Rev 2416 | Rev 2450 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1 | jermar | 1 | /* |
| 2336 | mencl | 2 | * Copyright (C) 2001-2004 Jakub Jermar |
| 1 | jermar | 3 | * All rights reserved. |
| 4 | * |
||
| 5 | * Redistribution and use in source and binary forms, with or without |
||
| 6 | * modification, are permitted provided that the following conditions |
||
| 7 | * are met: |
||
| 8 | * |
||
| 9 | * - Redistributions of source code must retain the above copyright |
||
| 10 | * notice, this list of conditions and the following disclaimer. |
||
| 11 | * - Redistributions in binary form must reproduce the above copyright |
||
| 12 | * notice, this list of conditions and the following disclaimer in the |
||
| 13 | * documentation and/or other materials provided with the distribution. |
||
| 14 | * - The name of the author may not be used to endorse or promote products |
||
| 15 | * derived from this software without specific prior written permission. |
||
| 16 | * |
||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | */ |
||
| 28 | |||
| 1731 | jermar | 29 | /** @addtogroup time |
| 1702 | cejka | 30 | * @{ |
| 31 | */ |
||
| 32 | |||
| 1264 | jermar | 33 | /** |
| 1702 | cejka | 34 | * @file |
| 1264 | jermar | 35 | * @brief High-level clock interrupt handler. |
| 36 | * |
||
| 37 | * This file contains the clock() function which is the source |
||
| 38 | * of preemption. It is also responsible for executing expired |
||
| 39 | * timeouts. |
||
| 40 | */ |
||
| 41 | |||
| 1 | jermar | 42 | #include <time/clock.h> |
| 43 | #include <time/timeout.h> |
||
| 44 | #include <config.h> |
||
| 45 | #include <synch/spinlock.h> |
||
| 46 | #include <synch/waitq.h> |
||
| 47 | #include <func.h> |
||
| 48 | #include <proc/scheduler.h> |
||
| 49 | #include <cpu.h> |
||
| 50 | #include <arch.h> |
||
| 788 | jermar | 51 | #include <adt/list.h> |
| 1104 | jermar | 52 | #include <atomic.h> |
| 391 | jermar | 53 | #include <proc/thread.h> |
| 1434 | palkovsky | 54 | #include <sysinfo/sysinfo.h> |
| 55 | #include <arch/barrier.h> |
||
| 2015 | jermar | 56 | #include <mm/frame.h> |
| 57 | #include <ddi/ddi.h> |
||
| 1 | jermar | 58 | |
| 2307 | hudecek | 59 | /* Pointer to variable with uptime */ |
| 60 | uptime_t *uptime; |
||
| 61 | |||
| 62 | /** Physical memory area of the real time clock */ |
||
| 2015 | jermar | 63 | static parea_t clock_parea; |
| 64 | |||
| 1434 | palkovsky | 65 | /* Variable holding fragment of second, so that we would update |
| 66 | * seconds correctly |
||
| 67 | */ |
||
| 1780 | jermar | 68 | static unative_t secfrag = 0; |
| 1434 | palkovsky | 69 | |
| 70 | /** Initialize realtime clock counter |
||
| 71 | * |
||
| 72 | * The applications (and sometimes kernel) need to access accurate |
||
| 73 | * information about realtime data. We allocate 1 page with these |
||
| 74 | * data and update it periodically. |
||
| 75 | */ |
||
| 76 | void clock_counter_init(void) |
||
| 77 | { |
||
| 78 | void *faddr; |
||
| 79 | |||
| 2015 | jermar | 80 | faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC); |
| 1434 | palkovsky | 81 | if (!faddr) |
| 82 | panic("Cannot allocate page for clock"); |
||
| 83 | |||
| 2307 | hudecek | 84 | uptime = (uptime_t *) PA2KA(faddr); |
| 85 | |||
| 86 | uptime->seconds1 = 0; |
||
| 87 | uptime->seconds2 = 0; |
||
| 88 | uptime->useconds = 0; |
||
| 1434 | palkovsky | 89 | |
| 2015 | jermar | 90 | clock_parea.pbase = (uintptr_t) faddr; |
| 2307 | hudecek | 91 | clock_parea.vbase = (uintptr_t) uptime; |
| 2015 | jermar | 92 | clock_parea.frames = 1; |
| 93 | clock_parea.cacheable = true; |
||
| 94 | ddi_parea_register(&clock_parea); |
||
| 95 | |||
| 96 | /* |
||
| 97 | * Prepare information for the userspace so that it can successfully |
||
| 98 | * physmem_map() the clock_parea. |
||
| 99 | */ |
||
| 100 | sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true); |
||
| 101 | sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr); |
||
| 1434 | palkovsky | 102 | } |
| 103 | |||
| 104 | |||
| 105 | /** Update public counters |
||
| 106 | * |
||
| 107 | * Update it only on first processor |
||
| 108 | * TODO: Do we really need so many write barriers? |
||
| 109 | */ |
||
| 110 | static void clock_update_counters(void) |
||
| 111 | { |
||
| 112 | if (CPU->id == 0) { |
||
| 2307 | hudecek | 113 | secfrag += 1000000 / HZ; |
| 1434 | palkovsky | 114 | if (secfrag >= 1000000) { |
| 1438 | palkovsky | 115 | secfrag -= 1000000; |
| 2307 | hudecek | 116 | uptime->seconds1++; |
| 1434 | palkovsky | 117 | write_barrier(); |
| 2307 | hudecek | 118 | uptime->useconds = secfrag; |
| 1438 | palkovsky | 119 | write_barrier(); |
| 2307 | hudecek | 120 | uptime->seconds2 = uptime->seconds1; |
| 1434 | palkovsky | 121 | } else |
| 2307 | hudecek | 122 | uptime->useconds += 1000000 / HZ; |
| 1434 | palkovsky | 123 | } |
| 124 | } |
||
| 125 | |||
| 2421 | mencl | 126 | #if defined CONFIG_TIMEOUT_AVL_TREE |
| 2336 | mencl | 127 | |
| 107 | decky | 128 | /** Clock routine |
| 129 | * |
||
| 130 | * Clock routine executed from clock interrupt handler |
||
| 413 | jermar | 131 | * (assuming interrupts_disable()'d). Runs expired timeouts |
| 107 | decky | 132 | * and preemptive scheduling. |
| 133 | * |
||
| 1 | jermar | 134 | */ |
| 135 | void clock(void) |
||
| 136 | { |
||
| 2336 | mencl | 137 | timeout_t *h; |
| 138 | timeout_handler_t f; |
||
| 139 | void *arg; |
||
| 140 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
| 2416 | mencl | 141 | uint64_t *i = &(CPU->timeout_active_tree.base); |
| 142 | uint64_t absolute_clock_ticks = *i + missed_clock_ticks; |
||
| 143 | avltree_node_t *expnode; |
||
| 2421 | mencl | 144 | |
| 145 | /* |
||
| 146 | * To avoid lock ordering problems, |
||
| 147 | * run all expired timeouts as you visit them. |
||
| 148 | */ |
||
| 149 | |||
| 150 | for (; *i <= absolute_clock_ticks; (*i)++) { |
||
| 151 | /* |
||
| 152 | * Basetime is encreased by missed clock ticks + 1 !! |
||
| 153 | */ |
||
| 154 | |||
| 155 | clock_update_counters(); |
||
| 156 | spinlock_lock(&CPU->timeoutlock); |
||
| 157 | |||
| 158 | |||
| 159 | /* |
||
| 160 | * Check whether first timeout (with the smallest key in the tree) time out. If so perform |
||
| 161 | * callback function and try next timeout (more timeouts can have same timeout). |
||
| 162 | */ |
||
| 163 | while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) { |
||
| 164 | h = avltree_get_instance(expnode,timeout_t,node); |
||
| 165 | spinlock_lock(&h->lock); |
||
| 166 | if (expnode->key != *i) { |
||
| 167 | spinlock_unlock(&h->lock); |
||
| 168 | break; |
||
| 169 | } |
||
| 170 | |||
| 171 | /* |
||
| 172 | * Delete minimal key from the tree and repair tree structure in |
||
| 173 | * logarithmic time. |
||
| 174 | */ |
||
| 175 | avltree_delete_min(&CPU->timeout_active_tree); |
||
| 176 | |||
| 177 | f = h->handler; |
||
| 178 | arg = h->arg; |
||
| 179 | timeout_reinitialize(h); |
||
| 180 | spinlock_unlock(&h->lock); |
||
| 181 | spinlock_unlock(&CPU->timeoutlock); |
||
| 182 | |||
| 183 | f(arg); |
||
| 184 | |||
| 185 | spinlock_lock(&CPU->timeoutlock); |
||
| 186 | } |
||
| 187 | spinlock_unlock(&CPU->timeoutlock); |
||
| 188 | } |
||
| 189 | |||
| 190 | CPU->missed_clock_ticks = 0; |
||
| 191 | |||
| 192 | /* |
||
| 193 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
| 194 | */ |
||
| 195 | if (THREAD) { |
||
| 196 | uint64_t ticks; |
||
| 197 | |||
| 198 | spinlock_lock(&CPU->lock); |
||
| 199 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
| 200 | spinlock_unlock(&CPU->lock); |
||
| 201 | |||
| 202 | spinlock_lock(&THREAD->lock); |
||
| 203 | if ((ticks = THREAD->ticks)) { |
||
| 204 | if (ticks >= 1 + missed_clock_ticks) |
||
| 205 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
| 206 | else |
||
| 207 | THREAD->ticks = 0; |
||
| 208 | } |
||
| 209 | spinlock_unlock(&THREAD->lock); |
||
| 210 | |||
| 211 | if (!ticks && !PREEMPTION_DISABLED) { |
||
| 212 | scheduler(); |
||
| 213 | } |
||
| 214 | } |
||
| 215 | } |
||
| 216 | |||
| 2416 | mencl | 217 | #elif defined CONFIG_TIMEOUT_EXTAVL_TREE |
| 2421 | mencl | 218 | |
| 219 | /** Clock routine |
||
| 220 | * |
||
| 221 | * Clock routine executed from clock interrupt handler |
||
| 222 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
| 223 | * and preemptive scheduling. |
||
| 224 | * |
||
| 225 | */ |
||
| 226 | void clock(void) |
||
| 227 | { |
||
| 228 | timeout_t *h; |
||
| 229 | timeout_handler_t f; |
||
| 230 | void *arg; |
||
| 231 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
| 232 | uint64_t *i = &(CPU->timeout_active_tree.base); |
||
| 233 | uint64_t absolute_clock_ticks = *i + missed_clock_ticks; |
||
| 2416 | mencl | 234 | extavltree_node_t *expnode; |
| 235 | |||
| 2336 | mencl | 236 | /* |
| 237 | * To avoid lock ordering problems, |
||
| 238 | * run all expired timeouts as you visit them. |
||
| 239 | */ |
||
| 240 | |||
| 241 | for (; *i <= absolute_clock_ticks; (*i)++) { |
||
| 2416 | mencl | 242 | /* |
| 243 | * Basetime is encreased by missed clock ticks + 1 !! |
||
| 244 | */ |
||
| 245 | |||
| 2336 | mencl | 246 | clock_update_counters(); |
| 247 | spinlock_lock(&CPU->timeoutlock); |
||
| 2416 | mencl | 248 | |
| 249 | /* |
||
| 250 | * Check whether first timeout in list time out. If so perform callback function and try |
||
| 251 | * next timeout (more timeouts can have same timeout). |
||
| 252 | */ |
||
| 253 | while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) { |
||
| 2336 | mencl | 254 | h = extavltree_get_instance(expnode,timeout_t,node); |
| 255 | spinlock_lock(&h->lock); |
||
| 256 | if (expnode->key != *i) { |
||
| 257 | spinlock_unlock(&h->lock); |
||
| 258 | break; |
||
| 259 | } |
||
| 260 | |||
| 2416 | mencl | 261 | /* |
| 262 | * Delete first node in the list and repair tree structure in |
||
| 263 | * constant time. |
||
| 264 | */ |
||
| 2336 | mencl | 265 | extavltree_delete_min(&CPU->timeout_active_tree); |
| 266 | |||
| 267 | f = h->handler; |
||
| 268 | arg = h->arg; |
||
| 269 | timeout_reinitialize(h); |
||
| 270 | spinlock_unlock(&h->lock); |
||
| 271 | spinlock_unlock(&CPU->timeoutlock); |
||
| 272 | |||
| 273 | f(arg); |
||
| 274 | |||
| 275 | spinlock_lock(&CPU->timeoutlock); |
||
| 276 | } |
||
| 277 | spinlock_unlock(&CPU->timeoutlock); |
||
| 278 | } |
||
| 279 | |||
| 280 | CPU->missed_clock_ticks = 0; |
||
| 281 | |||
| 282 | /* |
||
| 283 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
| 284 | */ |
||
| 285 | if (THREAD) { |
||
| 286 | uint64_t ticks; |
||
| 287 | |||
| 288 | spinlock_lock(&CPU->lock); |
||
| 289 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
| 290 | spinlock_unlock(&CPU->lock); |
||
| 291 | |||
| 292 | spinlock_lock(&THREAD->lock); |
||
| 293 | if ((ticks = THREAD->ticks)) { |
||
| 294 | if (ticks >= 1 + missed_clock_ticks) |
||
| 295 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
| 296 | else |
||
| 297 | THREAD->ticks = 0; |
||
| 298 | } |
||
| 299 | spinlock_unlock(&THREAD->lock); |
||
| 300 | |||
| 301 | if (!ticks && !PREEMPTION_DISABLED) { |
||
| 302 | scheduler(); |
||
| 303 | } |
||
| 304 | } |
||
| 305 | } |
||
| 306 | |||
| 2416 | mencl | 307 | #elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE |
| 2336 | mencl | 308 | |
| 2416 | mencl | 309 | /** Clock routine |
| 310 | * |
||
| 311 | * Clock routine executed from clock interrupt handler |
||
| 312 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
| 313 | * and preemptive scheduling. |
||
| 314 | * |
||
| 315 | */ |
||
| 316 | void clock(void) |
||
| 317 | { |
||
| 2421 | mencl | 318 | extavlreltree_node_t *expnode; |
| 2416 | mencl | 319 | timeout_t *h; |
| 320 | timeout_handler_t f; |
||
| 321 | void *arg; |
||
| 322 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
| 323 | int i; |
||
| 324 | |||
| 325 | /* |
||
| 326 | * To avoid lock ordering problems, |
||
| 327 | * run all expired timeouts as you visit them. |
||
| 328 | */ |
||
| 329 | for (i = 0; i <= missed_clock_ticks; i++) { |
||
| 330 | clock_update_counters(); |
||
| 331 | spinlock_lock(&CPU->timeoutlock); |
||
| 332 | |||
| 333 | /* |
||
| 334 | * Check whether first timeout in list time out. If so perform callback function and try |
||
| 335 | * next timeout (more timeouts can have same timeout). |
||
| 336 | */ |
||
| 337 | while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) { |
||
| 2421 | mencl | 338 | h = extavlreltree_get_instance(expnode,timeout_t,node); |
| 2416 | mencl | 339 | spinlock_lock(&h->lock); |
| 340 | if (expnode->key != 0) { |
||
| 341 | expnode->key--; |
||
| 342 | spinlock_unlock(&h->lock); |
||
| 343 | break; |
||
| 344 | } |
||
| 345 | |||
| 346 | /* |
||
| 347 | * Delete first node in the list and repair tree structure in |
||
| 348 | * constant time. Be careful of expnode's key, it must be 0! |
||
| 349 | */ |
||
| 2421 | mencl | 350 | extavlreltree_delete_min(&CPU->timeout_active_tree); |
| 2416 | mencl | 351 | |
| 352 | f = h->handler; |
||
| 353 | arg = h->arg; |
||
| 354 | timeout_reinitialize(h); |
||
| 355 | spinlock_unlock(&h->lock); |
||
| 356 | spinlock_unlock(&CPU->timeoutlock); |
||
| 357 | |||
| 358 | f(arg); |
||
| 359 | |||
| 360 | spinlock_lock(&CPU->timeoutlock); |
||
| 361 | } |
||
| 362 | spinlock_unlock(&CPU->timeoutlock); |
||
| 363 | } |
||
| 364 | CPU->missed_clock_ticks = 0; |
||
| 365 | |||
| 366 | /* |
||
| 367 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
| 368 | */ |
||
| 369 | |||
| 370 | if (THREAD) { |
||
| 371 | uint64_t ticks; |
||
| 372 | |||
| 373 | spinlock_lock(&CPU->lock); |
||
| 374 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
| 375 | spinlock_unlock(&CPU->lock); |
||
| 376 | |||
| 377 | spinlock_lock(&THREAD->lock); |
||
| 378 | if ((ticks = THREAD->ticks)) { |
||
| 379 | if (ticks >= 1 + missed_clock_ticks) |
||
| 380 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
| 381 | else |
||
| 382 | THREAD->ticks = 0; |
||
| 383 | } |
||
| 384 | spinlock_unlock(&THREAD->lock); |
||
| 385 | |||
| 386 | if (!ticks && !PREEMPTION_DISABLED) { |
||
| 387 | scheduler(); |
||
| 388 | } |
||
| 389 | } |
||
| 390 | } |
||
| 391 | |||
| 392 | |||
| 393 | |||
| 2336 | mencl | 394 | #else |
| 395 | |||
| 396 | |||
| 397 | /** Clock routine |
||
| 398 | * |
||
| 399 | * Clock routine executed from clock interrupt handler |
||
| 400 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
| 401 | * and preemptive scheduling. |
||
| 402 | * |
||
| 403 | */ |
||
| 404 | void clock(void) |
||
| 405 | { |
||
| 1 | jermar | 406 | link_t *l; |
| 407 | timeout_t *h; |
||
| 411 | jermar | 408 | timeout_handler_t f; |
| 1 | jermar | 409 | void *arg; |
| 1457 | jermar | 410 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
| 1431 | jermar | 411 | int i; |
| 1 | jermar | 412 | |
| 413 | /* |
||
| 414 | * To avoid lock ordering problems, |
||
| 415 | * run all expired timeouts as you visit them. |
||
| 416 | */ |
||
| 1457 | jermar | 417 | for (i = 0; i <= missed_clock_ticks; i++) { |
| 1434 | palkovsky | 418 | clock_update_counters(); |
| 1431 | jermar | 419 | spinlock_lock(&CPU->timeoutlock); |
| 420 | while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) { |
||
| 421 | h = list_get_instance(l, timeout_t, link); |
||
| 422 | spinlock_lock(&h->lock); |
||
| 423 | if (h->ticks-- != 0) { |
||
| 424 | spinlock_unlock(&h->lock); |
||
| 425 | break; |
||
| 426 | } |
||
| 427 | list_remove(l); |
||
| 428 | f = h->handler; |
||
| 429 | arg = h->arg; |
||
| 430 | timeout_reinitialize(h); |
||
| 431 | spinlock_unlock(&h->lock); |
||
| 432 | spinlock_unlock(&CPU->timeoutlock); |
||
| 433 | |||
| 434 | f(arg); |
||
| 435 | |||
| 436 | spinlock_lock(&CPU->timeoutlock); |
||
| 1 | jermar | 437 | } |
| 15 | jermar | 438 | spinlock_unlock(&CPU->timeoutlock); |
| 1 | jermar | 439 | } |
| 1431 | jermar | 440 | CPU->missed_clock_ticks = 0; |
| 1 | jermar | 441 | |
| 442 | /* |
||
| 15 | jermar | 443 | * Do CPU usage accounting and find out whether to preempt THREAD. |
| 1 | jermar | 444 | */ |
| 445 | |||
| 15 | jermar | 446 | if (THREAD) { |
| 1780 | jermar | 447 | uint64_t ticks; |
| 221 | jermar | 448 | |
| 15 | jermar | 449 | spinlock_lock(&CPU->lock); |
| 1457 | jermar | 450 | CPU->needs_relink += 1 + missed_clock_ticks; |
| 15 | jermar | 451 | spinlock_unlock(&CPU->lock); |
| 1 | jermar | 452 | |
| 15 | jermar | 453 | spinlock_lock(&THREAD->lock); |
| 1457 | jermar | 454 | if ((ticks = THREAD->ticks)) { |
| 455 | if (ticks >= 1 + missed_clock_ticks) |
||
| 456 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
| 457 | else |
||
| 458 | THREAD->ticks = 0; |
||
| 459 | } |
||
| 221 | jermar | 460 | spinlock_unlock(&THREAD->lock); |
| 461 | |||
| 462 | if (!ticks && !PREEMPTION_DISABLED) { |
||
| 1 | jermar | 463 | scheduler(); |
| 464 | } |
||
| 465 | } |
||
| 466 | } |
||
| 1702 | cejka | 467 | |
| 2336 | mencl | 468 | #endif |
| 1731 | jermar | 469 | /** @} |
| 1702 | cejka | 470 | */ |