Rev 4663 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
3771 | rimsky | 1 | /* |
2 | * Copyright (c) 2006 Jakub Jermar |
||
3 | * Copyright (c) 2009 Pavel Rimsky |
||
4 | * All rights reserved. |
||
5 | * |
||
6 | * Redistribution and use in source and binary forms, with or without |
||
7 | * modification, are permitted provided that the following conditions |
||
8 | * are met: |
||
9 | * |
||
10 | * - Redistributions of source code must retain the above copyright |
||
11 | * notice, this list of conditions and the following disclaimer. |
||
12 | * - Redistributions in binary form must reproduce the above copyright |
||
13 | * notice, this list of conditions and the following disclaimer in the |
||
14 | * documentation and/or other materials provided with the distribution. |
||
15 | * - The name of the author may not be used to endorse or promote products |
||
16 | * derived from this software without specific prior written permission. |
||
17 | * |
||
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
28 | */ |
||
29 | |||
30 | /** @addtogroup sparc64 |
||
31 | * @{ |
||
32 | */ |
||
33 | /** @file |
||
34 | */ |
||
35 | |||
36 | #include <smp/smp.h> |
||
4638 | rimsky | 37 | #include <smp/ipi.h> |
3771 | rimsky | 38 | #include <genarch/ofw/ofw_tree.h> |
39 | #include <cpu.h> |
||
40 | #include <arch/cpu.h> |
||
4614 | rimsky | 41 | #include <arch/boot/boot.h> |
3771 | rimsky | 42 | #include <arch.h> |
43 | #include <config.h> |
||
44 | #include <macros.h> |
||
4663 | rimsky | 45 | #include <func.h> |
3771 | rimsky | 46 | #include <arch/types.h> |
47 | #include <synch/synch.h> |
||
48 | #include <synch/waitq.h> |
||
49 | #include <print.h> |
||
4614 | rimsky | 50 | #include <arch/sun4v/hypercall.h> |
51 | #include <arch/sun4v/md.h> |
||
4638 | rimsky | 52 | #include <arch/sun4v/ipi.h> |
4614 | rimsky | 53 | #include <time/delay.h> |
4679 | rimsky | 54 | #include <arch/smp/sun4v/smp.h> |
3771 | rimsky | 55 | |
4663 | rimsky | 56 | /** hypervisor code of the "running" state of the CPU */ |
4614 | rimsky | 57 | #define CPU_STATE_RUNNING 2 |
58 | |||
4663 | rimsky | 59 | /** maximum possible number of processor cores */ |
60 | #define MAX_NUM_CORES 8 |
||
61 | |||
62 | /** needed in the CPU_START hypercall */ |
||
4614 | rimsky | 63 | extern void kernel_image_start(void); |
4663 | rimsky | 64 | |
65 | /** needed in the CPU_START hypercall */ |
||
4614 | rimsky | 66 | extern void *trap_table; |
67 | |||
4663 | rimsky | 68 | /** number of execution units detected */ |
69 | uint8_t exec_unit_count = 0; |
||
4614 | rimsky | 70 | |
4663 | rimsky | 71 | /** execution units (processor cores) */ |
72 | exec_unit_t exec_units[MAX_NUM_CORES]; |
||
4614 | rimsky | 73 | |
4663 | rimsky | 74 | /** CPU structures */ |
75 | extern cpu_t *cpus; |
||
3771 | rimsky | 76 | |
4663 | rimsky | 77 | /** maximum number of strands per a physical core detected */ |
78 | unsigned int max_core_strands = 0; |
||
3771 | rimsky | 79 | |
4663 | rimsky | 80 | #ifdef CONFIG_SIMICS_SMP_HACK |
81 | /** |
||
82 | * Copies a piece of HelenOS code to the place where OBP had its IPI handler. |
||
83 | * By sending an IPI by the BSP to the AP the code will be executed. |
||
84 | * The code will jump to the first instruction of the kernel. This is |
||
85 | * a workaround how to make APs execute HelenOS code on Simics. |
||
86 | */ |
||
87 | static void simics_smp_hack_init(void) { |
||
4638 | rimsky | 88 | asm volatile ( |
89 | "setx temp_cpu_mondo_handler, %g4, %g6 \n" |
||
90 | "setx 0x80200f80, %g4, %g7 \n" |
||
91 | |||
92 | "ldx [%g6], %g4 \n" |
||
93 | "stxa %g4, [%g7] 0x14 \n" |
||
94 | "membar #Sync \n" |
||
95 | |||
96 | "add %g7, 0x8, %g7 \n" |
||
97 | "ldx [%g6 + 0x8], %g4 \n" |
||
98 | "stxa %g4, [%g7] 0x14 \n" |
||
99 | "membar #Sync \n" |
||
100 | |||
101 | "add %g7, 0x8, %g7 \n" |
||
102 | "ldx [%g6 + 0x10], %g4 \n" |
||
103 | "stxa %g4, [%g7] 0x14 \n" |
||
104 | "membar #Sync \n" |
||
105 | |||
106 | "add %g7, 0x8, %g7 \n" |
||
107 | "ldx [%g6 + 0x18], %g4 \n" |
||
108 | "stxa %g4, [%g7] 0x14 \n" |
||
109 | "membar #Sync \n" |
||
110 | |||
111 | "add %g7, 0x8, %g7 \n" |
||
112 | "ldx [%g6 + 0x20], %g4 \n" |
||
113 | "stxa %g4, [%g7] 0x14 \n" |
||
114 | "membar #Sync \n" |
||
115 | |||
116 | "add %g7, 0x8, %g7 \n" |
||
117 | "ldx [%g6 + 0x28], %g4 \n" |
||
118 | "stxa %g4, [%g7] 0x14 \n" |
||
119 | "membar #Sync \n" |
||
120 | |||
121 | "add %g7, 0x8, %g7 \n" |
||
122 | "ldx [%g6 + 0x30], %g4 \n" |
||
123 | "stxa %g4, [%g7] 0x14 \n" |
||
124 | "membar #Sync \n" |
||
125 | |||
126 | "add %g7, 0x8, %g7 \n" |
||
127 | "ldx [%g6 + 0x38], %g4 \n" |
||
128 | "stxa %g4, [%g7] 0x14 \n" |
||
129 | "membar #Sync \n" |
||
130 | |||
131 | "add %g7, 0x8, %g7 \n" |
||
132 | "ldx [%g6 + 0x40], %g4 \n" |
||
133 | "stxa %g4, [%g7] 0x14 \n" |
||
134 | "membar #Sync \n" |
||
135 | |||
136 | "flush %i7" |
||
137 | |||
138 | ); |
||
4663 | rimsky | 139 | } |
4638 | rimsky | 140 | #endif |
4663 | rimsky | 141 | |
4679 | rimsky | 142 | |
4663 | rimsky | 143 | /** |
4679 | rimsky | 144 | * Proposes the optimal number of ready threads for each virtual processor |
145 | * in the given processor core so that the processor core is as busy as the |
||
146 | * average processor core. The proposed number of ready threads will be |
||
147 | * stored to the proposed_nrdy variable of the cpu_arch_t struture. |
||
148 | */ |
||
149 | bool calculate_optimal_nrdy(exec_unit_t *exec_unit) { |
||
150 | |||
151 | /* calculate the number of threads the core will steal */ |
||
152 | int avg = atomic_get(&nrdy) / exec_unit_count; |
||
153 | int to_steal = avg - atomic_get(&(exec_units->nrdy)); |
||
154 | if (to_steal < 0) { |
||
155 | return true; |
||
156 | } else if (to_steal == 0) { |
||
157 | return false; |
||
158 | } |
||
159 | |||
160 | /* initialize the proposals with the real numbers of ready threads */ |
||
161 | unsigned int k; |
||
162 | for (k = 0; k < exec_unit->strand_count; k++) { |
||
163 | exec_units->cpus[k]->arch.proposed_nrdy = |
||
164 | atomic_get(&(exec_unit->cpus[k]->nrdy)); |
||
165 | } |
||
166 | |||
167 | /* distribute the threads to be stolen to the core's CPUs */ |
||
168 | int j; |
||
169 | for (j = to_steal; j > 0; j--) { |
||
170 | unsigned int k; |
||
171 | unsigned int least_busy = 0; |
||
172 | unsigned int least_busy_nrdy = |
||
173 | exec_unit->cpus[0]->arch.proposed_nrdy; |
||
174 | |||
175 | /* for each stolen thread, give it to the least busy CPU */ |
||
176 | for (k = 0; k < exec_unit->strand_count; k++) { |
||
177 | if (exec_unit->cpus[k]->arch.proposed_nrdy |
||
178 | < least_busy_nrdy) { |
||
179 | least_busy = k; |
||
180 | least_busy_nrdy = |
||
181 | exec_unit->cpus[k]->arch.proposed_nrdy; |
||
182 | } |
||
183 | } |
||
184 | exec_unit->cpus[least_busy]->arch.proposed_nrdy++; |
||
185 | } |
||
186 | |||
187 | return false; |
||
188 | } |
||
189 | |||
190 | /** |
||
4663 | rimsky | 191 | * Finds out which execution units belong to particular CPUs. By execution unit |
192 | * we mean the physical core the logical processor is backed by. Since each |
||
193 | * Niagara physical core has just one integer execution unit and we will |
||
194 | * ignore other execution units than the integer ones, we will use the terms |
||
195 | * "integer execution unit", "execution unit" and "physical core" |
||
196 | * interchangeably. |
||
197 | * |
||
198 | * The physical cores are detected by browsing the children of the CPU node |
||
199 | * in the machine description and looking for a node representing an integer |
||
200 | * execution unit. Once the integer execution unit of a particular CPU is |
||
201 | * known, the ID of the CPU is added to the list of cpuids of the corresponding |
||
202 | * execution unit structure (exec_unit_t). If an execution unit is encountered |
||
203 | * for the first time, a new execution unit structure (exec_unit_t) must be |
||
204 | * created first and added to the execution units array (exec_units). |
||
205 | * |
||
206 | * If the function fails to find an execution unit for a CPU (this may happen |
||
207 | * on machines with older firmware or on Simics), it performs a fallback code |
||
208 | * which pretends there exists just one execution unit and all CPUs belong to |
||
209 | * it. |
||
210 | * |
||
211 | * Finally, the array of all execution units is reordered such that its element |
||
212 | * which represents the physical core of the the bootstrap CPU is at index 0. |
||
213 | * Moreover, the array of CPU IDs within the BSP's physical core structure is |
||
214 | * reordered such that the element which represents the ID of the BSP is at |
||
215 | * index 0. This is done because we would like the CPUs to be woken up |
||
216 | * such that the 0-index CPU of the 0-index execution unit is |
||
217 | * woken up first. And since the BSP is already woken up, we would like it to be |
||
218 | * at 0-th position of the 0-th execution unit structure. |
||
219 | * |
||
220 | * Apart from that, the code also counts the total number of CPUs and stores |
||
221 | * it to the global config.cpu_count variable. |
||
222 | */ |
||
223 | static void detect_execution_units(void) |
||
224 | { |
||
225 | /* ID of the bootstrap processor */ |
||
226 | uint64_t myid; |
||
227 | |||
228 | /* total number of CPUs detected */ |
||
229 | count_t cpu_count = 0; |
||
230 | |||
231 | /* will be set to 1 if detecting the physical cores fails */ |
||
232 | bool exec_unit_assign_error = 0; |
||
233 | |||
234 | /* index of the bootstrap physical core in the array of cores */ |
||
235 | unsigned int bsp_exec_unit_index = 0; |
||
236 | |||
237 | /* index of the BSP ID inside the array of bootstrap core's cpuids */ |
||
238 | unsigned int bsp_core_strand_index = 0; |
||
239 | |||
240 | __hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid); |
||
241 | md_node_t node = md_get_root(); |
||
242 | |||
243 | /* walk through all the CPU nodes in the MD*/ |
||
244 | while (md_next_node(&node, "cpu")) { |
||
245 | |||
246 | uint64_t cpuid; |
||
247 | md_get_integer_property(node, "id", &cpuid); |
||
248 | cpu_count++; |
||
249 | |||
250 | /* |
||
251 | * if failed in previous CPUs, don't try |
||
252 | * to detect physical cores any more |
||
253 | */ |
||
254 | if (exec_unit_assign_error) |
||
255 | continue; |
||
256 | |||
257 | /* detect exec. unit for the CPU represented by current node */ |
||
258 | uint64_t exec_unit_id = 0; |
||
259 | md_child_iter_t it = md_get_child_iterator(node); |
||
260 | |||
261 | while (md_next_child(&it)) { |
||
262 | md_node_t child = md_get_child_node(it); |
||
263 | const char *exec_unit_type; |
||
264 | md_get_string_property(child, "type", &exec_unit_type); |
||
265 | |||
266 | /* each physical core has just 1 integer exec. unit */ |
||
267 | if (strcmp(exec_unit_type, "integer") == 0) { |
||
268 | exec_unit_id = child; |
||
269 | break; |
||
270 | } |
||
271 | } |
||
272 | |||
273 | /* execution unit detected successfully */ |
||
274 | if (exec_unit_id != 0) { |
||
275 | |||
276 | /* find the exec. unit in array of existing units */ |
||
277 | unsigned int i = 0; |
||
278 | for (i = 0; i < exec_unit_count; i++) { |
||
279 | if (exec_units[i].exec_unit_id == exec_unit_id) |
||
280 | break; |
||
281 | } |
||
282 | |||
283 | /* |
||
284 | * execution unit just met has not been met before, so |
||
285 | * create a new entry in array of all execution units |
||
286 | */ |
||
287 | if (i == exec_unit_count) { |
||
288 | exec_units[i].exec_unit_id = exec_unit_id; |
||
289 | exec_units[i].strand_count = 0; |
||
4679 | rimsky | 290 | atomic_set(&(exec_units[i].nrdy), 0); |
291 | spinlock_initialize(&(exec_units[i].proposed_nrdy_lock), "proposed nrdy lock"); |
||
4663 | rimsky | 292 | exec_unit_count++; |
293 | } |
||
294 | |||
295 | /* |
||
296 | * remember the exec. unit and strand of the BSP |
||
297 | */ |
||
298 | if (cpuid == myid) { |
||
299 | bsp_exec_unit_index = i; |
||
300 | bsp_core_strand_index = exec_units[i].strand_count; |
||
301 | } |
||
302 | |||
303 | /* add the CPU just met to the exec. unit's list */ |
||
304 | exec_units[i].cpuids[exec_units[i].strand_count] = cpuid; |
||
305 | exec_units[i].strand_count++; |
||
306 | max_core_strands = |
||
307 | exec_units[i].strand_count > max_core_strands ? |
||
308 | exec_units[i].strand_count : max_core_strands; |
||
309 | |||
310 | /* detecting execution unit failed */ |
||
311 | } else { |
||
312 | exec_unit_assign_error = 1; |
||
313 | } |
||
314 | } |
||
315 | |||
316 | /* save the number of CPUs to a globally accessible variable */ |
||
317 | config.cpu_count = cpu_count; |
||
318 | |||
319 | /* |
||
320 | * A fallback code which will be executed if finding out which |
||
321 | * execution units belong to particular CPUs fails. Pretend there |
||
322 | * exists just one execution unit and all CPUs belong to it. |
||
323 | */ |
||
324 | if (exec_unit_assign_error) { |
||
325 | bsp_exec_unit_index = 0; |
||
326 | exec_unit_count = 1; |
||
327 | exec_units[0].strand_count = cpu_count; |
||
328 | exec_units[0].exec_unit_id = 1; |
||
4679 | rimsky | 329 | spinlock_initialize(&(exec_units[0].proposed_nrdy_lock), "proposed nrdy lock"); |
330 | atomic_set(&(exec_units[0].nrdy), 0); |
||
4663 | rimsky | 331 | max_core_strands = cpu_count; |
332 | |||
333 | /* browse CPUs again, assign them the fictional exec. unit */ |
||
334 | node = md_get_root(); |
||
335 | unsigned int i = 0; |
||
336 | |||
337 | while (md_next_node(&node, "cpu")) { |
||
338 | uint64_t cpuid; |
||
339 | md_get_integer_property(node, "id", &cpuid); |
||
340 | if (cpuid == myid) { |
||
341 | bsp_core_strand_index = i; |
||
342 | } |
||
343 | exec_units[0].cpuids[i++] = cpuid; |
||
344 | } |
||
345 | } |
||
346 | |||
347 | /* |
||
348 | * Reorder the execution units array elements and the cpuid array |
||
349 | * elements so that the BSP will always be the very first CPU of |
||
350 | * the very first execution unit. |
||
351 | */ |
||
352 | exec_unit_t temp_exec_unit = exec_units[0]; |
||
353 | exec_units[0] = exec_units[bsp_exec_unit_index]; |
||
354 | exec_units[bsp_exec_unit_index] = temp_exec_unit; |
||
355 | |||
356 | uint64_t temp_cpuid = exec_units[0].cpuids[0]; |
||
357 | exec_units[0].cpuids[0] = exec_units[0].cpuids[bsp_exec_unit_index]; |
||
358 | exec_units[0].cpuids[bsp_core_strand_index] = temp_cpuid; |
||
359 | |||
3771 | rimsky | 360 | } |
361 | |||
4663 | rimsky | 362 | /** |
363 | * Determine number of processors and detect physical cores. On Simics |
||
364 | * copy the code which will be executed by the AP when the BSP sends an |
||
365 | * IPI to it in order to make it execute HelenOS code. |
||
366 | */ |
||
367 | void smp_init(void) |
||
368 | { |
||
369 | detect_execution_units(); |
||
370 | #ifdef CONFIG_SIMICS_SMP_HACK |
||
371 | simics_smp_hack_init(); |
||
372 | #endif |
||
373 | } |
||
374 | |||
375 | /** |
||
376 | * For each CPU sets the value of cpus[i].arch.id, where i is the |
||
377 | * index of the CPU in the cpus variable, to the cpuid of the i-th processor |
||
378 | * to be run. The CPUs are run such that the CPU represented by cpus[0] |
||
379 | * is run first, cpus[1] is run after it, and cpus[cpu_count - 1] is run as the |
||
380 | * last one. |
||
381 | * |
||
382 | * The CPU IDs are set such that during waking the CPUs up the |
||
383 | * processor cores will be alternated, i.e. first one CPU from the first core |
||
384 | * will be run, after that one CPU from the second CPU core will be run,... |
||
385 | * then one CPU from the last core will be run, after that another CPU |
||
386 | * from the first core will be run, then another CPU from the second core |
||
387 | * will be run,... then another CPU from the last core will be run, and so on. |
||
388 | */ |
||
389 | static void init_cpuids(void) |
||
390 | { |
||
391 | unsigned int cur_core_strand; |
||
392 | unsigned int cur_core; |
||
393 | unsigned int cur_cpu = 0; |
||
394 | |||
395 | for (cur_core_strand = 0; cur_core_strand < max_core_strands; cur_core_strand++) { |
||
396 | for (cur_core = 0; cur_core < exec_unit_count; cur_core++) { |
||
397 | if (cur_core_strand > exec_units[cur_core].strand_count) |
||
398 | continue; |
||
399 | |||
4679 | rimsky | 400 | cpus[cur_cpu].arch.exec_unit = &(exec_units[cur_core]); |
401 | atomic_add(&(exec_units[cur_core].nrdy), atomic_get(&(cpus[cur_cpu].nrdy))); |
||
402 | cpus[cur_cpu].arch.id = exec_units[cur_core].cpuids[cur_core_strand]; |
||
403 | exec_units[cur_core].cpus[cur_core_strand] = &(cpus[cur_cpu]); |
||
404 | cur_cpu++; |
||
4663 | rimsky | 405 | } |
406 | } |
||
407 | } |
||
408 | |||
409 | /** |
||
410 | * Wakes up a single CPU. |
||
411 | * |
||
412 | * @param cpuid ID of the CPU to be woken up |
||
413 | */ |
||
414 | static bool wake_cpu(uint64_t cpuid) |
||
415 | { |
||
416 | |||
417 | #ifdef CONFIG_SIMICS_SMP_HACK |
||
418 | ipi_unicast_to((void (*)(void)) 1234, cpuid); |
||
419 | #else |
||
420 | /* stop the CPU before making it execute our code */ |
||
421 | if (__hypercall_fast1(CPU_STOP, cpuid) != EOK) |
||
422 | return false; |
||
423 | |||
424 | /* wait for the CPU to stop */ |
||
425 | uint64_t state; |
||
426 | __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, |
||
427 | CPU_STATE, &state); |
||
428 | while (state == CPU_STATE_RUNNING) { |
||
429 | __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, |
||
430 | CPU_STATE, &state); |
||
431 | } |
||
432 | |||
433 | /* make the CPU run again and execute HelenOS code */ |
||
434 | if (__hypercall_fast4( |
||
435 | CPU_START, cpuid, |
||
436 | (uint64_t) KA2PA(kernel_image_start), |
||
437 | KA2PA(trap_table), bootinfo.physmem_start |
||
438 | ) != EOK) |
||
439 | return false; |
||
440 | #endif |
||
441 | |||
442 | if (waitq_sleep_timeout(&ap_completion_wq, 10000000, SYNCH_FLAGS_NONE) == |
||
443 | ESYNCH_TIMEOUT) |
||
444 | printf("%s: waiting for processor (cpuid = %" PRIu32 |
||
445 | ") timed out\n", __func__, cpuid); |
||
446 | |||
447 | return true; |
||
448 | } |
||
449 | |||
450 | /** Wake application processors up. */ |
||
451 | void kmp(void *arg) |
||
452 | { |
||
453 | init_cpuids(); |
||
454 | |||
455 | unsigned int i; |
||
456 | |||
457 | for (i = 1; i < config.cpu_count; i++) { |
||
458 | wake_cpu(cpus[i].arch.id); |
||
459 | } |
||
460 | } |
||
461 | |||
3771 | rimsky | 462 | /** @} |
463 | */ |