointer to the right subtree. |
||
| 475 | */ |
||
| 1177 | jermar | 476 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
| 1101 | jermar | 477 | { |
| 478 | int i; |
||
| 479 | |||
| 480 | for (i = 0; i < node->keys; i++) { |
||
| 481 | if (key < node->key[i]) { |
||
| 482 | int j; |
||
| 483 | |||
| 484 | for (j = node->keys; j > i; j--) { |
||
| 485 | node->key[j] = node->key[j - 1]; |
||
| 486 | node->value[j] = node->value[j - 1]; |
||
| 487 | node->subtree[j + 1] = node->subtree[j]; |
||
| 488 | } |
||
| 489 | break; |
||
| 490 | } |
||
| 491 | } |
||
| 492 | node->key[i] = key; |
||
| 493 | node->value[i] = value; |
||
| 494 | node->subtree[i + 1] = rsubtree; |
||
| 495 | |||
| 496 | node->keys++; |
||
| 497 | } |
||
| 498 | |||
| 1144 | jermar | 499 | /** Remove key and its left subtree pointer from B-tree node. |
| 500 | * |
||
| 501 | * Remove the key and eliminate gaps in node->key array. |
||
| 502 | * Note that the value pointer and the left subtree pointer |
||
| 503 | * is removed from the node as well. |
||
| 504 | * |
||
| 505 | * @param node B-tree node. |
||
| 506 | * @param key Key to be removed. |
||
| 507 | */ |
||
| 1177 | jermar | 508 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
| 1144 | jermar | 509 | { |
| 510 | int i, j; |
||
| 511 | |||
| 512 | for (i = 0; i < node->keys; i++) { |
||
| 513 | if (key == node->key[i]) { |
||
| 514 | for (j = i + 1; j < node->keys; j++) { |
||
| 515 | node->key[j - 1] = node->key[j]; |
||
| 516 | node->value[j - 1] = node->value[j]; |
||
| 517 | node->subtree[j - 1] = node->subtree[j]; |
||
| 518 | } |
||
| 519 | node->subtree[j - 1] = node->subtree[j]; |
||
| 520 | node->keys--; |
||
| 521 | return; |
||
| 522 | } |
||
| 523 | } |
||
| 1221 | decky | 524 | panic("node %p does not contain key %d\n", node, key); |
| 1144 | jermar | 525 | } |
| 526 | |||
| 527 | /** Remove key and its right subtree pointer from B-tree node. |
||
| 528 | * |
||
| 529 | * Remove the key and eliminate gaps in node->key array. |
||
| 530 | * Note that the value pointer and the right subtree pointer |
||
| 531 | * is removed from the node as well. |
||
| 532 | * |
||
| 533 | * @param node B-tree node. |
||
| 534 | * @param key Key to be removed. |
||
| 535 | */ |
||
| 1177 | jermar | 536 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
| 1144 | jermar | 537 | { |
| 538 | int i, j; |
||
| 539 | |||
| 540 | for (i = 0; i < node->keys; i++) { |
||
| 541 | if (key == node->key[i]) { |
||
| 542 | for (j = i + 1; j < node->keys; j++) { |
||
| 543 | node->key[j - 1] = node->key[j]; |
||
| 544 | node->value[j - 1] = node->value[j]; |
||
| 545 | node->subtree[j] = node->subtree[j + 1]; |
||
| 546 | } |
||
| 547 | node->keys--; |
||
| 548 | return; |
||
| 549 | } |
||
| 550 | } |
||
| 1221 | decky | 551 | panic("node %p does not contain key %d\n", node, key); |
| 1144 | jermar | 552 | } |
| 553 | |||
| 1134 | jermar | 554 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
| 1101 | jermar | 555 | * |
| 556 | * This function will split a node and return pointer to a newly created |
||
| 1134 | jermar | 557 | * node containing keys greater than or equal to the greater of medians |
| 558 | * (or median) of the old keys and the newly added key. It will also write |
||
| 559 | * the median key to a memory address supplied by the caller. |
||
| 1101 | jermar | 560 | * |
| 1134 | jermar | 561 | * If the node being split is an index node, the median will not be |
| 562 | * included in the new node. If the node is a leaf node, |
||
| 563 | * the median will be copied there. |
||
| 1101 | jermar | 564 | * |
| 565 | * @param node B-tree node wich is going to be split. |
||
| 566 | * @param key The key to be inserted. |
||
| 567 | * @param value Pointer to the value to be inserted. |
||
| 568 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
| 569 | * @param median Address in memory, where the median key will be stored. |
||
| 570 | * |
||
| 571 | * @return Newly created right sibling of node. |
||
| 572 | */ |
||
| 1177 | jermar | 573 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
| 1101 | jermar | 574 | { |
| 575 | btree_node_t *rnode; |
||
| 576 | int i, j; |
||
| 577 | |||
| 578 | ASSERT(median); |
||
| 579 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
| 1136 | jermar | 580 | |
| 1101 | jermar | 581 | /* |
| 582 | * Use the extra space to store the extra node. |
||
| 583 | */ |
||
| 1142 | jermar | 584 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
| 1101 | jermar | 585 | |
| 586 | /* |
||
| 587 | * Compute median of keys. |
||
| 588 | */ |
||
| 1134 | jermar | 589 | *median = MEDIAN_HIGH(node); |
| 1101 | jermar | 590 | |
| 1134 | jermar | 591 | /* |
| 592 | * Allocate and initialize new right sibling. |
||
| 593 | */ |
||
| 1164 | jermar | 594 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 595 | node_initialize(rnode); |
| 596 | rnode->parent = node->parent; |
||
| 597 | rnode->depth = node->depth; |
||
| 598 | |||
| 599 | /* |
||
| 600 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
| 1134 | jermar | 601 | * If this is an index node, do not copy the median. |
| 1101 | jermar | 602 | */ |
| 1134 | jermar | 603 | i = (int) INDEX_NODE(node); |
| 604 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
| 1101 | jermar | 605 | rnode->key[j] = node->key[i]; |
| 606 | rnode->value[j] = node->value[i]; |
||
| 607 | rnode->subtree[j] = node->subtree[i]; |
||
| 608 | |||
| 609 | /* |
||
| 610 | * Fix parent links in subtrees. |
||
| 611 | */ |
||
| 612 | if (rnode->subtree[j]) |
||
| 613 | rnode->subtree[j]->parent = rnode; |
||
| 614 | |||
| 615 | } |
||
| 616 | rnode->subtree[j] = node->subtree[i]; |
||
| 617 | if (rnode->subtree[j]) |
||
| 618 | rnode->subtree[j]->parent = rnode; |
||
| 1134 | jermar | 619 | |
| 620 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
| 621 | node->keys /= 2; /* Shrink the old node. */ |
||
| 1101 | jermar | 622 | |
| 623 | return rnode; |
||
| 624 | } |
||
| 625 | |||
| 1142 | jermar | 626 | /** Combine node with any of its siblings. |
| 627 | * |
||
| 628 | * The siblings are required to be below the fill factor. |
||
| 629 | * |
||
| 630 | * @param node Node to combine with one of its siblings. |
||
| 631 | * |
||
| 632 | * @return Pointer to the rightmost of the two nodes. |
||
| 633 | */ |
||
| 634 | btree_node_t *node_combine(btree_node_t *node) |
||
| 635 | { |
||
| 636 | index_t idx; |
||
| 637 | btree_node_t *rnode; |
||
| 638 | int i; |
||
| 639 | |||
| 640 | ASSERT(!ROOT_NODE(node)); |
||
| 641 | |||
| 642 | idx = find_key_by_subtree(node->parent, node, false); |
||
| 643 | if (idx == node->parent->keys) { |
||
| 644 | /* |
||
| 645 | * Rightmost subtree of its parent, combine with the left sibling. |
||
| 646 | */ |
||
| 647 | idx--; |
||
| 648 | rnode = node; |
||
| 649 | node = node->parent->subtree[idx]; |
||
| 650 | } else { |
||
| 651 | rnode = node->parent->subtree[idx + 1]; |
||
| 652 | } |
||
| 653 | |||
| 654 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
| 655 | if (INDEX_NODE(node)) |
||
| 656 | node->key[node->keys++] = node->parent->key[idx]; |
||
| 657 | |||
| 658 | /* Copy the key-value-subtree triplets from the right node. */ |
||
| 659 | for (i = 0; i < rnode->keys; i++) { |
||
| 660 | node->key[node->keys + i] = rnode->key[i]; |
||
| 661 | node->value[node->keys + i] = rnode->value[i]; |
||
| 662 | if (INDEX_NODE(node)) { |
||
| 663 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
| 664 | rnode->subtree[i]->parent = node; |
||
| 665 | } |
||
| 666 | } |
||
| 667 | if (INDEX_NODE(node)) { |
||
| 668 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
| 669 | rnode->subtree[i]->parent = node; |
||
| 670 | } |
||
| 671 | |||
| 672 | node->keys += rnode->keys; |
||
| 673 | |||
| 674 | return rnode; |
||
| 675 | } |
||
| 676 | |||
| 1136 | jermar | 677 | /** Find key by its left or right subtree. |
| 678 | * |
||
| 679 | * @param node B-tree node. |
||
| 680 | * @param subtree Left or right subtree of a key found in node. |
||
| 681 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
| 682 | * |
||
| 683 | * @return Index of the key associated with the subtree. |
||
| 684 | */ |
||
| 685 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
| 686 | { |
||
| 687 | int i; |
||
| 688 | |||
| 689 | for (i = 0; i < node->keys + 1; i++) { |
||
| 690 | if (subtree == node->subtree[i]) |
||
| 691 | return i - (int) (right != false); |
||
| 692 | } |
||
| 1221 | decky | 693 | panic("node %p does not contain subtree %p\n", node, subtree); |
| 1136 | jermar | 694 | } |
| 695 | |||
| 1142 | jermar | 696 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
| 697 | * |
||
| 698 | * The biggest key and its value and right subtree is rotated from the left node |
||
| 699 | * to the right. If the node is an index node, than the parent node key belonging to |
||
| 700 | * the left node takes part in the rotation. |
||
| 701 | * |
||
| 702 | * @param lnode Left sibling. |
||
| 703 | * @param rnode Right sibling. |
||
| 704 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
| 705 | */ |
||
| 706 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
| 707 | { |
||
| 1177 | jermar | 708 | btree_key_t key; |
| 1142 | jermar | 709 | |
| 710 | key = lnode->key[lnode->keys - 1]; |
||
| 711 | |||
| 712 | if (LEAF_NODE(lnode)) { |
||
| 713 | void *value; |
||
| 714 | |||
| 715 | value = lnode->value[lnode->keys - 1]; |
||
| 716 | node_remove_key_and_rsubtree(lnode, key); |
||
| 717 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
| 718 | lnode->parent->key[idx] = key; |
||
| 719 | } else { |
||
| 720 | btree_node_t *rsubtree; |
||
| 721 | |||
| 722 | rsubtree = lnode->subtree[lnode->keys]; |
||
| 723 | node_remove_key_and_rsubtree(lnode, key); |
||
| 724 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
| 725 | lnode->parent->key[idx] = key; |
||
| 726 | |||
| 727 | /* Fix parent link of the reconnected right subtree. */ |
||
| 728 | rsubtree->parent = rnode; |
||
| 729 | } |
||
| 730 | |||
| 731 | } |
||
| 732 | |||
| 733 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
| 734 | * |
||
| 735 | * The smallest key and its value and left subtree is rotated from the right node |
||
| 736 | * to the left. If the node is an index node, than the parent node key belonging to |
||
| 737 | * the right node takes part in the rotation. |
||
| 738 | * |
||
| 739 | * @param lnode Left sibling. |
||
| 740 | * @param rnode Right sibling. |
||
| 741 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
| 742 | */ |
||
| 743 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
| 744 | { |
||
| 1177 | jermar | 745 | btree_key_t key; |
| 1142 | jermar | 746 | |
| 747 | key = rnode->key[0]; |
||
| 748 | |||
| 749 | if (LEAF_NODE(rnode)) { |
||
| 750 | void *value; |
||
| 751 | |||
| 752 | value = rnode->value[0]; |
||
| 753 | node_remove_key_and_lsubtree(rnode, key); |
||
| 754 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
| 755 | rnode->parent->key[idx] = rnode->key[0]; |
||
| 756 | } else { |
||
| 757 | btree_node_t *lsubtree; |
||
| 758 | |||
| 759 | lsubtree = rnode->subtree[0]; |
||
| 760 | node_remove_key_and_lsubtree(rnode, key); |
||
| 761 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
| 762 | rnode->parent->key[idx] = key; |
||
| 763 | |||
| 764 | /* Fix parent link of the reconnected left subtree. */ |
||
| 765 | lsubtree->parent = lnode; |
||
| 766 | } |
||
| 767 | |||
| 768 | } |
||
| 769 | |||
| 1136 | jermar | 770 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
| 771 | * |
||
| 772 | * Left sibling of the node (if it exists) is checked for free space. |
||
| 773 | * If there is free space, the key is inserted and the smallest key of |
||
| 774 | * the node is moved there. The index node which is the parent of both |
||
| 775 | * nodes is fixed. |
||
| 776 | * |
||
| 777 | * @param node B-tree node. |
||
| 778 | * @param inskey Key to be inserted. |
||
| 779 | * @param insvalue Value to be inserted. |
||
| 780 | * @param rsubtree Right subtree of inskey. |
||
| 781 | * |
||
| 782 | * @return True if the rotation was performed, false otherwise. |
||
| 783 | */ |
||
| 1177 | jermar | 784 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
| 1136 | jermar | 785 | { |
| 786 | index_t idx; |
||
| 787 | btree_node_t *lnode; |
||
| 788 | |||
| 789 | /* |
||
| 790 | * If this is root node, the rotation can not be done. |
||
| 791 | */ |
||
| 792 | if (ROOT_NODE(node)) |
||
| 793 | return false; |
||
| 794 | |||
| 795 | idx = find_key_by_subtree(node->parent, node, true); |
||
| 796 | if ((int) idx == -1) { |
||
| 797 | /* |
||
| 798 | * If this node is the leftmost subtree of its parent, |
||
| 799 | * the rotation can not be done. |
||
| 800 | */ |
||
| 801 | return false; |
||
| 802 | } |
||
| 803 | |||
| 804 | lnode = node->parent->subtree[idx]; |
||
| 805 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
| 806 | /* |
||
| 807 | * The rotaion can be done. The left sibling has free space. |
||
| 808 | */ |
||
| 1142 | jermar | 809 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
| 810 | rotate_from_right(lnode, node, idx); |
||
| 1136 | jermar | 811 | return true; |
| 812 | } |
||
| 813 | |||
| 814 | return false; |
||
| 815 | } |
||
| 816 | |||
| 817 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
| 818 | * |
||
| 819 | * Right sibling of the node (if it exists) is checked for free space. |
||
| 820 | * If there is free space, the key is inserted and the biggest key of |
||
| 821 | * the node is moved there. The index node which is the parent of both |
||
| 822 | * nodes is fixed. |
||
| 823 | * |
||
| 824 | * @param node B-tree node. |
||
| 825 | * @param inskey Key to be inserted. |
||
| 826 | * @param insvalue Value to be inserted. |
||
| 827 | * @param rsubtree Right subtree of inskey. |
||
| 828 | * |
||
| 829 | * @return True if the rotation was performed, false otherwise. |
||
| 830 | */ |
||
| 1177 | jermar | 831 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
| 1136 | jermar | 832 | { |
| 833 | index_t idx; |
||
| 834 | btree_node_t *rnode; |
||
| 835 | |||
| 836 | /* |
||
| 837 | * If this is root node, the rotation can not be done. |
||
| 838 | */ |
||
| 839 | if (ROOT_NODE(node)) |
||
| 840 | return false; |
||
| 841 | |||
| 842 | idx = find_key_by_subtree(node->parent, node, false); |
||
| 843 | if (idx == node->parent->keys) { |
||
| 844 | /* |
||
| 845 | * If this node is the rightmost subtree of its parent, |
||
| 846 | * the rotation can not be done. |
||
| 847 | */ |
||
| 848 | return false; |
||
| 849 | } |
||
| 850 | |||
| 851 | rnode = node->parent->subtree[idx + 1]; |
||
| 852 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
| 853 | /* |
||
| 854 | * The rotaion can be done. The right sibling has free space. |
||
| 855 | */ |
||
| 1142 | jermar | 856 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
| 857 | rotate_from_left(node, rnode, idx); |
||
| 858 | return true; |
||
| 859 | } |
||
| 1136 | jermar | 860 | |
| 1142 | jermar | 861 | return false; |
| 862 | } |
||
| 1136 | jermar | 863 | |
| 1142 | jermar | 864 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
| 865 | * |
||
| 866 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
| 867 | * |
||
| 868 | * @return True if the rotation was performed, false otherwise. |
||
| 869 | */ |
||
| 870 | bool try_rotation_from_left(btree_node_t *rnode) |
||
| 871 | { |
||
| 872 | index_t idx; |
||
| 873 | btree_node_t *lnode; |
||
| 1136 | jermar | 874 | |
| 1142 | jermar | 875 | /* |
| 876 | * If this is root node, the rotation can not be done. |
||
| 877 | */ |
||
| 878 | if (ROOT_NODE(rnode)) |
||
| 879 | return false; |
||
| 880 | |||
| 881 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
| 882 | if ((int) idx == -1) { |
||
| 883 | /* |
||
| 884 | * If this node is the leftmost subtree of its parent, |
||
| 885 | * the rotation can not be done. |
||
| 886 | */ |
||
| 887 | return false; |
||
| 888 | } |
||
| 889 | |||
| 890 | lnode = rnode->parent->subtree[idx]; |
||
| 891 | if (lnode->keys > FILL_FACTOR) { |
||
| 892 | rotate_from_left(lnode, rnode, idx); |
||
| 1136 | jermar | 893 | return true; |
| 894 | } |
||
| 1142 | jermar | 895 | |
| 896 | return false; |
||
| 897 | } |
||
| 1136 | jermar | 898 | |
| 1142 | jermar | 899 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
| 900 | * |
||
| 901 | * @param rnode Node into which to add key from its right sibling or from the index node. |
||
| 902 | * |
||
| 903 | * @return True if the rotation was performed, false otherwise. |
||
| 904 | */ |
||
| 905 | bool try_rotation_from_right(btree_node_t *lnode) |
||
| 906 | { |
||
| 907 | index_t idx; |
||
| 908 | btree_node_t *rnode; |
||
| 909 | |||
| 910 | /* |
||
| 911 | * If this is root node, the rotation can not be done. |
||
| 912 | */ |
||
| 913 | if (ROOT_NODE(lnode)) |
||
| 914 | return false; |
||
| 915 | |||
| 916 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
| 917 | if (idx == lnode->parent->keys) { |
||
| 918 | /* |
||
| 919 | * If this node is the rightmost subtree of its parent, |
||
| 920 | * the rotation can not be done. |
||
| 921 | */ |
||
| 922 | return false; |
||
| 923 | } |
||
| 924 | |||
| 925 | rnode = lnode->parent->subtree[idx + 1]; |
||
| 926 | if (rnode->keys > FILL_FACTOR) { |
||
| 927 | rotate_from_right(lnode, rnode, idx); |
||
| 928 | return true; |
||
| 929 | } |
||
| 930 | |||
| 1136 | jermar | 931 | return false; |
| 932 | } |
||
| 933 | |||
| 1101 | jermar | 934 | /** Print B-tree. |
| 935 | * |
||
| 936 | * @param t Print out B-tree. |
||
| 937 | */ |
||
| 938 | void btree_print(btree_t *t) |
||
| 939 | { |
||
| 940 | int i, depth = t->root->depth; |
||
| 1144 | jermar | 941 | link_t head, *cur; |
| 942 | |||
| 943 | printf("Printing B-tree:\n"); |
||
| 1101 | jermar | 944 | list_initialize(&head); |
| 945 | list_append(&t->root->bfs_link, &head); |
||
| 946 | |||
| 947 | /* |
||
| 948 | * Use BFS search to print out the tree. |
||
| 949 | * Levels are distinguished from one another by node->depth. |
||
| 950 | */ |
||
| 951 | while (!list_empty(&head)) { |
||
| 952 | link_t *hlp; |
||
| 953 | btree_node_t *node; |
||
| 954 | |||
| 955 | hlp = head.next; |
||
| 956 | ASSERT(hlp != &head); |
||
| 957 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
| 958 | list_remove(hlp); |
||
| 959 | |||
| 960 | ASSERT(node); |
||
| 961 | |||
| 962 | if (node->depth != depth) { |
||
| 963 | printf("\n"); |
||
| 964 | depth = node->depth; |
||
| 965 | } |
||
| 966 | |||
| 967 | printf("("); |
||
| 968 | for (i = 0; i < node->keys; i++) { |
||
| 1196 | cejka | 969 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
| 1101 | jermar | 970 | if (node->depth && node->subtree[i]) { |
| 971 | list_append(&node->subtree[i]->bfs_link, &head); |
||
| 972 | } |
||
| 973 | } |
||
| 974 | if (node->depth && node->subtree[i]) { |
||
| 975 | list_append(&node->subtree[i]->bfs_link, &head); |
||
| 976 | } |
||
| 977 | printf(")"); |
||
| 978 | } |
||
| 979 | printf("\n"); |
||
| 1144 | jermar | 980 | |
| 981 | printf("Printing list of leaves:\n"); |
||
| 982 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
| 983 | btree_node_t *node; |
||
| 984 | |||
| 985 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
| 986 | |||
| 987 | ASSERT(node); |
||
| 988 | |||
| 989 | printf("("); |
||
| 990 | for (i = 0; i < node->keys; i++) |
||
| 1196 | cejka | 991 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
| 1144 | jermar | 992 | printf(")"); |
| 993 | } |
||
| 994 | printf("\n"); |
||
| 1101 | jermar | 995 | } |