Rev 1292 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1702 | cejka | 29 | /** @addtogroup ia32 |
30 | * @{ |
||
31 | */ |
||
32 | /** @file |
||
33 | */ |
||
34 | |||
1 | jermar | 35 | #include <arch/pm.h> |
36 | #include <config.h> |
||
37 | #include <arch/types.h> |
||
38 | #include <typedefs.h> |
||
39 | #include <arch/interrupt.h> |
||
40 | #include <arch/asm.h> |
||
41 | #include <arch/context.h> |
||
42 | #include <panic.h> |
||
167 | jermar | 43 | #include <arch/mm/page.h> |
814 | palkovsky | 44 | #include <mm/slab.h> |
195 | vana | 45 | #include <memstr.h> |
244 | decky | 46 | #include <arch/boot/boot.h> |
576 | palkovsky | 47 | #include <interrupt.h> |
1 | jermar | 48 | |
49 | /* |
||
11 | jermar | 50 | * Early ia32 configuration functions and data structures. |
1 | jermar | 51 | */ |
52 | |||
53 | /* |
||
54 | * We have no use for segmentation so we set up flat mode. In this |
||
55 | * mode, we use, for each privilege level, two segments spanning the |
||
56 | * whole memory. One is for code and one is for data. |
||
1112 | palkovsky | 57 | * |
58 | * One is for GS register which holds pointer to the TLS thread |
||
59 | * structure in it's base. |
||
1 | jermar | 60 | */ |
1187 | jermar | 61 | descriptor_t gdt[GDT_ITEMS] = { |
125 | jermar | 62 | /* NULL descriptor */ |
63 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
||
64 | /* KTEXT descriptor */ |
||
65 | { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 }, |
||
66 | /* KDATA descriptor */ |
||
67 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 }, |
||
68 | /* UTEXT descriptor */ |
||
69 | { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 }, |
||
70 | /* UDATA descriptor */ |
||
71 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 }, |
||
72 | /* TSS descriptor - set up will be completed later */ |
||
1112 | palkovsky | 73 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
1189 | jermar | 74 | /* TLS descriptor */ |
1287 | vana | 75 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 }, |
76 | /* VESA Init descriptor */ |
||
1292 | vana | 77 | #ifdef CONFIG_FB |
1289 | vana | 78 | { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 } |
1292 | vana | 79 | #endif |
1 | jermar | 80 | }; |
81 | |||
1187 | jermar | 82 | static idescriptor_t idt[IDT_ITEMS]; |
1 | jermar | 83 | |
1187 | jermar | 84 | static tss_t tss; |
1 | jermar | 85 | |
1187 | jermar | 86 | tss_t *tss_p = NULL; |
1 | jermar | 87 | |
22 | jermar | 88 | /* gdtr is changed by kmp before next CPU is initialized */ |
1187 | jermar | 89 | ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) }; |
90 | ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (__address) gdt }; |
||
1 | jermar | 91 | |
1187 | jermar | 92 | void gdt_setbase(descriptor_t *d, __address base) |
1 | jermar | 93 | { |
125 | jermar | 94 | d->base_0_15 = base & 0xffff; |
95 | d->base_16_23 = ((base) >> 16) & 0xff; |
||
96 | d->base_24_31 = ((base) >> 24) & 0xff; |
||
1 | jermar | 97 | } |
98 | |||
1187 | jermar | 99 | void gdt_setlimit(descriptor_t *d, __u32 limit) |
1 | jermar | 100 | { |
125 | jermar | 101 | d->limit_0_15 = limit & 0xffff; |
102 | d->limit_16_19 = (limit >> 16) & 0xf; |
||
1 | jermar | 103 | } |
104 | |||
1187 | jermar | 105 | void idt_setoffset(idescriptor_t *d, __address offset) |
1 | jermar | 106 | { |
112 | jermar | 107 | /* |
108 | * Offset is a linear address. |
||
109 | */ |
||
110 | d->offset_0_15 = offset & 0xffff; |
||
111 | d->offset_16_31 = offset >> 16; |
||
1 | jermar | 112 | } |
113 | |||
1187 | jermar | 114 | void tss_initialize(tss_t *t) |
1 | jermar | 115 | { |
116 | memsetb((__address) t, sizeof(struct tss), 0); |
||
117 | } |
||
118 | |||
119 | /* |
||
120 | * This function takes care of proper setup of IDT and IDTR. |
||
121 | */ |
||
122 | void idt_init(void) |
||
123 | { |
||
1187 | jermar | 124 | idescriptor_t *d; |
1 | jermar | 125 | int i; |
125 | jermar | 126 | |
1 | jermar | 127 | for (i = 0; i < IDT_ITEMS; i++) { |
128 | d = &idt[i]; |
||
129 | |||
130 | d->unused = 0; |
||
131 | d->selector = selector(KTEXT_DES); |
||
132 | |||
133 | d->access = AR_PRESENT | AR_INTERRUPT; /* masking interrupt */ |
||
134 | |||
135 | if (i == VECTOR_SYSCALL) { |
||
136 | /* |
||
137 | * The syscall interrupt gate must be calleable from userland. |
||
138 | */ |
||
139 | d->access |= DPL_USER; |
||
140 | } |
||
141 | |||
142 | idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size); |
||
958 | jermar | 143 | exc_register(i, "undef", (iroutine) null_interrupt); |
1 | jermar | 144 | } |
958 | jermar | 145 | exc_register(13, "gp_fault", (iroutine) gp_fault); |
146 | exc_register( 7, "nm_fault", (iroutine) nm_fault); |
||
147 | exc_register(12, "ss_fault", (iroutine) ss_fault); |
||
1019 | vana | 148 | exc_register(19, "simd_fp", (iroutine) simd_fp_exception); |
1 | jermar | 149 | } |
150 | |||
151 | |||
144 | vana | 152 | /* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */ |
141 | vana | 153 | static void clean_IOPL_NT_flags(void) |
154 | { |
||
1187 | jermar | 155 | __asm__ volatile ( |
156 | "pushfl\n" |
||
157 | "pop %%eax\n" |
||
158 | "and $0xffff8fff, %%eax\n" |
||
159 | "push %%eax\n" |
||
160 | "popfl\n" |
||
161 | : : : "eax" |
||
141 | vana | 162 | ); |
163 | } |
||
164 | |||
144 | vana | 165 | /* Clean AM(18) flag in CR0 register */ |
143 | vana | 166 | static void clean_AM_flag(void) |
167 | { |
||
1187 | jermar | 168 | __asm__ volatile ( |
169 | "mov %%cr0, %%eax\n" |
||
170 | "and $0xfffbffff, %%eax\n" |
||
171 | "mov %%eax, %%cr0\n" |
||
172 | : : : "eax" |
||
143 | vana | 173 | ); |
174 | } |
||
141 | vana | 175 | |
1 | jermar | 176 | void pm_init(void) |
177 | { |
||
1187 | jermar | 178 | descriptor_t *gdt_p = (descriptor_t *) gdtr.base; |
179 | ptr_16_32_t idtr; |
||
1 | jermar | 180 | |
181 | /* |
||
232 | jermar | 182 | * Update addresses in GDT and IDT to their virtual counterparts. |
183 | */ |
||
271 | decky | 184 | idtr.limit = sizeof(idt); |
232 | jermar | 185 | idtr.base = (__address) idt; |
1186 | jermar | 186 | gdtr_load(&gdtr); |
187 | idtr_load(&idtr); |
||
232 | jermar | 188 | |
189 | /* |
||
1 | jermar | 190 | * Each CPU has its private GDT and TSS. |
191 | * All CPUs share one IDT. |
||
192 | */ |
||
193 | |||
194 | if (config.cpu_active == 1) { |
||
195 | idt_init(); |
||
196 | /* |
||
197 | * NOTE: bootstrap CPU has statically allocated TSS, because |
||
198 | * the heap hasn't been initialized so far. |
||
199 | */ |
||
200 | tss_p = &tss; |
||
201 | } |
||
202 | else { |
||
1187 | jermar | 203 | tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC); |
1 | jermar | 204 | if (!tss_p) |
68 | decky | 205 | panic("could not allocate TSS\n"); |
1 | jermar | 206 | } |
207 | |||
208 | tss_initialize(tss_p); |
||
209 | |||
210 | gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL; |
||
211 | gdt_p[TSS_DES].special = 1; |
||
1251 | jermar | 212 | gdt_p[TSS_DES].granularity = 0; |
1 | jermar | 213 | |
214 | gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p); |
||
1251 | jermar | 215 | gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1); |
1 | jermar | 216 | |
217 | /* |
||
218 | * As of this moment, the current CPU has its own GDT pointing |
||
219 | * to its own TSS. We just need to load the TR register. |
||
220 | */ |
||
1186 | jermar | 221 | tr_load(selector(TSS_DES)); |
141 | vana | 222 | |
1251 | jermar | 223 | clean_IOPL_NT_flags(); /* Disable I/O on nonprivileged levels and clear NT flag. */ |
144 | vana | 224 | clean_AM_flag(); /* Disable alignment check */ |
1 | jermar | 225 | } |
1112 | palkovsky | 226 | |
227 | void set_tls_desc(__address tls) |
||
228 | { |
||
1187 | jermar | 229 | ptr_16_32_t cpugdtr; |
1188 | jermar | 230 | descriptor_t *gdt_p; |
1112 | palkovsky | 231 | |
1186 | jermar | 232 | gdtr_store(&cpugdtr); |
1188 | jermar | 233 | gdt_p = (descriptor_t *) cpugdtr.base; |
1112 | palkovsky | 234 | gdt_setbase(&gdt_p[TLS_DES], tls); |
235 | /* Reload gdt register to update GS in CPU */ |
||
1186 | jermar | 236 | gdtr_load(&cpugdtr); |
1112 | palkovsky | 237 | } |
1702 | cejka | 238 | |
239 | /** @} |
||
240 | */ |
||
241 |