Rev 3743 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1018 | decky | 1 | /* |
2071 | jermar | 2 | * Copyright (c) 2005 Martin Decky |
3 | * Copyright (c) 2006 Jakub Jermar |
||
1018 | decky | 4 | * All rights reserved. |
5 | * |
||
6 | * Redistribution and use in source and binary forms, with or without |
||
7 | * modification, are permitted provided that the following conditions |
||
8 | * are met: |
||
9 | * |
||
10 | * - Redistributions of source code must retain the above copyright |
||
11 | * notice, this list of conditions and the following disclaimer. |
||
12 | * - Redistributions in binary form must reproduce the above copyright |
||
13 | * notice, this list of conditions and the following disclaimer in the |
||
14 | * documentation and/or other materials provided with the distribution. |
||
15 | * - The name of the author may not be used to endorse or promote products |
||
16 | * derived from this software without specific prior written permission. |
||
17 | * |
||
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
28 | */ |
||
29 | |||
30 | #include "main.h" |
||
1764 | jermar | 31 | #include <printf.h> |
1018 | decky | 32 | #include "asm.h" |
1685 | decky | 33 | #include "_components.h" |
1894 | jermar | 34 | #include <balloc.h> |
1782 | jermar | 35 | #include <ofw.h> |
1894 | jermar | 36 | #include <ofw_tree.h> |
1837 | jermar | 37 | #include "ofwarch.h" |
1789 | jermar | 38 | #include <align.h> |
3492 | rimsky | 39 | #include <string.h> |
1018 | decky | 40 | |
1782 | jermar | 41 | bootinfo_t bootinfo; |
3582 | rimsky | 42 | |
1972 | jermar | 43 | component_t components[COMPONENTS]; |
1782 | jermar | 44 | |
1997 | decky | 45 | char *release = RELEASE; |
46 | |||
47 | #ifdef REVISION |
||
48 | char *revision = ", revision " REVISION; |
||
49 | #else |
||
50 | char *revision = ""; |
||
51 | #endif |
||
52 | |||
53 | #ifdef TIMESTAMP |
||
54 | char *timestamp = "\nBuilt on " TIMESTAMP; |
||
55 | #else |
||
56 | char *timestamp = ""; |
||
57 | #endif |
||
58 | |||
3743 | rimsky | 59 | /** UltraSPARC subarchitecture - 1 for US, 3 for US3, 0 for other */ |
60 | uint8_t subarchitecture = 0; |
||
3664 | rimsky | 61 | |
62 | /** |
||
63 | * mask of the MID field inside the ICBUS_CONFIG register shifted by |
||
64 | * MID_SHIFT bits to the right |
||
65 | */ |
||
66 | uint16_t mid_mask; |
||
67 | |||
1997 | decky | 68 | /** Print version information. */ |
69 | static void version_print(void) |
||
70 | { |
||
3397 | rimsky | 71 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n" |
72 | "Copyright (c) 2006 HelenOS project\n", |
||
73 | release, revision, timestamp); |
||
1997 | decky | 74 | } |
75 | |||
3618 | rimsky | 76 | /* the lowest ID (read from the VER register) of some US3 CPU model */ |
3664 | rimsky | 77 | #define FIRST_US3_CPU 0x14 |
3618 | rimsky | 78 | |
79 | /* the greatest ID (read from the VER register) of some US3 CPU model */ |
||
3664 | rimsky | 80 | #define LAST_US3_CPU 0x19 |
3618 | rimsky | 81 | |
3664 | rimsky | 82 | /* UltraSPARC IIIi processor implementation code */ |
83 | #define US_IIIi_CODE 0x15 |
||
84 | |||
3743 | rimsky | 85 | /* max. length of the "compatible" property of the root node */ |
86 | #define COMPATIBLE_PROP_MAXLEN 64 |
||
87 | |||
88 | /* |
||
89 | * HelenOS bootloader will use these constants to distinguish particular |
||
90 | * UltraSPARC architectures |
||
91 | */ |
||
92 | #define COMPATIBLE_SUN4U 10 |
||
93 | #define COMPATIBLE_SUN4V 20 |
||
94 | |||
95 | /** US architecture. COMPATIBLE_SUN4U for sun4v, COMPATIBLE_SUN4V for sun4u */ |
||
96 | static uint8_t architecture; |
||
97 | |||
3618 | rimsky | 98 | /** |
3743 | rimsky | 99 | * Detects the UltraSPARC architecture (sun4u and sun4v currently supported) |
100 | * by inspecting the property called "compatible" in the OBP root node. |
||
101 | */ |
||
102 | static void detect_architecture(void) |
||
103 | { |
||
104 | phandle root = ofw_find_device("/"); |
||
105 | char compatible[COMPATIBLE_PROP_MAXLEN]; |
||
106 | |||
107 | if (ofw_get_property(root, "compatible", compatible, |
||
108 | COMPATIBLE_PROP_MAXLEN) <= 0) { |
||
109 | printf("Unable to determine architecture, default: sun4u.\n"); |
||
110 | architecture = COMPATIBLE_SUN4U; |
||
111 | return; |
||
112 | } |
||
113 | |||
114 | if (strcmp(compatible, "sun4v") == 0) { |
||
115 | architecture = COMPATIBLE_SUN4V; |
||
116 | } else { |
||
117 | /* |
||
118 | * As not all sun4u machines have "sun4u" in their "compatible" |
||
119 | * OBP property (e.g. Serengeti's OBP "compatible" property is |
||
120 | * "SUNW,Serengeti"), we will by default fallback to sun4u if |
||
121 | * an unknown value of the "compatible" property is encountered. |
||
122 | */ |
||
123 | architecture = COMPATIBLE_SUN4U; |
||
124 | } |
||
125 | } |
||
126 | |||
127 | /** |
||
128 | * Detects the subarchitecture (US, US3) of the sun4u |
||
129 | * processor. Sets the global variables "subarchitecture" and "mid_mask" to |
||
3664 | rimsky | 130 | * correct values. |
3618 | rimsky | 131 | */ |
3582 | rimsky | 132 | static void detect_subarchitecture(void) |
133 | { |
||
134 | uint64_t v; |
||
135 | asm volatile ("rdpr %%ver, %0\n" : "=r" (v)); |
||
136 | |||
137 | v = (v << 16) >> 48; |
||
138 | if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) { |
||
139 | subarchitecture = SUBARCH_US3; |
||
3664 | rimsky | 140 | if (v == US_IIIi_CODE) |
141 | mid_mask = (1 << 5) - 1; |
||
142 | else |
||
143 | mid_mask = (1 << 10) - 1; |
||
3582 | rimsky | 144 | } else if (v < FIRST_US3_CPU) { |
145 | subarchitecture = SUBARCH_US; |
||
3664 | rimsky | 146 | mid_mask = (1 << 5) - 1; |
147 | } else { |
||
148 | printf("\nThis CPU is not supported by HelenOS."); |
||
3582 | rimsky | 149 | } |
150 | } |
||
151 | |||
3743 | rimsky | 152 | /** |
153 | * Performs sun4u-specific initialization. The components are expected |
||
154 | * to be already copied and boot allocator initialized. |
||
3770 | rimsky | 155 | * |
156 | * @param base kernel base virtual address |
||
157 | * @param top virtual address above which the boot allocator |
||
158 | * can make allocations |
||
3743 | rimsky | 159 | */ |
3770 | rimsky | 160 | static void bootstrap_sun4u(void *base, unsigned int top) |
3743 | rimsky | 161 | { |
3770 | rimsky | 162 | void *balloc_base; |
163 | |||
164 | /* |
||
165 | * Claim and map the physical memory for the boot allocator. |
||
166 | * Initialize the boot allocator. |
||
167 | */ |
||
168 | balloc_base = base + ALIGN_UP(top, PAGE_SIZE); |
||
169 | (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base, |
||
170 | BALLOC_MAX_SIZE); |
||
171 | (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1); |
||
172 | balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base); |
||
173 | |||
3743 | rimsky | 174 | printf("\nCanonizing OpenFirmware device tree..."); |
175 | bootinfo.ofw_root = ofw_tree_build(); |
||
176 | printf("done.\n"); |
||
177 | |||
178 | detect_subarchitecture(); |
||
179 | |||
180 | #ifdef CONFIG_SMP |
||
181 | printf("\nChecking for secondary processors..."); |
||
182 | if (!ofw_cpu()) |
||
183 | printf("Error: unable to get CPU properties\n"); |
||
184 | printf("done.\n"); |
||
185 | #endif |
||
186 | |||
187 | setup_palette(); |
||
188 | } |
||
189 | |||
190 | /** |
||
191 | * Performs sun4v-specific initialization. The components are expected |
||
192 | * to be already copied and boot allocator initialized. |
||
193 | */ |
||
194 | static void bootstrap_sun4v(void) |
||
195 | { |
||
3770 | rimsky | 196 | /* |
197 | * When SILO booted, the OBP had established a virtual to physical |
||
198 | * memory mapping. This mapping is not an identity (because the |
||
199 | * physical memory starts on non-zero address) - this is not |
||
200 | * surprising. But! The mapping even does not map virtual address |
||
201 | * 0 onto the starting address of the physical memory, but onto an |
||
202 | * address which is 0x400000 bytes higher. The reason is that the |
||
203 | * OBP had already used the memory just at the beginning of the |
||
204 | * physical memory, so that memory cannot be used by SILO (nor |
||
205 | * bootloader). As for now, we solve it by a nasty workaround: |
||
206 | * we pretend that the physical memory starts 0x400000 bytes further |
||
207 | * than it actually does (and hence pretend that the physical memory |
||
208 | * is 0x400000 bytes smaller). Of course, the value 0x400000 will most |
||
209 | * probably depend on the machine and OBP version (the workaround now |
||
210 | * works on Simics). A solution would be to inspect the "available" |
||
211 | * property of the "/memory" node to find out which parts of memory |
||
212 | * are used by OBP and redesign the algorithm of copying |
||
213 | * kernel/init tasks/ramdisk from the bootable image to memory |
||
214 | * (which we must do anyway because of issues with claiming the memory |
||
215 | * on Serengeti). |
||
216 | */ |
||
217 | bootinfo.physmem_start += 0x400000; |
||
218 | bootinfo.memmap.zones[0].start += 0x400000; |
||
219 | bootinfo.memmap.zones[0].size -= 0x400000; |
||
3743 | rimsky | 220 | } |
221 | |||
1018 | decky | 222 | void bootstrap(void) |
223 | { |
||
3492 | rimsky | 224 | void *base = (void *) KERNEL_VIRTUAL_ADDRESS; |
225 | unsigned int top = 0; |
||
226 | int i, j; |
||
227 | |||
3743 | rimsky | 228 | detect_architecture(); |
1685 | decky | 229 | init_components(components); |
1782 | jermar | 230 | |
1978 | jermar | 231 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { |
232 | printf("Error: unable to get start of physical memory.\n"); |
||
233 | halt(); |
||
234 | } |
||
235 | |||
1789 | jermar | 236 | if (!ofw_memmap(&bootinfo.memmap)) { |
237 | printf("Error: unable to get memory map, halting.\n"); |
||
238 | halt(); |
||
239 | } |
||
3502 | rimsky | 240 | |
1789 | jermar | 241 | if (bootinfo.memmap.total == 0) { |
242 | printf("Error: no memory detected, halting.\n"); |
||
243 | halt(); |
||
244 | } |
||
3397 | rimsky | 245 | |
246 | /* |
||
247 | * SILO for some reason adds 0x400000 and subtracts |
||
248 | * bootinfo.physmem_start to/from silo_ramdisk_image. |
||
249 | * We just need plain physical address so we fix it up. |
||
250 | */ |
||
251 | if (silo_ramdisk_image) { |
||
252 | silo_ramdisk_image += bootinfo.physmem_start; |
||
253 | silo_ramdisk_image -= 0x400000; |
||
3492 | rimsky | 254 | /* Install 1:1 mapping for the ramdisk. */ |
255 | if (ofw_map((void *)((uintptr_t)silo_ramdisk_image), |
||
256 | (void *)((uintptr_t)silo_ramdisk_image), |
||
257 | silo_ramdisk_size, -1) != 0) { |
||
258 | printf("Failed to map ramdisk.\n"); |
||
259 | halt(); |
||
260 | } |
||
3397 | rimsky | 261 | } |
1789 | jermar | 262 | |
1899 | jermar | 263 | printf("\nSystem info\n"); |
1978 | jermar | 264 | printf(" memory: %dM starting at %P\n", |
3397 | rimsky | 265 | bootinfo.memmap.total >> 20, bootinfo.physmem_start); |
1789 | jermar | 266 | |
1685 | decky | 267 | printf("\nMemory statistics\n"); |
1789 | jermar | 268 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); |
269 | printf(" %P: boot info structure\n", &bootinfo); |
||
1685 | decky | 270 | |
3492 | rimsky | 271 | /* |
272 | * Figure out destination address for each component. |
||
273 | * In this phase, we don't copy the components yet because we want to |
||
274 | * to be careful not to overwrite anything, especially the components |
||
275 | * which haven't been copied yet. |
||
276 | */ |
||
277 | bootinfo.taskmap.count = 0; |
||
278 | for (i = 0; i < COMPONENTS; i++) { |
||
1978 | jermar | 279 | printf(" %P: %s image (size %d bytes)\n", components[i].start, |
2250 | jermar | 280 | components[i].name, components[i].size); |
3492 | rimsky | 281 | top = ALIGN_UP(top, PAGE_SIZE); |
282 | if (i > 0) { |
||
283 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
||
284 | printf("Skipping superfluous components.\n"); |
||
285 | break; |
||
286 | } |
||
287 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
||
288 | base + top; |
||
289 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
||
290 | components[i].size; |
||
291 | bootinfo.taskmap.count++; |
||
292 | } |
||
293 | top += components[i].size; |
||
294 | } |
||
1782 | jermar | 295 | |
3492 | rimsky | 296 | j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */ |
1894 | jermar | 297 | |
3492 | rimsky | 298 | if (silo_ramdisk_image) { |
299 | /* Treat the ramdisk as the last bootinfo task. */ |
||
300 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { |
||
301 | printf("Skipping ramdisk.\n"); |
||
302 | goto skip_ramdisk; |
||
303 | } |
||
1685 | decky | 304 | top = ALIGN_UP(top, PAGE_SIZE); |
3492 | rimsky | 305 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = |
306 | base + top; |
||
307 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = |
||
308 | silo_ramdisk_size; |
||
309 | bootinfo.taskmap.count++; |
||
310 | printf("\nCopying ramdisk..."); |
||
311 | /* |
||
312 | * Claim and map the whole ramdisk as it may exceed the area |
||
313 | * given to us by SILO. |
||
314 | */ |
||
315 | (void) ofw_claim_phys(base + top, silo_ramdisk_size); |
||
316 | (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1); |
||
317 | memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image), |
||
318 | silo_ramdisk_size); |
||
319 | printf("done.\n"); |
||
320 | top += silo_ramdisk_size; |
||
321 | } |
||
322 | skip_ramdisk: |
||
2250 | jermar | 323 | |
3492 | rimsky | 324 | /* |
325 | * Now we can proceed to copy the components. We do it in reverse order |
||
326 | * so that we don't overwrite anything even if the components overlap |
||
327 | * with base. |
||
328 | */ |
||
329 | printf("\nCopying bootinfo tasks\n"); |
||
330 | for (i = COMPONENTS - 1; i > 0; i--, j--) { |
||
331 | printf(" %s...", components[i].name); |
||
332 | |||
2250 | jermar | 333 | /* |
334 | * At this point, we claim the physical memory that we are |
||
335 | * going to use. We should be safe in case of the virtual |
||
336 | * address space because the OpenFirmware, according to its |
||
337 | * SPARC binding, should restrict its use of virtual memory |
||
338 | * to addresses from [0xffd00000; 0xffefffff] and |
||
339 | * [0xfe000000; 0xfeffffff]. |
||
3492 | rimsky | 340 | * |
341 | * XXX We don't map this piece of memory. We simply rely on |
||
342 | * SILO to have it done for us already in this case. |
||
2250 | jermar | 343 | */ |
3492 | rimsky | 344 | (void) ofw_claim_phys(bootinfo.physmem_start + |
345 | bootinfo.taskmap.tasks[j].addr, |
||
2250 | jermar | 346 | ALIGN_UP(components[i].size, PAGE_SIZE)); |
347 | |||
3492 | rimsky | 348 | memcpy((void *)bootinfo.taskmap.tasks[j].addr, |
349 | components[i].start, components[i].size); |
||
1685 | decky | 350 | printf("done.\n"); |
1018 | decky | 351 | } |
1782 | jermar | 352 | |
3492 | rimsky | 353 | printf("\nCopying kernel..."); |
354 | (void) ofw_claim_phys(bootinfo.physmem_start + base, |
||
355 | ALIGN_UP(components[0].size, PAGE_SIZE)); |
||
356 | memcpy(base, components[0].start, components[0].size); |
||
357 | printf("done.\n"); |
||
358 | |||
3743 | rimsky | 359 | /* perform architecture-specific initialization */ |
360 | if (architecture == COMPATIBLE_SUN4U) { |
||
3770 | rimsky | 361 | bootstrap_sun4u(base, top); |
3743 | rimsky | 362 | } else if (architecture == COMPATIBLE_SUN4V) { |
363 | bootstrap_sun4v(); |
||
364 | } else { |
||
365 | printf("Unknown architecture.\n"); |
||
366 | halt(); |
||
367 | } |
||
1894 | jermar | 368 | |
1018 | decky | 369 | printf("\nBooting the kernel...\n"); |
1978 | jermar | 370 | jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS, |
2250 | jermar | 371 | bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo, |
372 | sizeof(bootinfo)); |
||
1018 | decky | 373 | } |
2250 | jermar | 374 |