Rev 4638 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
3771 | rimsky | 1 | /* |
2 | * Copyright (c) 2006 Jakub Jermar |
||
3 | * Copyright (c) 2009 Pavel Rimsky |
||
4 | * All rights reserved. |
||
5 | * |
||
6 | * Redistribution and use in source and binary forms, with or without |
||
7 | * modification, are permitted provided that the following conditions |
||
8 | * are met: |
||
9 | * |
||
10 | * - Redistributions of source code must retain the above copyright |
||
11 | * notice, this list of conditions and the following disclaimer. |
||
12 | * - Redistributions in binary form must reproduce the above copyright |
||
13 | * notice, this list of conditions and the following disclaimer in the |
||
14 | * documentation and/or other materials provided with the distribution. |
||
15 | * - The name of the author may not be used to endorse or promote products |
||
16 | * derived from this software without specific prior written permission. |
||
17 | * |
||
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
28 | */ |
||
29 | |||
30 | /** @addtogroup sparc64 |
||
31 | * @{ |
||
32 | */ |
||
33 | /** @file |
||
34 | */ |
||
35 | |||
36 | #include <smp/smp.h> |
||
4638 | rimsky | 37 | #include <smp/ipi.h> |
3771 | rimsky | 38 | #include <genarch/ofw/ofw_tree.h> |
39 | #include <cpu.h> |
||
40 | #include <arch/cpu.h> |
||
4614 | rimsky | 41 | #include <arch/boot/boot.h> |
3771 | rimsky | 42 | #include <arch.h> |
43 | #include <config.h> |
||
44 | #include <macros.h> |
||
4663 | rimsky | 45 | #include <func.h> |
3771 | rimsky | 46 | #include <arch/types.h> |
47 | #include <synch/synch.h> |
||
48 | #include <synch/waitq.h> |
||
49 | #include <print.h> |
||
4614 | rimsky | 50 | #include <arch/sun4v/hypercall.h> |
51 | #include <arch/sun4v/md.h> |
||
4638 | rimsky | 52 | #include <arch/sun4v/ipi.h> |
4614 | rimsky | 53 | #include <time/delay.h> |
3771 | rimsky | 54 | |
4663 | rimsky | 55 | /** hypervisor code of the "running" state of the CPU */ |
4614 | rimsky | 56 | #define CPU_STATE_RUNNING 2 |
57 | |||
4663 | rimsky | 58 | /** maximum possible number of processor cores */ |
59 | #define MAX_NUM_CORES 8 |
||
60 | |||
61 | /** needed in the CPU_START hypercall */ |
||
4614 | rimsky | 62 | extern void kernel_image_start(void); |
4663 | rimsky | 63 | |
64 | /** needed in the CPU_START hypercall */ |
||
4614 | rimsky | 65 | extern void *trap_table; |
66 | |||
4663 | rimsky | 67 | /** number of execution units detected */ |
68 | uint8_t exec_unit_count = 0; |
||
4614 | rimsky | 69 | |
4663 | rimsky | 70 | /** execution units (processor cores) */ |
71 | exec_unit_t exec_units[MAX_NUM_CORES]; |
||
4614 | rimsky | 72 | |
4663 | rimsky | 73 | /** CPU structures */ |
74 | extern cpu_t *cpus; |
||
3771 | rimsky | 75 | |
4663 | rimsky | 76 | /** maximum number of strands per a physical core detected */ |
77 | unsigned int max_core_strands = 0; |
||
3771 | rimsky | 78 | |
4663 | rimsky | 79 | #ifdef CONFIG_SIMICS_SMP_HACK |
80 | /** |
||
81 | * Copies a piece of HelenOS code to the place where OBP had its IPI handler. |
||
82 | * By sending an IPI by the BSP to the AP the code will be executed. |
||
83 | * The code will jump to the first instruction of the kernel. This is |
||
84 | * a workaround how to make APs execute HelenOS code on Simics. |
||
85 | */ |
||
86 | static void simics_smp_hack_init(void) { |
||
4638 | rimsky | 87 | asm volatile ( |
88 | "setx temp_cpu_mondo_handler, %g4, %g6 \n" |
||
89 | "setx 0x80200f80, %g4, %g7 \n" |
||
90 | |||
91 | "ldx [%g6], %g4 \n" |
||
92 | "stxa %g4, [%g7] 0x14 \n" |
||
93 | "membar #Sync \n" |
||
94 | |||
95 | "add %g7, 0x8, %g7 \n" |
||
96 | "ldx [%g6 + 0x8], %g4 \n" |
||
97 | "stxa %g4, [%g7] 0x14 \n" |
||
98 | "membar #Sync \n" |
||
99 | |||
100 | "add %g7, 0x8, %g7 \n" |
||
101 | "ldx [%g6 + 0x10], %g4 \n" |
||
102 | "stxa %g4, [%g7] 0x14 \n" |
||
103 | "membar #Sync \n" |
||
104 | |||
105 | "add %g7, 0x8, %g7 \n" |
||
106 | "ldx [%g6 + 0x18], %g4 \n" |
||
107 | "stxa %g4, [%g7] 0x14 \n" |
||
108 | "membar #Sync \n" |
||
109 | |||
110 | "add %g7, 0x8, %g7 \n" |
||
111 | "ldx [%g6 + 0x20], %g4 \n" |
||
112 | "stxa %g4, [%g7] 0x14 \n" |
||
113 | "membar #Sync \n" |
||
114 | |||
115 | "add %g7, 0x8, %g7 \n" |
||
116 | "ldx [%g6 + 0x28], %g4 \n" |
||
117 | "stxa %g4, [%g7] 0x14 \n" |
||
118 | "membar #Sync \n" |
||
119 | |||
120 | "add %g7, 0x8, %g7 \n" |
||
121 | "ldx [%g6 + 0x30], %g4 \n" |
||
122 | "stxa %g4, [%g7] 0x14 \n" |
||
123 | "membar #Sync \n" |
||
124 | |||
125 | "add %g7, 0x8, %g7 \n" |
||
126 | "ldx [%g6 + 0x38], %g4 \n" |
||
127 | "stxa %g4, [%g7] 0x14 \n" |
||
128 | "membar #Sync \n" |
||
129 | |||
130 | "add %g7, 0x8, %g7 \n" |
||
131 | "ldx [%g6 + 0x40], %g4 \n" |
||
132 | "stxa %g4, [%g7] 0x14 \n" |
||
133 | "membar #Sync \n" |
||
134 | |||
135 | "flush %i7" |
||
136 | |||
137 | ); |
||
4663 | rimsky | 138 | } |
4638 | rimsky | 139 | #endif |
4663 | rimsky | 140 | |
141 | /** |
||
142 | * Finds out which execution units belong to particular CPUs. By execution unit |
||
143 | * we mean the physical core the logical processor is backed by. Since each |
||
144 | * Niagara physical core has just one integer execution unit and we will |
||
145 | * ignore other execution units than the integer ones, we will use the terms |
||
146 | * "integer execution unit", "execution unit" and "physical core" |
||
147 | * interchangeably. |
||
148 | * |
||
149 | * The physical cores are detected by browsing the children of the CPU node |
||
150 | * in the machine description and looking for a node representing an integer |
||
151 | * execution unit. Once the integer execution unit of a particular CPU is |
||
152 | * known, the ID of the CPU is added to the list of cpuids of the corresponding |
||
153 | * execution unit structure (exec_unit_t). If an execution unit is encountered |
||
154 | * for the first time, a new execution unit structure (exec_unit_t) must be |
||
155 | * created first and added to the execution units array (exec_units). |
||
156 | * |
||
157 | * If the function fails to find an execution unit for a CPU (this may happen |
||
158 | * on machines with older firmware or on Simics), it performs a fallback code |
||
159 | * which pretends there exists just one execution unit and all CPUs belong to |
||
160 | * it. |
||
161 | * |
||
162 | * Finally, the array of all execution units is reordered such that its element |
||
163 | * which represents the physical core of the the bootstrap CPU is at index 0. |
||
164 | * Moreover, the array of CPU IDs within the BSP's physical core structure is |
||
165 | * reordered such that the element which represents the ID of the BSP is at |
||
166 | * index 0. This is done because we would like the CPUs to be woken up |
||
167 | * such that the 0-index CPU of the 0-index execution unit is |
||
168 | * woken up first. And since the BSP is already woken up, we would like it to be |
||
169 | * at 0-th position of the 0-th execution unit structure. |
||
170 | * |
||
171 | * Apart from that, the code also counts the total number of CPUs and stores |
||
172 | * it to the global config.cpu_count variable. |
||
173 | */ |
||
174 | static void detect_execution_units(void) |
||
175 | { |
||
176 | /* ID of the bootstrap processor */ |
||
177 | uint64_t myid; |
||
178 | |||
179 | /* total number of CPUs detected */ |
||
180 | count_t cpu_count = 0; |
||
181 | |||
182 | /* will be set to 1 if detecting the physical cores fails */ |
||
183 | bool exec_unit_assign_error = 0; |
||
184 | |||
185 | /* index of the bootstrap physical core in the array of cores */ |
||
186 | unsigned int bsp_exec_unit_index = 0; |
||
187 | |||
188 | /* index of the BSP ID inside the array of bootstrap core's cpuids */ |
||
189 | unsigned int bsp_core_strand_index = 0; |
||
190 | |||
191 | __hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid); |
||
192 | md_node_t node = md_get_root(); |
||
193 | |||
194 | /* walk through all the CPU nodes in the MD*/ |
||
195 | while (md_next_node(&node, "cpu")) { |
||
196 | |||
197 | uint64_t cpuid; |
||
198 | md_get_integer_property(node, "id", &cpuid); |
||
199 | cpu_count++; |
||
200 | |||
201 | /* |
||
202 | * if failed in previous CPUs, don't try |
||
203 | * to detect physical cores any more |
||
204 | */ |
||
205 | if (exec_unit_assign_error) |
||
206 | continue; |
||
207 | |||
208 | /* detect exec. unit for the CPU represented by current node */ |
||
209 | uint64_t exec_unit_id = 0; |
||
210 | md_child_iter_t it = md_get_child_iterator(node); |
||
211 | |||
212 | while (md_next_child(&it)) { |
||
213 | md_node_t child = md_get_child_node(it); |
||
214 | const char *exec_unit_type; |
||
215 | md_get_string_property(child, "type", &exec_unit_type); |
||
216 | |||
217 | /* each physical core has just 1 integer exec. unit */ |
||
218 | if (strcmp(exec_unit_type, "integer") == 0) { |
||
219 | exec_unit_id = child; |
||
220 | break; |
||
221 | } |
||
222 | } |
||
223 | |||
224 | /* execution unit detected successfully */ |
||
225 | if (exec_unit_id != 0) { |
||
226 | |||
227 | /* find the exec. unit in array of existing units */ |
||
228 | unsigned int i = 0; |
||
229 | for (i = 0; i < exec_unit_count; i++) { |
||
230 | if (exec_units[i].exec_unit_id == exec_unit_id) |
||
231 | break; |
||
232 | } |
||
233 | |||
234 | /* |
||
235 | * execution unit just met has not been met before, so |
||
236 | * create a new entry in array of all execution units |
||
237 | */ |
||
238 | if (i == exec_unit_count) { |
||
239 | exec_units[i].exec_unit_id = exec_unit_id; |
||
240 | exec_units[i].strand_count = 0; |
||
241 | exec_unit_count++; |
||
242 | } |
||
243 | |||
244 | /* |
||
245 | * remember the exec. unit and strand of the BSP |
||
246 | */ |
||
247 | if (cpuid == myid) { |
||
248 | bsp_exec_unit_index = i; |
||
249 | bsp_core_strand_index = exec_units[i].strand_count; |
||
250 | } |
||
251 | |||
252 | /* add the CPU just met to the exec. unit's list */ |
||
253 | exec_units[i].cpuids[exec_units[i].strand_count] = cpuid; |
||
254 | exec_units[i].strand_count++; |
||
255 | max_core_strands = |
||
256 | exec_units[i].strand_count > max_core_strands ? |
||
257 | exec_units[i].strand_count : max_core_strands; |
||
258 | |||
259 | /* detecting execution unit failed */ |
||
260 | } else { |
||
261 | exec_unit_assign_error = 1; |
||
262 | } |
||
263 | } |
||
264 | |||
265 | /* save the number of CPUs to a globally accessible variable */ |
||
266 | config.cpu_count = cpu_count; |
||
267 | |||
268 | /* |
||
269 | * A fallback code which will be executed if finding out which |
||
270 | * execution units belong to particular CPUs fails. Pretend there |
||
271 | * exists just one execution unit and all CPUs belong to it. |
||
272 | */ |
||
273 | if (exec_unit_assign_error) { |
||
274 | bsp_exec_unit_index = 0; |
||
275 | exec_unit_count = 1; |
||
276 | exec_units[0].strand_count = cpu_count; |
||
277 | exec_units[0].exec_unit_id = 1; |
||
278 | max_core_strands = cpu_count; |
||
279 | |||
280 | /* browse CPUs again, assign them the fictional exec. unit */ |
||
281 | node = md_get_root(); |
||
282 | unsigned int i = 0; |
||
283 | |||
284 | while (md_next_node(&node, "cpu")) { |
||
285 | uint64_t cpuid; |
||
286 | md_get_integer_property(node, "id", &cpuid); |
||
287 | if (cpuid == myid) { |
||
288 | bsp_core_strand_index = i; |
||
289 | } |
||
290 | exec_units[0].cpuids[i++] = cpuid; |
||
291 | } |
||
292 | } |
||
293 | |||
294 | /* |
||
295 | * Reorder the execution units array elements and the cpuid array |
||
296 | * elements so that the BSP will always be the very first CPU of |
||
297 | * the very first execution unit. |
||
298 | */ |
||
299 | exec_unit_t temp_exec_unit = exec_units[0]; |
||
300 | exec_units[0] = exec_units[bsp_exec_unit_index]; |
||
301 | exec_units[bsp_exec_unit_index] = temp_exec_unit; |
||
302 | |||
303 | uint64_t temp_cpuid = exec_units[0].cpuids[0]; |
||
304 | exec_units[0].cpuids[0] = exec_units[0].cpuids[bsp_exec_unit_index]; |
||
305 | exec_units[0].cpuids[bsp_core_strand_index] = temp_cpuid; |
||
306 | |||
3771 | rimsky | 307 | } |
308 | |||
4663 | rimsky | 309 | /** |
310 | * Determine number of processors and detect physical cores. On Simics |
||
311 | * copy the code which will be executed by the AP when the BSP sends an |
||
312 | * IPI to it in order to make it execute HelenOS code. |
||
313 | */ |
||
314 | void smp_init(void) |
||
315 | { |
||
316 | detect_execution_units(); |
||
317 | #ifdef CONFIG_SIMICS_SMP_HACK |
||
318 | simics_smp_hack_init(); |
||
319 | #endif |
||
320 | } |
||
321 | |||
322 | /** |
||
323 | * For each CPU sets the value of cpus[i].arch.id, where i is the |
||
324 | * index of the CPU in the cpus variable, to the cpuid of the i-th processor |
||
325 | * to be run. The CPUs are run such that the CPU represented by cpus[0] |
||
326 | * is run first, cpus[1] is run after it, and cpus[cpu_count - 1] is run as the |
||
327 | * last one. |
||
328 | * |
||
329 | * The CPU IDs are set such that during waking the CPUs up the |
||
330 | * processor cores will be alternated, i.e. first one CPU from the first core |
||
331 | * will be run, after that one CPU from the second CPU core will be run,... |
||
332 | * then one CPU from the last core will be run, after that another CPU |
||
333 | * from the first core will be run, then another CPU from the second core |
||
334 | * will be run,... then another CPU from the last core will be run, and so on. |
||
335 | */ |
||
336 | static void init_cpuids(void) |
||
337 | { |
||
338 | unsigned int cur_core_strand; |
||
339 | unsigned int cur_core; |
||
340 | unsigned int cur_cpu = 0; |
||
341 | |||
342 | for (cur_core_strand = 0; cur_core_strand < max_core_strands; cur_core_strand++) { |
||
343 | for (cur_core = 0; cur_core < exec_unit_count; cur_core++) { |
||
344 | if (cur_core_strand > exec_units[cur_core].strand_count) |
||
345 | continue; |
||
346 | |||
347 | cpus[cur_cpu++].arch.id = exec_units[cur_core].cpuids[cur_core_strand]; |
||
348 | } |
||
349 | } |
||
350 | } |
||
351 | |||
352 | /** |
||
353 | * Wakes up a single CPU. |
||
354 | * |
||
355 | * @param cpuid ID of the CPU to be woken up |
||
356 | */ |
||
357 | static bool wake_cpu(uint64_t cpuid) |
||
358 | { |
||
359 | |||
360 | #ifdef CONFIG_SIMICS_SMP_HACK |
||
361 | ipi_unicast_to((void (*)(void)) 1234, cpuid); |
||
362 | #else |
||
363 | /* stop the CPU before making it execute our code */ |
||
364 | if (__hypercall_fast1(CPU_STOP, cpuid) != EOK) |
||
365 | return false; |
||
366 | |||
367 | /* wait for the CPU to stop */ |
||
368 | uint64_t state; |
||
369 | __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, |
||
370 | CPU_STATE, &state); |
||
371 | while (state == CPU_STATE_RUNNING) { |
||
372 | __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, |
||
373 | CPU_STATE, &state); |
||
374 | } |
||
375 | |||
376 | /* make the CPU run again and execute HelenOS code */ |
||
377 | if (__hypercall_fast4( |
||
378 | CPU_START, cpuid, |
||
379 | (uint64_t) KA2PA(kernel_image_start), |
||
380 | KA2PA(trap_table), bootinfo.physmem_start |
||
381 | ) != EOK) |
||
382 | return false; |
||
383 | #endif |
||
384 | |||
385 | if (waitq_sleep_timeout(&ap_completion_wq, 10000000, SYNCH_FLAGS_NONE) == |
||
386 | ESYNCH_TIMEOUT) |
||
387 | printf("%s: waiting for processor (cpuid = %" PRIu32 |
||
388 | ") timed out\n", __func__, cpuid); |
||
389 | |||
390 | return true; |
||
391 | } |
||
392 | |||
393 | /** Wake application processors up. */ |
||
394 | void kmp(void *arg) |
||
395 | { |
||
396 | init_cpuids(); |
||
397 | |||
398 | unsigned int i; |
||
399 | |||
400 | for (i = 1; i < config.cpu_count; i++) { |
||
401 | wake_cpu(cpus[i].arch.id); |
||
402 | } |
||
403 | } |
||
404 | |||
3771 | rimsky | 405 | /** @} |
406 | */ |