Rev 1221 | Rev 1483 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1101 | jermar | 1 | /* |
| 2 | * Copyright (C) 2006 Jakub Jermar |
||
| 3 | * All rights reserved. |
||
| 4 | * |
||
| 5 | * Redistribution and use in source and binary forms, with or without |
||
| 6 | * modification, are permitted provided that the following conditions |
||
| 7 | * are met: |
||
| 8 | * |
||
| 9 | * - Redistributions of source code must retain the above copyright |
||
| 10 | * notice, this list of conditions and the following disclaimer. |
||
| 11 | * - Redistributions in binary form must reproduce the above copyright |
||
| 12 | * notice, this list of conditions and the following disclaimer in the |
||
| 13 | * documentation and/or other materials provided with the distribution. |
||
| 14 | * - The name of the author may not be used to endorse or promote products |
||
| 15 | * derived from this software without specific prior written permission. |
||
| 16 | * |
||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | */ |
||
| 28 | |||
| 1248 | jermar | 29 | /** |
| 30 | * @file btree.c |
||
| 31 | * @brief B+tree implementation. |
||
| 1101 | jermar | 32 | * |
| 1248 | jermar | 33 | * This file implements B+tree type and operations. |
| 34 | * |
||
| 35 | * The B+tree has the following properties: |
||
| 36 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
| 37 | * @li values (i.e. pointers to values) are stored only in leaves |
||
| 38 | * @li leaves are linked in a list |
||
| 39 | * |
||
| 1134 | jermar | 40 | * Be carefull when using these trees. They need to allocate |
| 41 | * and deallocate memory for their index nodes and as such |
||
| 42 | * can sleep. |
||
| 1101 | jermar | 43 | */ |
| 44 | |||
| 45 | #include <adt/btree.h> |
||
| 46 | #include <adt/list.h> |
||
| 47 | #include <mm/slab.h> |
||
| 48 | #include <debug.h> |
||
| 49 | #include <panic.h> |
||
| 50 | #include <typedefs.h> |
||
| 51 | #include <print.h> |
||
| 52 | |||
| 1177 | jermar | 53 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
| 54 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
| 1101 | jermar | 55 | static void node_initialize(btree_node_t *node); |
| 1177 | jermar | 56 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
| 57 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
| 58 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
| 59 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
| 60 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
| 1142 | jermar | 61 | static btree_node_t *node_combine(btree_node_t *node); |
| 1136 | jermar | 62 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
| 1142 | jermar | 63 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
| 64 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
| 1177 | jermar | 65 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
| 66 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
| 1142 | jermar | 67 | static bool try_rotation_from_left(btree_node_t *rnode); |
| 68 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
| 1101 | jermar | 69 | |
| 70 | #define ROOT_NODE(n) (!(n)->parent) |
||
| 71 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
| 72 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
| 73 | |||
| 1140 | jermar | 74 | #define FILL_FACTOR ((BTREE_M-1)/2) |
| 75 | |||
| 1101 | jermar | 76 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
| 77 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
| 78 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
| 79 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
| 80 | |||
| 1164 | jermar | 81 | static slab_cache_t *btree_node_slab; |
| 82 | |||
| 83 | /** Initialize B-trees. */ |
||
| 84 | void btree_init(void) |
||
| 85 | { |
||
| 86 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
| 87 | } |
||
| 88 | |||
| 1101 | jermar | 89 | /** Create empty B-tree. |
| 90 | * |
||
| 91 | * @param t B-tree. |
||
| 92 | */ |
||
| 93 | void btree_create(btree_t *t) |
||
| 94 | { |
||
| 95 | list_initialize(&t->leaf_head); |
||
| 1164 | jermar | 96 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 97 | node_initialize(t->root); |
| 98 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
| 99 | } |
||
| 100 | |||
| 101 | /** Destroy empty B-tree. */ |
||
| 102 | void btree_destroy(btree_t *t) |
||
| 103 | { |
||
| 104 | ASSERT(!t->root->keys); |
||
| 1164 | jermar | 105 | slab_free(btree_node_slab, t->root); |
| 1101 | jermar | 106 | } |
| 107 | |||
| 108 | /** Insert key-value pair into B-tree. |
||
| 109 | * |
||
| 110 | * @param t B-tree. |
||
| 111 | * @param key Key to be inserted. |
||
| 112 | * @param value Value to be inserted. |
||
| 113 | * @param leaf_node Leaf node where the insertion should begin. |
||
| 114 | */ |
||
| 1177 | jermar | 115 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
| 1101 | jermar | 116 | { |
| 117 | btree_node_t *lnode; |
||
| 118 | |||
| 119 | ASSERT(value); |
||
| 120 | |||
| 121 | lnode = leaf_node; |
||
| 122 | if (!lnode) { |
||
| 123 | if (btree_search(t, key, &lnode)) { |
||
| 1221 | decky | 124 | panic("B-tree %p already contains key %d\n", t, key); |
| 1101 | jermar | 125 | } |
| 126 | } |
||
| 127 | |||
| 128 | _btree_insert(t, key, value, NULL, lnode); |
||
| 129 | } |
||
| 130 | |||
| 131 | /** Recursively insert into B-tree. |
||
| 132 | * |
||
| 133 | * @param t B-tree. |
||
| 134 | * @param key Key to be inserted. |
||
| 135 | * @param value Value to be inserted. |
||
| 136 | * @param rsubtree Right subtree of the inserted key. |
||
| 137 | * @param node Start inserting into this node. |
||
| 138 | */ |
||
| 1177 | jermar | 139 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
| 1101 | jermar | 140 | { |
| 141 | if (node->keys < BTREE_MAX_KEYS) { |
||
| 142 | /* |
||
| 143 | * Node conatins enough space, the key can be stored immediately. |
||
| 144 | */ |
||
| 1142 | jermar | 145 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
| 146 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
| 1136 | jermar | 147 | /* |
| 148 | * The key-value-rsubtree triplet has been inserted because |
||
| 149 | * some keys could have been moved to the left sibling. |
||
| 150 | */ |
||
| 1142 | jermar | 151 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
| 1136 | jermar | 152 | /* |
| 153 | * The key-value-rsubtree triplet has been inserted because |
||
| 154 | * some keys could have been moved to the right sibling. |
||
| 155 | */ |
||
| 1101 | jermar | 156 | } else { |
| 157 | btree_node_t *rnode; |
||
| 1177 | jermar | 158 | btree_key_t median; |
| 1101 | jermar | 159 | |
| 160 | /* |
||
| 1136 | jermar | 161 | * Node is full and both siblings (if both exist) are full too. |
| 162 | * Split the node and insert the smallest key from the node containing |
||
| 163 | * bigger keys (i.e. the new node) into its parent. |
||
| 1101 | jermar | 164 | */ |
| 165 | |||
| 166 | rnode = node_split(node, key, value, rsubtree, &median); |
||
| 167 | |||
| 168 | if (LEAF_NODE(node)) { |
||
| 1144 | jermar | 169 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
| 1101 | jermar | 170 | } |
| 171 | |||
| 172 | if (ROOT_NODE(node)) { |
||
| 173 | /* |
||
| 174 | * We split the root node. Create new root. |
||
| 175 | */ |
||
| 1164 | jermar | 176 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 177 | node->parent = t->root; |
| 178 | rnode->parent = t->root; |
||
| 179 | node_initialize(t->root); |
||
| 180 | |||
| 181 | /* |
||
| 182 | * Left-hand side subtree will be the old root (i.e. node). |
||
| 183 | * Right-hand side subtree will be rnode. |
||
| 184 | */ |
||
| 185 | t->root->subtree[0] = node; |
||
| 186 | |||
| 187 | t->root->depth = node->depth + 1; |
||
| 188 | } |
||
| 189 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
| 190 | } |
||
| 191 | |||
| 192 | } |
||
| 193 | |||
| 1140 | jermar | 194 | /** Remove B-tree node. |
| 195 | * |
||
| 196 | * @param B-tree. |
||
| 197 | * @param key Key to be removed from the B-tree along with its associated value. |
||
| 198 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
| 199 | */ |
||
| 1177 | jermar | 200 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
| 1101 | jermar | 201 | { |
| 1140 | jermar | 202 | btree_node_t *lnode; |
| 203 | |||
| 204 | lnode = leaf_node; |
||
| 205 | if (!lnode) { |
||
| 206 | if (!btree_search(t, key, &lnode)) { |
||
| 1221 | decky | 207 | panic("B-tree %p does not contain key %d\n", t, key); |
| 1140 | jermar | 208 | } |
| 209 | } |
||
| 210 | |||
| 1142 | jermar | 211 | _btree_remove(t, key, lnode); |
| 212 | } |
||
| 1140 | jermar | 213 | |
| 1142 | jermar | 214 | /** Recursively remove B-tree node. |
| 215 | * |
||
| 216 | * @param B-tree. |
||
| 217 | * @param key Key to be removed from the B-tree along with its associated value. |
||
| 218 | * @param node Node where the key being removed resides. |
||
| 219 | */ |
||
| 1177 | jermar | 220 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
| 1142 | jermar | 221 | { |
| 222 | if (ROOT_NODE(node)) { |
||
| 223 | if (node->keys == 1 && node->subtree[0]) { |
||
| 224 | /* |
||
| 225 | * Free the current root and set new root. |
||
| 226 | */ |
||
| 227 | t->root = node->subtree[0]; |
||
| 228 | t->root->parent = NULL; |
||
| 1164 | jermar | 229 | slab_free(btree_node_slab, node); |
| 1142 | jermar | 230 | } else { |
| 231 | /* |
||
| 232 | * Remove the key from the root node. |
||
| 233 | * Note that the right subtree is removed because when |
||
| 234 | * combining two nodes, the left-side sibling is preserved |
||
| 235 | * and the right-side sibling is freed. |
||
| 236 | */ |
||
| 237 | node_remove_key_and_rsubtree(node, key); |
||
| 238 | } |
||
| 239 | return; |
||
| 240 | } |
||
| 241 | |||
| 242 | if (node->keys <= FILL_FACTOR) { |
||
| 243 | /* |
||
| 244 | * If the node is below the fill factor, |
||
| 245 | * try to borrow keys from left or right sibling. |
||
| 246 | */ |
||
| 247 | if (!try_rotation_from_left(node)) |
||
| 248 | try_rotation_from_right(node); |
||
| 249 | } |
||
| 250 | |||
| 251 | if (node->keys > FILL_FACTOR) { |
||
| 252 | int i; |
||
| 253 | |||
| 254 | /* |
||
| 255 | * The key can be immediatelly removed. |
||
| 256 | * |
||
| 257 | * Note that the right subtree is removed because when |
||
| 258 | * combining two nodes, the left-side sibling is preserved |
||
| 259 | * and the right-side sibling is freed. |
||
| 260 | */ |
||
| 261 | node_remove_key_and_rsubtree(node, key); |
||
| 262 | for (i = 0; i < node->parent->keys; i++) { |
||
| 263 | if (node->parent->key[i] == key) |
||
| 264 | node->parent->key[i] = node->key[0]; |
||
| 265 | } |
||
| 266 | |||
| 267 | } else { |
||
| 268 | index_t idx; |
||
| 269 | btree_node_t *rnode, *parent; |
||
| 270 | |||
| 271 | /* |
||
| 272 | * The node is below the fill factor as well as its left and right sibling. |
||
| 273 | * Resort to combining the node with one of its siblings. |
||
| 274 | * The node which is on the left is preserved and the node on the right is |
||
| 275 | * freed. |
||
| 276 | */ |
||
| 277 | parent = node->parent; |
||
| 278 | node_remove_key_and_rsubtree(node, key); |
||
| 279 | rnode = node_combine(node); |
||
| 280 | if (LEAF_NODE(rnode)) |
||
| 281 | list_remove(&rnode->leaf_link); |
||
| 282 | idx = find_key_by_subtree(parent, rnode, true); |
||
| 283 | ASSERT((int) idx != -1); |
||
| 1164 | jermar | 284 | slab_free(btree_node_slab, rnode); |
| 1142 | jermar | 285 | _btree_remove(t, parent->key[idx], parent); |
| 286 | } |
||
| 1101 | jermar | 287 | } |
| 288 | |||
| 289 | /** Search key in a B-tree. |
||
| 290 | * |
||
| 291 | * @param t B-tree. |
||
| 292 | * @param key Key to be searched. |
||
| 293 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
| 294 | * |
||
| 295 | * @return Pointer to value or NULL if there is no such key. |
||
| 296 | */ |
||
| 1177 | jermar | 297 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
| 1101 | jermar | 298 | { |
| 299 | btree_node_t *cur, *next; |
||
| 300 | |||
| 301 | /* |
||
| 1134 | jermar | 302 | * Iteratively descend to the leaf that can contain the searched key. |
| 1101 | jermar | 303 | */ |
| 304 | for (cur = t->root; cur; cur = next) { |
||
| 1134 | jermar | 305 | |
| 1101 | jermar | 306 | /* Last iteration will set this with proper leaf node address. */ |
| 307 | *leaf_node = cur; |
||
| 1134 | jermar | 308 | |
| 309 | /* |
||
| 310 | * The key can be in the leftmost subtree. |
||
| 311 | * Test it separately. |
||
| 312 | */ |
||
| 313 | if (key < cur->key[0]) { |
||
| 314 | next = cur->subtree[0]; |
||
| 315 | continue; |
||
| 316 | } else { |
||
| 317 | void *val; |
||
| 318 | int i; |
||
| 319 | |||
| 320 | /* |
||
| 321 | * Now if the key is smaller than cur->key[i] |
||
| 322 | * it can only mean that the value is in cur->subtree[i] |
||
| 323 | * or it is not in the tree at all. |
||
| 324 | */ |
||
| 325 | for (i = 1; i < cur->keys; i++) { |
||
| 326 | if (key < cur->key[i]) { |
||
| 327 | next = cur->subtree[i]; |
||
| 328 | val = cur->value[i - 1]; |
||
| 329 | |||
| 330 | if (LEAF_NODE(cur)) |
||
| 331 | return key == cur->key[i - 1] ? val : NULL; |
||
| 332 | |||
| 333 | goto descend; |
||
| 334 | } |
||
| 1101 | jermar | 335 | } |
| 1134 | jermar | 336 | |
| 337 | /* |
||
| 338 | * Last possibility is that the key is in the rightmost subtree. |
||
| 339 | */ |
||
| 340 | next = cur->subtree[i]; |
||
| 341 | val = cur->value[i - 1]; |
||
| 342 | if (LEAF_NODE(cur)) |
||
| 343 | return key == cur->key[i - 1] ? val : NULL; |
||
| 1101 | jermar | 344 | } |
| 1134 | jermar | 345 | descend: |
| 346 | ; |
||
| 1101 | jermar | 347 | } |
| 348 | |||
| 349 | /* |
||
| 1134 | jermar | 350 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
| 1101 | jermar | 351 | */ |
| 352 | return NULL; |
||
| 353 | } |
||
| 354 | |||
| 1150 | jermar | 355 | /** Return pointer to B-tree leaf node's left neighbour. |
| 1147 | jermar | 356 | * |
| 357 | * @param t B-tree. |
||
| 1150 | jermar | 358 | * @param node Node whose left neighbour will be returned. |
| 1147 | jermar | 359 | * |
| 1150 | jermar | 360 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
| 1147 | jermar | 361 | */ |
| 1150 | jermar | 362 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
| 1147 | jermar | 363 | { |
| 364 | ASSERT(LEAF_NODE(node)); |
||
| 365 | if (node->leaf_link.prev != &t->leaf_head) |
||
| 366 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
| 367 | else |
||
| 368 | return NULL; |
||
| 369 | } |
||
| 370 | |||
| 1150 | jermar | 371 | /** Return pointer to B-tree leaf node's right neighbour. |
| 1147 | jermar | 372 | * |
| 373 | * @param t B-tree. |
||
| 1150 | jermar | 374 | * @param node Node whose right neighbour will be returned. |
| 1147 | jermar | 375 | * |
| 1150 | jermar | 376 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
| 1147 | jermar | 377 | */ |
| 1150 | jermar | 378 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
| 1147 | jermar | 379 | { |
| 380 | ASSERT(LEAF_NODE(node)); |
||
| 381 | if (node->leaf_link.next != &t->leaf_head) |
||
| 382 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
| 383 | else |
||
| 384 | return NULL; |
||
| 385 | } |
||
| 386 | |||
| 1101 | jermar | 387 | /** Initialize B-tree node. |
| 388 | * |
||
| 389 | * @param node B-tree node. |
||
| 390 | */ |
||
| 391 | void node_initialize(btree_node_t *node) |
||
| 392 | { |
||
| 393 | int i; |
||
| 394 | |||
| 395 | node->keys = 0; |
||
| 396 | |||
| 397 | /* Clean also space for the extra key. */ |
||
| 398 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
| 399 | node->key[i] = 0; |
||
| 400 | node->value[i] = NULL; |
||
| 401 | node->subtree[i] = NULL; |
||
| 402 | } |
||
| 403 | node->subtree[i] = NULL; |
||
| 404 | |||
| 405 | node->parent = NULL; |
||
| 406 | |||
| 407 | link_initialize(&node->leaf_link); |
||
| 408 | |||
| 409 | link_initialize(&node->bfs_link); |
||
| 410 | node->depth = 0; |
||
| 411 | } |
||
| 412 | |||
| 1136 | jermar | 413 | /** Insert key-value-lsubtree triplet into B-tree node. |
| 1101 | jermar | 414 | * |
| 415 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
| 1136 | jermar | 416 | * This feature is used during insert by right rotation. |
| 417 | * |
||
| 418 | * @param node B-tree node into wich the new key is to be inserted. |
||
| 419 | * @param key The key to be inserted. |
||
| 420 | * @param value Pointer to value to be inserted. |
||
| 421 | * @param lsubtree Pointer to the left subtree. |
||
| 422 | */ |
||
| 1177 | jermar | 423 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
| 1136 | jermar | 424 | { |
| 425 | int i; |
||
| 426 | |||
| 427 | for (i = 0; i < node->keys; i++) { |
||
| 428 | if (key < node->key[i]) { |
||
| 429 | int j; |
||
| 430 | |||
| 431 | for (j = node->keys; j > i; j--) { |
||
| 432 | node->key[j] = node->key[j - 1]; |
||
| 433 | node->value[j] = node->value[j - 1]; |
||
| 434 | node->subtree[j + 1] = node->subtree[j]; |
||
| 435 | } |
||
| 436 | node->subtree[j + 1] = node->subtree[j]; |
||
| 437 | break; |
||
| 438 | } |
||
| 439 | } |
||
| 440 | node->key[i] = key; |
||
| 441 | node->value[i] = value; |
||
| 442 | node->subtree[i] = lsubtree; |
||
| 443 | |||
| 444 | node->keys++; |
||
| 445 | } |
||
| 446 | |||
| 447 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
| 448 | * |
||
| 449 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
| 1101 | jermar | 450 | * This feature is used during splitting the node when the |
| 1136 | jermar | 451 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
| 452 | * also makes use of this feature. |
||
| 1101 | jermar | 453 | * |
| 454 | * @param node B-tree node into wich the new key is to be inserted. |
||
| 455 | * @param key The key to be inserted. |
||
| 456 | * @param value Pointer to value to be inserted. |
||
| 457 | * @param rsubtree Pointer to the right subtree. |
||
| 458 | */ |
||
| 1177 | jermar | 459 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
| 1101 | jermar | 460 | { |
| 461 | int i; |
||
| 462 | |||
| 463 | for (i = 0; i < node->keys; i++) { |
||
| 464 | if (key < node->key[i]) { |
||
| 465 | int j; |
||
| 466 | |||
| 467 | for (j = node->keys; j > i; j--) { |
||
| 468 | node->key[j] = node->key[j - 1]; |
||
| 469 | node->value[j] = node->value[j - 1]; |
||
| 470 | node->subtree[j + 1] = node->subtree[j]; |
||
| 471 | } |
||
| 472 | break; |
||
| 473 | } |
||
| 474 | } |
||
| 475 | node->key[i] = key; |
||
| 476 | node->value[i] = value; |
||
| 477 | node->subtree[i + 1] = rsubtree; |
||
| 478 | |||
| 479 | node->keys++; |
||
| 480 | } |
||
| 481 | |||
| 1144 | jermar | 482 | /** Remove key and its left subtree pointer from B-tree node. |
| 483 | * |
||
| 484 | * Remove the key and eliminate gaps in node->key array. |
||
| 485 | * Note that the value pointer and the left subtree pointer |
||
| 486 | * is removed from the node as well. |
||
| 487 | * |
||
| 488 | * @param node B-tree node. |
||
| 489 | * @param key Key to be removed. |
||
| 490 | */ |
||
| 1177 | jermar | 491 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
| 1144 | jermar | 492 | { |
| 493 | int i, j; |
||
| 494 | |||
| 495 | for (i = 0; i < node->keys; i++) { |
||
| 496 | if (key == node->key[i]) { |
||
| 497 | for (j = i + 1; j < node->keys; j++) { |
||
| 498 | node->key[j - 1] = node->key[j]; |
||
| 499 | node->value[j - 1] = node->value[j]; |
||
| 500 | node->subtree[j - 1] = node->subtree[j]; |
||
| 501 | } |
||
| 502 | node->subtree[j - 1] = node->subtree[j]; |
||
| 503 | node->keys--; |
||
| 504 | return; |
||
| 505 | } |
||
| 506 | } |
||
| 1221 | decky | 507 | panic("node %p does not contain key %d\n", node, key); |
| 1144 | jermar | 508 | } |
| 509 | |||
| 510 | /** Remove key and its right subtree pointer from B-tree node. |
||
| 511 | * |
||
| 512 | * Remove the key and eliminate gaps in node->key array. |
||
| 513 | * Note that the value pointer and the right subtree pointer |
||
| 514 | * is removed from the node as well. |
||
| 515 | * |
||
| 516 | * @param node B-tree node. |
||
| 517 | * @param key Key to be removed. |
||
| 518 | */ |
||
| 1177 | jermar | 519 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
| 1144 | jermar | 520 | { |
| 521 | int i, j; |
||
| 522 | |||
| 523 | for (i = 0; i < node->keys; i++) { |
||
| 524 | if (key == node->key[i]) { |
||
| 525 | for (j = i + 1; j < node->keys; j++) { |
||
| 526 | node->key[j - 1] = node->key[j]; |
||
| 527 | node->value[j - 1] = node->value[j]; |
||
| 528 | node->subtree[j] = node->subtree[j + 1]; |
||
| 529 | } |
||
| 530 | node->keys--; |
||
| 531 | return; |
||
| 532 | } |
||
| 533 | } |
||
| 1221 | decky | 534 | panic("node %p does not contain key %d\n", node, key); |
| 1144 | jermar | 535 | } |
| 536 | |||
| 1134 | jermar | 537 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
| 1101 | jermar | 538 | * |
| 539 | * This function will split a node and return pointer to a newly created |
||
| 1134 | jermar | 540 | * node containing keys greater than or equal to the greater of medians |
| 541 | * (or median) of the old keys and the newly added key. It will also write |
||
| 542 | * the median key to a memory address supplied by the caller. |
||
| 1101 | jermar | 543 | * |
| 1134 | jermar | 544 | * If the node being split is an index node, the median will not be |
| 545 | * included in the new node. If the node is a leaf node, |
||
| 546 | * the median will be copied there. |
||
| 1101 | jermar | 547 | * |
| 548 | * @param node B-tree node wich is going to be split. |
||
| 549 | * @param key The key to be inserted. |
||
| 550 | * @param value Pointer to the value to be inserted. |
||
| 551 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
| 552 | * @param median Address in memory, where the median key will be stored. |
||
| 553 | * |
||
| 554 | * @return Newly created right sibling of node. |
||
| 555 | */ |
||
| 1177 | jermar | 556 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
| 1101 | jermar | 557 | { |
| 558 | btree_node_t *rnode; |
||
| 559 | int i, j; |
||
| 560 | |||
| 561 | ASSERT(median); |
||
| 562 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
| 1136 | jermar | 563 | |
| 1101 | jermar | 564 | /* |
| 565 | * Use the extra space to store the extra node. |
||
| 566 | */ |
||
| 1142 | jermar | 567 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
| 1101 | jermar | 568 | |
| 569 | /* |
||
| 570 | * Compute median of keys. |
||
| 571 | */ |
||
| 1134 | jermar | 572 | *median = MEDIAN_HIGH(node); |
| 1101 | jermar | 573 | |
| 1134 | jermar | 574 | /* |
| 575 | * Allocate and initialize new right sibling. |
||
| 576 | */ |
||
| 1164 | jermar | 577 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
| 1101 | jermar | 578 | node_initialize(rnode); |
| 579 | rnode->parent = node->parent; |
||
| 580 | rnode->depth = node->depth; |
||
| 581 | |||
| 582 | /* |
||
| 583 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
| 1134 | jermar | 584 | * If this is an index node, do not copy the median. |
| 1101 | jermar | 585 | */ |
| 1134 | jermar | 586 | i = (int) INDEX_NODE(node); |
| 587 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
| 1101 | jermar | 588 | rnode->key[j] = node->key[i]; |
| 589 | rnode->value[j] = node->value[i]; |
||
| 590 | rnode->subtree[j] = node->subtree[i]; |
||
| 591 | |||
| 592 | /* |
||
| 593 | * Fix parent links in subtrees. |
||
| 594 | */ |
||
| 595 | if (rnode->subtree[j]) |
||
| 596 | rnode->subtree[j]->parent = rnode; |
||
| 597 | |||
| 598 | } |
||
| 599 | rnode->subtree[j] = node->subtree[i]; |
||
| 600 | if (rnode->subtree[j]) |
||
| 601 | rnode->subtree[j]->parent = rnode; |
||
| 1134 | jermar | 602 | |
| 603 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
| 604 | node->keys /= 2; /* Shrink the old node. */ |
||
| 1101 | jermar | 605 | |
| 606 | return rnode; |
||
| 607 | } |
||
| 608 | |||
| 1142 | jermar | 609 | /** Combine node with any of its siblings. |
| 610 | * |
||
| 611 | * The siblings are required to be below the fill factor. |
||
| 612 | * |
||
| 613 | * @param node Node to combine with one of its siblings. |
||
| 614 | * |
||
| 615 | * @return Pointer to the rightmost of the two nodes. |
||
| 616 | */ |
||
| 617 | btree_node_t *node_combine(btree_node_t *node) |
||
| 618 | { |
||
| 619 | index_t idx; |
||
| 620 | btree_node_t *rnode; |
||
| 621 | int i; |
||
| 622 | |||
| 623 | ASSERT(!ROOT_NODE(node)); |
||
| 624 | |||
| 625 | idx = find_key_by_subtree(node->parent, node, false); |
||
| 626 | if (idx == node->parent->keys) { |
||
| 627 | /* |
||
| 628 | * Rightmost subtree of its parent, combine with the left sibling. |
||
| 629 | */ |
||
| 630 | idx--; |
||
| 631 | rnode = node; |
||
| 632 | node = node->parent->subtree[idx]; |
||
| 633 | } else { |
||
| 634 | rnode = node->parent->subtree[idx + 1]; |
||
| 635 | } |
||
| 636 | |||
| 637 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
| 638 | if (INDEX_NODE(node)) |
||
| 639 | node->key[node->keys++] = node->parent->key[idx]; |
||
| 640 | |||
| 641 | /* Copy the key-value-subtree triplets from the right node. */ |
||
| 642 | for (i = 0; i < rnode->keys; i++) { |
||
| 643 | node->key[node->keys + i] = rnode->key[i]; |
||
| 644 | node->value[node->keys + i] = rnode->value[i]; |
||
| 645 | if (INDEX_NODE(node)) { |
||
| 646 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
| 647 | rnode->subtree[i]->parent = node; |
||
| 648 | } |
||
| 649 | } |
||
| 650 | if (INDEX_NODE(node)) { |
||
| 651 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
| 652 | rnode->subtree[i]->parent = node; |
||
| 653 | } |
||
| 654 | |||
| 655 | node->keys += rnode->keys; |
||
| 656 | |||
| 657 | return rnode; |
||
| 658 | } |
||
| 659 | |||
| 1136 | jermar | 660 | /** Find key by its left or right subtree. |
| 661 | * |
||
| 662 | * @param node B-tree node. |
||
| 663 | * @param subtree Left or right subtree of a key found in node. |
||
| 664 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
| 665 | * |
||
| 666 | * @return Index of the key associated with the subtree. |
||
| 667 | */ |
||
| 668 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
| 669 | { |
||
| 670 | int i; |
||
| 671 | |||
| 672 | for (i = 0; i < node->keys + 1; i++) { |
||
| 673 | if (subtree == node->subtree[i]) |
||
| 674 | return i - (int) (right != false); |
||
| 675 | } |
||
| 1221 | decky | 676 | panic("node %p does not contain subtree %p\n", node, subtree); |
| 1136 | jermar | 677 | } |
| 678 | |||
| 1142 | jermar | 679 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
| 680 | * |
||
| 681 | * The biggest key and its value and right subtree is rotated from the left node |
||
| 682 | * to the right. If the node is an index node, than the parent node key belonging to |
||
| 683 | * the left node takes part in the rotation. |
||
| 684 | * |
||
| 685 | * @param lnode Left sibling. |
||
| 686 | * @param rnode Right sibling. |
||
| 687 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
| 688 | */ |
||
| 689 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
| 690 | { |
||
| 1177 | jermar | 691 | btree_key_t key; |
| 1142 | jermar | 692 | |
| 693 | key = lnode->key[lnode->keys - 1]; |
||
| 694 | |||
| 695 | if (LEAF_NODE(lnode)) { |
||
| 696 | void *value; |
||
| 697 | |||
| 698 | value = lnode->value[lnode->keys - 1]; |
||
| 699 | node_remove_key_and_rsubtree(lnode, key); |
||
| 700 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
| 701 | lnode->parent->key[idx] = key; |
||
| 702 | } else { |
||
| 703 | btree_node_t *rsubtree; |
||
| 704 | |||
| 705 | rsubtree = lnode->subtree[lnode->keys]; |
||
| 706 | node_remove_key_and_rsubtree(lnode, key); |
||
| 707 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
| 708 | lnode->parent->key[idx] = key; |
||
| 709 | |||
| 710 | /* Fix parent link of the reconnected right subtree. */ |
||
| 711 | rsubtree->parent = rnode; |
||
| 712 | } |
||
| 713 | |||
| 714 | } |
||
| 715 | |||
| 716 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
| 717 | * |
||
| 718 | * The smallest key and its value and left subtree is rotated from the right node |
||
| 719 | * to the left. If the node is an index node, than the parent node key belonging to |
||
| 720 | * the right node takes part in the rotation. |
||
| 721 | * |
||
| 722 | * @param lnode Left sibling. |
||
| 723 | * @param rnode Right sibling. |
||
| 724 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
| 725 | */ |
||
| 726 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
| 727 | { |
||
| 1177 | jermar | 728 | btree_key_t key; |
| 1142 | jermar | 729 | |
| 730 | key = rnode->key[0]; |
||
| 731 | |||
| 732 | if (LEAF_NODE(rnode)) { |
||
| 733 | void *value; |
||
| 734 | |||
| 735 | value = rnode->value[0]; |
||
| 736 | node_remove_key_and_lsubtree(rnode, key); |
||
| 737 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
| 738 | rnode->parent->key[idx] = rnode->key[0]; |
||
| 739 | } else { |
||
| 740 | btree_node_t *lsubtree; |
||
| 741 | |||
| 742 | lsubtree = rnode->subtree[0]; |
||
| 743 | node_remove_key_and_lsubtree(rnode, key); |
||
| 744 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
| 745 | rnode->parent->key[idx] = key; |
||
| 746 | |||
| 747 | /* Fix parent link of the reconnected left subtree. */ |
||
| 748 | lsubtree->parent = lnode; |
||
| 749 | } |
||
| 750 | |||
| 751 | } |
||
| 752 | |||
| 1136 | jermar | 753 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
| 754 | * |
||
| 755 | * Left sibling of the node (if it exists) is checked for free space. |
||
| 756 | * If there is free space, the key is inserted and the smallest key of |
||
| 757 | * the node is moved there. The index node which is the parent of both |
||
| 758 | * nodes is fixed. |
||
| 759 | * |
||
| 760 | * @param node B-tree node. |
||
| 761 | * @param inskey Key to be inserted. |
||
| 762 | * @param insvalue Value to be inserted. |
||
| 763 | * @param rsubtree Right subtree of inskey. |
||
| 764 | * |
||
| 765 | * @return True if the rotation was performed, false otherwise. |
||
| 766 | */ |
||
| 1177 | jermar | 767 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
| 1136 | jermar | 768 | { |
| 769 | index_t idx; |
||
| 770 | btree_node_t *lnode; |
||
| 771 | |||
| 772 | /* |
||
| 773 | * If this is root node, the rotation can not be done. |
||
| 774 | */ |
||
| 775 | if (ROOT_NODE(node)) |
||
| 776 | return false; |
||
| 777 | |||
| 778 | idx = find_key_by_subtree(node->parent, node, true); |
||
| 779 | if ((int) idx == -1) { |
||
| 780 | /* |
||
| 781 | * If this node is the leftmost subtree of its parent, |
||
| 782 | * the rotation can not be done. |
||
| 783 | */ |
||
| 784 | return false; |
||
| 785 | } |
||
| 786 | |||
| 787 | lnode = node->parent->subtree[idx]; |
||
| 788 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
| 789 | /* |
||
| 790 | * The rotaion can be done. The left sibling has free space. |
||
| 791 | */ |
||
| 1142 | jermar | 792 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
| 793 | rotate_from_right(lnode, node, idx); |
||
| 1136 | jermar | 794 | return true; |
| 795 | } |
||
| 796 | |||
| 797 | return false; |
||
| 798 | } |
||
| 799 | |||
| 800 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
| 801 | * |
||
| 802 | * Right sibling of the node (if it exists) is checked for free space. |
||
| 803 | * If there is free space, the key is inserted and the biggest key of |
||
| 804 | * the node is moved there. The index node which is the parent of both |
||
| 805 | * nodes is fixed. |
||
| 806 | * |
||
| 807 | * @param node B-tree node. |
||
| 808 | * @param inskey Key to be inserted. |
||
| 809 | * @param insvalue Value to be inserted. |
||
| 810 | * @param rsubtree Right subtree of inskey. |
||
| 811 | * |
||
| 812 | * @return True if the rotation was performed, false otherwise. |
||
| 813 | */ |
||
| 1177 | jermar | 814 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
| 1136 | jermar | 815 | { |
| 816 | index_t idx; |
||
| 817 | btree_node_t *rnode; |
||
| 818 | |||
| 819 | /* |
||
| 820 | * If this is root node, the rotation can not be done. |
||
| 821 | */ |
||
| 822 | if (ROOT_NODE(node)) |
||
| 823 | return false; |
||
| 824 | |||
| 825 | idx = find_key_by_subtree(node->parent, node, false); |
||
| 826 | if (idx == node->parent->keys) { |
||
| 827 | /* |
||
| 828 | * If this node is the rightmost subtree of its parent, |
||
| 829 | * the rotation can not be done. |
||
| 830 | */ |
||
| 831 | return false; |
||
| 832 | } |
||
| 833 | |||
| 834 | rnode = node->parent->subtree[idx + 1]; |
||
| 835 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
| 836 | /* |
||
| 837 | * The rotaion can be done. The right sibling has free space. |
||
| 838 | */ |
||
| 1142 | jermar | 839 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
| 840 | rotate_from_left(node, rnode, idx); |
||
| 841 | return true; |
||
| 842 | } |
||
| 1136 | jermar | 843 | |
| 1142 | jermar | 844 | return false; |
| 845 | } |
||
| 1136 | jermar | 846 | |
| 1142 | jermar | 847 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
| 848 | * |
||
| 849 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
| 850 | * |
||
| 851 | * @return True if the rotation was performed, false otherwise. |
||
| 852 | */ |
||
| 853 | bool try_rotation_from_left(btree_node_t *rnode) |
||
| 854 | { |
||
| 855 | index_t idx; |
||
| 856 | btree_node_t *lnode; |
||
| 1136 | jermar | 857 | |
| 1142 | jermar | 858 | /* |
| 859 | * If this is root node, the rotation can not be done. |
||
| 860 | */ |
||
| 861 | if (ROOT_NODE(rnode)) |
||
| 862 | return false; |
||
| 863 | |||
| 864 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
| 865 | if ((int) idx == -1) { |
||
| 866 | /* |
||
| 867 | * If this node is the leftmost subtree of its parent, |
||
| 868 | * the rotation can not be done. |
||
| 869 | */ |
||
| 870 | return false; |
||
| 871 | } |
||
| 872 | |||
| 873 | lnode = rnode->parent->subtree[idx]; |
||
| 874 | if (lnode->keys > FILL_FACTOR) { |
||
| 875 | rotate_from_left(lnode, rnode, idx); |
||
| 1136 | jermar | 876 | return true; |
| 877 | } |
||
| 1142 | jermar | 878 | |
| 879 | return false; |
||
| 880 | } |
||
| 1136 | jermar | 881 | |
| 1142 | jermar | 882 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
| 883 | * |
||
| 884 | * @param rnode Node into which to add key from its right sibling or from the index node. |
||
| 885 | * |
||
| 886 | * @return True if the rotation was performed, false otherwise. |
||
| 887 | */ |
||
| 888 | bool try_rotation_from_right(btree_node_t *lnode) |
||
| 889 | { |
||
| 890 | index_t idx; |
||
| 891 | btree_node_t *rnode; |
||
| 892 | |||
| 893 | /* |
||
| 894 | * If this is root node, the rotation can not be done. |
||
| 895 | */ |
||
| 896 | if (ROOT_NODE(lnode)) |
||
| 897 | return false; |
||
| 898 | |||
| 899 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
| 900 | if (idx == lnode->parent->keys) { |
||
| 901 | /* |
||
| 902 | * If this node is the rightmost subtree of its parent, |
||
| 903 | * the rotation can not be done. |
||
| 904 | */ |
||
| 905 | return false; |
||
| 906 | } |
||
| 907 | |||
| 908 | rnode = lnode->parent->subtree[idx + 1]; |
||
| 909 | if (rnode->keys > FILL_FACTOR) { |
||
| 910 | rotate_from_right(lnode, rnode, idx); |
||
| 911 | return true; |
||
| 912 | } |
||
| 913 | |||
| 1136 | jermar | 914 | return false; |
| 915 | } |
||
| 916 | |||
| 1101 | jermar | 917 | /** Print B-tree. |
| 918 | * |
||
| 919 | * @param t Print out B-tree. |
||
| 920 | */ |
||
| 921 | void btree_print(btree_t *t) |
||
| 922 | { |
||
| 923 | int i, depth = t->root->depth; |
||
| 1144 | jermar | 924 | link_t head, *cur; |
| 925 | |||
| 926 | printf("Printing B-tree:\n"); |
||
| 1101 | jermar | 927 | list_initialize(&head); |
| 928 | list_append(&t->root->bfs_link, &head); |
||
| 929 | |||
| 930 | /* |
||
| 931 | * Use BFS search to print out the tree. |
||
| 932 | * Levels are distinguished from one another by node->depth. |
||
| 933 | */ |
||
| 934 | while (!list_empty(&head)) { |
||
| 935 | link_t *hlp; |
||
| 936 | btree_node_t *node; |
||
| 937 | |||
| 938 | hlp = head.next; |
||
| 939 | ASSERT(hlp != &head); |
||
| 940 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
| 941 | list_remove(hlp); |
||
| 942 | |||
| 943 | ASSERT(node); |
||
| 944 | |||
| 945 | if (node->depth != depth) { |
||
| 946 | printf("\n"); |
||
| 947 | depth = node->depth; |
||
| 948 | } |
||
| 949 | |||
| 950 | printf("("); |
||
| 951 | for (i = 0; i < node->keys; i++) { |
||
| 1196 | cejka | 952 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
| 1101 | jermar | 953 | if (node->depth && node->subtree[i]) { |
| 954 | list_append(&node->subtree[i]->bfs_link, &head); |
||
| 955 | } |
||
| 956 | } |
||
| 957 | if (node->depth && node->subtree[i]) { |
||
| 958 | list_append(&node->subtree[i]->bfs_link, &head); |
||
| 959 | } |
||
| 960 | printf(")"); |
||
| 961 | } |
||
| 962 | printf("\n"); |
||
| 1144 | jermar | 963 | |
| 964 | printf("Printing list of leaves:\n"); |
||
| 965 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
| 966 | btree_node_t *node; |
||
| 967 | |||
| 968 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
| 969 | |||
| 970 | ASSERT(node); |
||
| 971 | |||
| 972 | printf("("); |
||
| 973 | for (i = 0; i < node->keys; i++) |
||
| 1196 | cejka | 974 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
| 1144 | jermar | 975 | printf(")"); |
| 976 | } |
||
| 977 | printf("\n"); |
||
| 1101 | jermar | 978 | } |