Rev 3770 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 3743 | rimsky | 1 | # |
| 2 | # Copyright (c) 2005 Jakub Jermar |
||
| 3 | # All rights reserved. |
||
| 4 | # |
||
| 5 | # Redistribution and use in source and binary forms, with or without |
||
| 6 | # modification, are permitted provided that the following conditions |
||
| 7 | # are met: |
||
| 8 | # |
||
| 9 | # - Redistributions of source code must retain the above copyright |
||
| 10 | # notice, this list of conditions and the following disclaimer. |
||
| 11 | # - Redistributions in binary form must reproduce the above copyright |
||
| 12 | # notice, this list of conditions and the following disclaimer in the |
||
| 13 | # documentation and/or other materials provided with the distribution. |
||
| 14 | # - The name of the author may not be used to endorse or promote products |
||
| 15 | # derived from this software without specific prior written permission. |
||
| 16 | # |
||
| 17 | # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | # |
||
| 28 | |||
| 29 | #include <arch/arch.h> |
||
| 30 | #include <arch/sun4u/arch.h> |
||
| 3770 | rimsky | 31 | #include <arch/sun4u/cpu.h> |
| 3743 | rimsky | 32 | #include <arch/sun4u/regdef.h> |
| 33 | #include <arch/boot/boot.h> |
||
| 34 | #include <arch/stack.h> |
||
| 35 | |||
| 3770 | rimsky | 36 | #include <arch/mm/pagesize.h> |
| 3743 | rimsky | 37 | #include <arch/mm/sun4u/mmu.h> |
| 38 | #include <arch/mm/sun4u/tlb.h> |
||
| 39 | #include <arch/mm/sun4u/tte.h> |
||
| 40 | |||
| 41 | #ifdef CONFIG_SMP |
||
| 42 | #include <arch/context_offset.h> |
||
| 43 | #endif |
||
| 44 | |||
| 45 | .register %g2, #scratch |
||
| 46 | .register %g3, #scratch |
||
| 47 | |||
| 48 | .section K_TEXT_START, "ax" |
||
| 49 | |||
| 50 | #define BSP_FLAG 1 |
||
| 51 | |||
| 52 | /* |
||
| 53 | * 2^PHYSMEM_ADDR_SIZE is the size of the physical address space on |
||
| 54 | * a given processor. |
||
| 55 | */ |
||
| 56 | #if defined (US) |
||
| 57 | #define PHYSMEM_ADDR_SIZE 41 |
||
| 58 | #elif defined (US3) |
||
| 59 | #define PHYSMEM_ADDR_SIZE 43 |
||
| 60 | #endif |
||
| 61 | |||
| 62 | /* |
||
| 63 | * Here is where the kernel is passed control from the boot loader. |
||
| 64 | * |
||
| 65 | * The registers are expected to be in this state: |
||
| 66 | * - %o0 starting address of physical memory + bootstrap processor flag |
||
| 67 | * bits 63...1: physical memory starting address / 2 |
||
| 68 | * bit 0: non-zero on BSP processor, zero on AP processors |
||
| 69 | * - %o1 bootinfo structure address (BSP only) |
||
| 70 | * - %o2 bootinfo structure size (BSP only) |
||
| 71 | * |
||
| 72 | * Moreover, we depend on boot having established the following environment: |
||
| 73 | * - TLBs are on |
||
| 74 | * - identity mapping for the kernel image |
||
| 75 | */ |
||
| 76 | |||
| 77 | .global kernel_image_start |
||
| 78 | kernel_image_start: |
||
| 79 | mov BSP_FLAG, %l0 |
||
| 80 | and %o0, %l0, %l7 ! l7 <= bootstrap processor? |
||
| 81 | andn %o0, %l0, %l6 ! l6 <= start of physical memory |
||
| 82 | |||
| 83 | ! Get bits (PHYSMEM_ADDR_SIZE - 1):13 of physmem_base. |
||
| 84 | srlx %l6, 13, %l5 |
||
| 85 | |||
| 86 | ! l5 <= physmem_base[(PHYSMEM_ADDR_SIZE - 1):13] |
||
| 87 | sllx %l5, 13 + (63 - (PHYSMEM_ADDR_SIZE - 1)), %l5 |
||
| 88 | srlx %l5, 63 - (PHYSMEM_ADDR_SIZE - 1), %l5 |
||
| 89 | |||
| 90 | /* |
||
| 91 | * Setup basic runtime environment. |
||
| 92 | */ |
||
| 93 | |||
| 94 | wrpr %g0, NWINDOWS - 2, %cansave ! set maximum saveable windows |
||
| 95 | wrpr %g0, 0, %canrestore ! get rid of windows we will |
||
| 96 | ! never need again |
||
| 97 | wrpr %g0, 0, %otherwin ! make sure the window state is |
||
| 98 | ! consistent |
||
| 99 | wrpr %g0, NWINDOWS - 1, %cleanwin ! prevent needless clean_window |
||
| 100 | ! traps for kernel |
||
| 101 | |||
| 102 | wrpr %g0, 0, %wstate ! use default spill/fill trap |
||
| 103 | |||
| 104 | wrpr %g0, 0, %tl ! TL = 0, primary context |
||
| 105 | ! register is used |
||
| 106 | |||
| 107 | wrpr %g0, PSTATE_PRIV_BIT, %pstate ! disable interrupts and disable |
||
| 108 | ! 32-bit address masking |
||
| 109 | |||
| 110 | wrpr %g0, 0, %pil ! intialize %pil |
||
| 111 | |||
| 112 | /* |
||
| 113 | * Switch to kernel trap table. |
||
| 114 | */ |
||
| 115 | sethi %hi(trap_table), %g1 |
||
| 116 | wrpr %g1, %lo(trap_table), %tba |
||
| 117 | |||
| 118 | /* |
||
| 119 | * Take over the DMMU by installing locked TTE entry identically |
||
| 120 | * mapping the first 4M of memory. |
||
| 121 | * |
||
| 122 | * In case of DMMU, no FLUSH instructions need to be issued. Because of |
||
| 123 | * that, the old DTLB contents can be demapped pretty straightforwardly |
||
| 124 | * and without causing any traps. |
||
| 125 | */ |
||
| 126 | |||
| 127 | wr %g0, ASI_DMMU, %asi |
||
| 128 | |||
| 129 | #define SET_TLB_DEMAP_CMD(r1, context_id) \ |
||
| 130 | set (TLB_DEMAP_CONTEXT << TLB_DEMAP_TYPE_SHIFT) | (context_id << \ |
||
| 131 | TLB_DEMAP_CONTEXT_SHIFT), %r1 |
||
| 132 | |||
| 133 | ! demap context 0 |
||
| 134 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) |
||
| 135 | stxa %g0, [%g1] ASI_DMMU_DEMAP |
||
| 136 | membar #Sync |
||
| 137 | |||
| 138 | #define SET_TLB_TAG(r1, context) \ |
||
| 139 | set VMA | (context << TLB_TAG_ACCESS_CONTEXT_SHIFT), %r1 |
||
| 140 | |||
| 141 | ! write DTLB tag |
||
| 142 | SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) |
||
| 143 | stxa %g1, [VA_DMMU_TAG_ACCESS] %asi |
||
| 144 | membar #Sync |
||
| 145 | |||
| 146 | #ifdef CONFIG_VIRT_IDX_DCACHE |
||
| 147 | #define TTE_LOW_DATA(imm) (TTE_CP | TTE_CV | TTE_P | LMA | (imm)) |
||
| 148 | #else /* CONFIG_VIRT_IDX_DCACHE */ |
||
| 149 | #define TTE_LOW_DATA(imm) (TTE_CP | TTE_P | LMA | (imm)) |
||
| 150 | #endif /* CONFIG_VIRT_IDX_DCACHE */ |
||
| 151 | |||
| 152 | #define SET_TLB_DATA(r1, r2, imm) \ |
||
| 153 | set TTE_LOW_DATA(imm), %r1; \ |
||
| 154 | or %r1, %l5, %r1; \ |
||
| 155 | mov PAGESIZE_4M, %r2; \ |
||
| 156 | sllx %r2, TTE_SIZE_SHIFT, %r2; \ |
||
| 157 | or %r1, %r2, %r1; \ |
||
| 158 | mov 1, %r2; \ |
||
| 159 | sllx %r2, TTE_V_SHIFT, %r2; \ |
||
| 160 | or %r1, %r2, %r1; |
||
| 161 | |||
| 162 | ! write DTLB data and install the kernel mapping |
||
| 163 | SET_TLB_DATA(g1, g2, TTE_L | TTE_W) ! use non-global mapping |
||
| 164 | stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG |
||
| 165 | membar #Sync |
||
| 166 | |||
| 167 | /* |
||
| 168 | * Because we cannot use global mappings (because we want to have |
||
| 169 | * separate 64-bit address spaces for both the kernel and the |
||
| 170 | * userspace), we prepare the identity mapping also in context 1. This |
||
| 171 | * step is required by the code installing the ITLB mapping. |
||
| 172 | */ |
||
| 173 | ! write DTLB tag of context 1 (i.e. MEM_CONTEXT_TEMP) |
||
| 174 | SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) |
||
| 175 | stxa %g1, [VA_DMMU_TAG_ACCESS] %asi |
||
| 176 | membar #Sync |
||
| 177 | |||
| 178 | ! write DTLB data and install the kernel mapping in context 1 |
||
| 179 | SET_TLB_DATA(g1, g2, TTE_W) ! use non-global mapping |
||
| 180 | stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG |
||
| 181 | membar #Sync |
||
| 182 | |||
| 183 | /* |
||
| 184 | * Now is time to take over the IMMU. Unfortunatelly, it cannot be done |
||
| 185 | * as easily as the DMMU, because the IMMU is mapping the code it |
||
| 186 | * executes. |
||
| 187 | * |
||
| 188 | * [ Note that brave experiments with disabling the IMMU and using the |
||
| 189 | * DMMU approach failed after a dozen of desparate days with only little |
||
| 190 | * success. ] |
||
| 191 | * |
||
| 192 | * The approach used here is inspired from OpenBSD. First, the kernel |
||
| 193 | * creates IMMU mapping for itself in context 1 (MEM_CONTEXT_TEMP) and |
||
| 194 | * switches to it. Context 0 (MEM_CONTEXT_KERNEL) can be demapped |
||
| 195 | * afterwards and replaced with the kernel permanent mapping. Finally, |
||
| 196 | * the kernel switches back to context 0 and demaps context 1. |
||
| 197 | * |
||
| 198 | * Moreover, the IMMU requires use of the FLUSH instructions. But that |
||
| 199 | * is OK because we always use operands with addresses already mapped by |
||
| 200 | * the taken over DTLB. |
||
| 201 | */ |
||
| 202 | |||
| 203 | set kernel_image_start, %g5 |
||
| 204 | |||
| 205 | ! write ITLB tag of context 1 |
||
| 206 | SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) |
||
| 207 | mov VA_DMMU_TAG_ACCESS, %g2 |
||
| 208 | stxa %g1, [%g2] ASI_IMMU |
||
| 209 | flush %g5 |
||
| 210 | |||
| 211 | ! write ITLB data and install the temporary mapping in context 1 |
||
| 212 | SET_TLB_DATA(g1, g2, 0) ! use non-global mapping |
||
| 213 | stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG |
||
| 214 | flush %g5 |
||
| 215 | |||
| 216 | ! switch to context 1 |
||
| 217 | mov MEM_CONTEXT_TEMP, %g1 |
||
| 218 | stxa %g1, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! |
||
| 219 | flush %g5 |
||
| 220 | |||
| 221 | ! demap context 0 |
||
| 222 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) |
||
| 223 | stxa %g0, [%g1] ASI_IMMU_DEMAP |
||
| 224 | flush %g5 |
||
| 225 | |||
| 226 | ! write ITLB tag of context 0 |
||
| 227 | SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) |
||
| 228 | mov VA_DMMU_TAG_ACCESS, %g2 |
||
| 229 | stxa %g1, [%g2] ASI_IMMU |
||
| 230 | flush %g5 |
||
| 231 | |||
| 232 | ! write ITLB data and install the permanent kernel mapping in context 0 |
||
| 233 | SET_TLB_DATA(g1, g2, TTE_L) ! use non-global mapping |
||
| 234 | stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG |
||
| 235 | flush %g5 |
||
| 236 | |||
| 237 | ! enter nucleus - using context 0 |
||
| 238 | wrpr %g0, 1, %tl |
||
| 239 | |||
| 240 | ! demap context 1 |
||
| 241 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_PRIMARY) |
||
| 242 | stxa %g0, [%g1] ASI_IMMU_DEMAP |
||
| 243 | flush %g5 |
||
| 244 | |||
| 245 | ! set context 0 in the primary context register |
||
| 246 | stxa %g0, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! |
||
| 247 | flush %g5 |
||
| 248 | |||
| 249 | ! leave nucleus - using primary context, i.e. context 0 |
||
| 250 | wrpr %g0, 0, %tl |
||
| 251 | |||
| 252 | brz %l7, 1f ! skip if you are not the bootstrap CPU |
||
| 253 | nop |
||
| 254 | |||
| 255 | /* |
||
| 256 | * Save physmem_base for use by the mm subsystem. |
||
| 257 | * %l6 contains starting physical address |
||
| 258 | */ |
||
| 259 | sethi %hi(physmem_base), %l4 |
||
| 260 | stx %l6, [%l4 + %lo(physmem_base)] |
||
| 261 | |||
| 262 | /* |
||
| 263 | * Precompute kernel 8K TLB data template. |
||
| 264 | * %l5 contains starting physical address |
||
| 265 | * bits [(PHYSMEM_ADDR_SIZE - 1):13] |
||
| 266 | */ |
||
| 267 | sethi %hi(kernel_8k_tlb_data_template), %l4 |
||
| 268 | ldx [%l4 + %lo(kernel_8k_tlb_data_template)], %l3 |
||
| 269 | or %l3, %l5, %l3 |
||
| 270 | stx %l3, [%l4 + %lo(kernel_8k_tlb_data_template)] |
||
| 271 | |||
| 272 | /* |
||
| 273 | * Flush D-Cache. |
||
| 274 | */ |
||
| 275 | call dcache_flush |
||
| 276 | nop |
||
| 277 | |||
| 278 | /* |
||
| 279 | * So far, we have not touched the stack. |
||
| 280 | * It is a good idea to set the kernel stack to a known state now. |
||
| 281 | */ |
||
| 282 | sethi %hi(temporary_boot_stack), %sp |
||
| 283 | or %sp, %lo(temporary_boot_stack), %sp |
||
| 284 | sub %sp, STACK_BIAS, %sp |
||
| 285 | |||
| 286 | sethi %hi(bootinfo), %o0 |
||
| 287 | call memcpy ! copy bootinfo |
||
| 288 | or %o0, %lo(bootinfo), %o0 |
||
| 289 | |||
| 290 | call arch_pre_main |
||
| 291 | nop |
||
| 292 | |||
| 293 | call main_bsp |
||
| 294 | nop |
||
| 295 | |||
| 296 | /* Not reached. */ |
||
| 297 | |||
| 298 | 0: |
||
| 299 | ba 0b |
||
| 300 | nop |
||
| 301 | |||
| 302 | |||
| 303 | 1: |
||
| 304 | #ifdef CONFIG_SMP |
||
| 305 | /* |
||
| 306 | * Determine the width of the MID and save its mask to %g3. The width |
||
| 307 | * is |
||
| 308 | * * 5 for US and US-IIIi, |
||
| 309 | * * 10 for US3 except US-IIIi. |
||
| 310 | */ |
||
| 311 | #if defined(US) |
||
| 312 | mov 0x1f, %g3 |
||
| 313 | #elif defined(US3) |
||
| 314 | mov 0x3ff, %g3 |
||
| 315 | rdpr %ver, %g2 |
||
| 316 | sllx %g2, 16, %g2 |
||
| 317 | srlx %g2, 48, %g2 |
||
| 318 | cmp %g2, IMPL_ULTRASPARCIII_I |
||
| 319 | move %xcc, 0x1f, %g3 |
||
| 320 | #endif |
||
| 321 | |||
| 322 | /* |
||
| 323 | * Read MID from the processor. |
||
| 324 | */ |
||
| 325 | ldxa [%g0] ASI_ICBUS_CONFIG, %g1 |
||
| 326 | srlx %g1, ICBUS_CONFIG_MID_SHIFT, %g1 |
||
| 327 | and %g1, %g3, %g1 |
||
| 328 | |||
| 329 | /* |
||
| 330 | * Active loop for APs until the BSP picks them up. A processor cannot |
||
| 331 | * leave the loop until the global variable 'waking_up_mid' equals its |
||
| 332 | * MID. |
||
| 333 | */ |
||
| 334 | set waking_up_mid, %g2 |
||
| 335 | 2: |
||
| 336 | ldx [%g2], %g3 |
||
| 337 | cmp %g3, %g1 |
||
| 338 | bne 2b |
||
| 339 | nop |
||
| 340 | |||
| 341 | /* |
||
| 342 | * Configure stack for the AP. |
||
| 343 | * The AP is expected to use the stack saved |
||
| 344 | * in the ctx global variable. |
||
| 345 | */ |
||
| 346 | set ctx, %g1 |
||
| 347 | add %g1, OFFSET_SP, %g1 |
||
| 348 | ldx [%g1], %o6 |
||
| 349 | |||
| 350 | call main_ap |
||
| 351 | nop |
||
| 352 | |||
| 353 | /* Not reached. */ |
||
| 354 | #endif |
||
| 355 | |||
| 356 | 0: |
||
| 357 | ba 0b |
||
| 358 | nop |
||
| 359 | |||
| 360 | |||
| 361 | .section K_DATA_START, "aw", @progbits |
||
| 362 | |||
| 363 | /* |
||
| 364 | * Create small stack to be used by the bootstrap processor. It is going to be |
||
| 365 | * used only for a very limited period of time, but we switch to it anyway, |
||
| 366 | * just to be sure we are properly initialized. |
||
| 367 | */ |
||
| 368 | |||
| 369 | #define INITIAL_STACK_SIZE 1024 |
||
| 370 | |||
| 371 | .align STACK_ALIGNMENT |
||
| 372 | .space INITIAL_STACK_SIZE |
||
| 373 | .align STACK_ALIGNMENT |
||
| 374 | temporary_boot_stack: |
||
| 375 | .space STACK_WINDOW_SAVE_AREA_SIZE |
||
| 376 | |||
| 377 | |||
| 378 | .data |
||
| 379 | |||
| 380 | .align 8 |
||
| 381 | .global physmem_base ! copy of the physical memory base address |
||
| 382 | physmem_base: |
||
| 383 | .quad 0 |
||
| 384 | |||
| 385 | /* |
||
| 386 | * This variable is used by the fast_data_MMU_miss trap handler. In runtime, it |
||
| 387 | * is further modified to reflect the starting address of physical memory. |
||
| 388 | */ |
||
| 389 | .global kernel_8k_tlb_data_template |
||
| 390 | kernel_8k_tlb_data_template: |
||
| 391 | #ifdef CONFIG_VIRT_IDX_DCACHE |
||
| 392 | .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | \ |
||
| 393 | TTE_CV | TTE_P | TTE_W) |
||
| 394 | #else /* CONFIG_VIRT_IDX_DCACHE */ |
||
| 395 | .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | \ |
||
| 396 | TTE_P | TTE_W) |
||
| 397 | #endif /* CONFIG_VIRT_IDX_DCACHE */ |
||
| 398 |