Rev 2131 | Rev 2292 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2071 | jermar | 2 | * Copyright (c) 2001-2007 Jakub Jermar |
1 | jermar | 3 | * All rights reserved. |
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1757 | jermar | 29 | /** @addtogroup genericproc |
1702 | cejka | 30 | * @{ |
31 | */ |
||
32 | |||
1248 | jermar | 33 | /** |
1702 | cejka | 34 | * @file |
1248 | jermar | 35 | * @brief Scheduler and load balancing. |
36 | * |
||
1264 | jermar | 37 | * This file contains the scheduler and kcpulb kernel thread which |
1248 | jermar | 38 | * performs load-balancing of per-CPU run queues. |
39 | */ |
||
40 | |||
1 | jermar | 41 | #include <proc/scheduler.h> |
42 | #include <proc/thread.h> |
||
43 | #include <proc/task.h> |
||
378 | jermar | 44 | #include <mm/frame.h> |
45 | #include <mm/page.h> |
||
703 | jermar | 46 | #include <mm/as.h> |
2089 | decky | 47 | #include <time/timeout.h> |
1571 | jermar | 48 | #include <time/delay.h> |
378 | jermar | 49 | #include <arch/asm.h> |
50 | #include <arch/faddr.h> |
||
2030 | decky | 51 | #include <arch/cycle.h> |
1104 | jermar | 52 | #include <atomic.h> |
378 | jermar | 53 | #include <synch/spinlock.h> |
1 | jermar | 54 | #include <config.h> |
55 | #include <context.h> |
||
2089 | decky | 56 | #include <fpu_context.h> |
1 | jermar | 57 | #include <func.h> |
58 | #include <arch.h> |
||
788 | jermar | 59 | #include <adt/list.h> |
68 | decky | 60 | #include <panic.h> |
378 | jermar | 61 | #include <cpu.h> |
195 | vana | 62 | #include <print.h> |
227 | jermar | 63 | #include <debug.h> |
2283 | hudecek | 64 | #include <proc/tasklet.h> |
1 | jermar | 65 | |
1187 | jermar | 66 | static void before_task_runs(void); |
67 | static void before_thread_runs(void); |
||
68 | static void after_thread_ran(void); |
||
898 | jermar | 69 | static void scheduler_separated_stack(void); |
195 | vana | 70 | |
898 | jermar | 71 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
72 | |||
1187 | jermar | 73 | /** Carry out actions before new task runs. */ |
74 | void before_task_runs(void) |
||
75 | { |
||
76 | before_task_runs_arch(); |
||
77 | } |
||
78 | |||
897 | jermar | 79 | /** Take actions before new thread runs. |
107 | decky | 80 | * |
118 | jermar | 81 | * Perform actions that need to be |
82 | * taken before the newly selected |
||
83 | * tread is passed control. |
||
107 | decky | 84 | * |
827 | palkovsky | 85 | * THREAD->lock is locked on entry |
86 | * |
||
107 | decky | 87 | */ |
52 | vana | 88 | void before_thread_runs(void) |
89 | { |
||
309 | palkovsky | 90 | before_thread_runs_arch(); |
906 | palkovsky | 91 | #ifdef CONFIG_FPU_LAZY |
1882 | jermar | 92 | if(THREAD == CPU->fpu_owner) |
309 | palkovsky | 93 | fpu_enable(); |
94 | else |
||
95 | fpu_disable(); |
||
906 | palkovsky | 96 | #else |
309 | palkovsky | 97 | fpu_enable(); |
98 | if (THREAD->fpu_context_exists) |
||
906 | palkovsky | 99 | fpu_context_restore(THREAD->saved_fpu_context); |
309 | palkovsky | 100 | else { |
906 | palkovsky | 101 | fpu_init(); |
1882 | jermar | 102 | THREAD->fpu_context_exists = 1; |
309 | palkovsky | 103 | } |
906 | palkovsky | 104 | #endif |
52 | vana | 105 | } |
106 | |||
898 | jermar | 107 | /** Take actions after THREAD had run. |
897 | jermar | 108 | * |
109 | * Perform actions that need to be |
||
110 | * taken after the running thread |
||
898 | jermar | 111 | * had been preempted by the scheduler. |
897 | jermar | 112 | * |
113 | * THREAD->lock is locked on entry |
||
114 | * |
||
115 | */ |
||
116 | void after_thread_ran(void) |
||
117 | { |
||
118 | after_thread_ran_arch(); |
||
119 | } |
||
120 | |||
458 | decky | 121 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 122 | void scheduler_fpu_lazy_request(void) |
123 | { |
||
907 | palkovsky | 124 | restart: |
309 | palkovsky | 125 | fpu_enable(); |
827 | palkovsky | 126 | spinlock_lock(&CPU->lock); |
127 | |||
128 | /* Save old context */ |
||
309 | palkovsky | 129 | if (CPU->fpu_owner != NULL) { |
827 | palkovsky | 130 | spinlock_lock(&CPU->fpu_owner->lock); |
906 | palkovsky | 131 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
309 | palkovsky | 132 | /* don't prevent migration */ |
1882 | jermar | 133 | CPU->fpu_owner->fpu_context_engaged = 0; |
827 | palkovsky | 134 | spinlock_unlock(&CPU->fpu_owner->lock); |
907 | palkovsky | 135 | CPU->fpu_owner = NULL; |
309 | palkovsky | 136 | } |
827 | palkovsky | 137 | |
138 | spinlock_lock(&THREAD->lock); |
||
898 | jermar | 139 | if (THREAD->fpu_context_exists) { |
906 | palkovsky | 140 | fpu_context_restore(THREAD->saved_fpu_context); |
898 | jermar | 141 | } else { |
906 | palkovsky | 142 | /* Allocate FPU context */ |
143 | if (!THREAD->saved_fpu_context) { |
||
144 | /* Might sleep */ |
||
145 | spinlock_unlock(&THREAD->lock); |
||
907 | palkovsky | 146 | spinlock_unlock(&CPU->lock); |
2067 | jermar | 147 | THREAD->saved_fpu_context = |
2118 | decky | 148 | (fpu_context_t *) slab_alloc(fpu_context_slab, 0); |
907 | palkovsky | 149 | /* We may have switched CPUs during slab_alloc */ |
150 | goto restart; |
||
906 | palkovsky | 151 | } |
152 | fpu_init(); |
||
1882 | jermar | 153 | THREAD->fpu_context_exists = 1; |
309 | palkovsky | 154 | } |
1882 | jermar | 155 | CPU->fpu_owner = THREAD; |
309 | palkovsky | 156 | THREAD->fpu_context_engaged = 1; |
898 | jermar | 157 | spinlock_unlock(&THREAD->lock); |
827 | palkovsky | 158 | |
159 | spinlock_unlock(&CPU->lock); |
||
309 | palkovsky | 160 | } |
161 | #endif |
||
52 | vana | 162 | |
107 | decky | 163 | /** Initialize scheduler |
164 | * |
||
165 | * Initialize kernel scheduler. |
||
166 | * |
||
167 | */ |
||
1 | jermar | 168 | void scheduler_init(void) |
169 | { |
||
170 | } |
||
171 | |||
107 | decky | 172 | /** Get thread to be scheduled |
173 | * |
||
174 | * Get the optimal thread to be scheduled |
||
109 | jermar | 175 | * according to thread accounting and scheduler |
107 | decky | 176 | * policy. |
177 | * |
||
178 | * @return Thread to be scheduled. |
||
179 | * |
||
180 | */ |
||
483 | jermar | 181 | static thread_t *find_best_thread(void) |
1 | jermar | 182 | { |
183 | thread_t *t; |
||
184 | runq_t *r; |
||
783 | palkovsky | 185 | int i; |
1 | jermar | 186 | |
227 | jermar | 187 | ASSERT(CPU != NULL); |
188 | |||
1 | jermar | 189 | loop: |
413 | jermar | 190 | interrupts_enable(); |
1 | jermar | 191 | |
783 | palkovsky | 192 | if (atomic_get(&CPU->nrdy) == 0) { |
1 | jermar | 193 | /* |
194 | * For there was nothing to run, the CPU goes to sleep |
||
195 | * until a hardware interrupt or an IPI comes. |
||
196 | * This improves energy saving and hyperthreading. |
||
197 | */ |
||
785 | jermar | 198 | |
199 | /* |
||
200 | * An interrupt might occur right now and wake up a thread. |
||
201 | * In such case, the CPU will continue to go to sleep |
||
202 | * even though there is a runnable thread. |
||
203 | */ |
||
204 | |||
1 | jermar | 205 | cpu_sleep(); |
206 | goto loop; |
||
207 | } |
||
208 | |||
413 | jermar | 209 | interrupts_disable(); |
114 | jermar | 210 | |
898 | jermar | 211 | for (i = 0; i<RQ_COUNT; i++) { |
15 | jermar | 212 | r = &CPU->rq[i]; |
1 | jermar | 213 | spinlock_lock(&r->lock); |
214 | if (r->n == 0) { |
||
215 | /* |
||
216 | * If this queue is empty, try a lower-priority queue. |
||
217 | */ |
||
218 | spinlock_unlock(&r->lock); |
||
219 | continue; |
||
220 | } |
||
213 | jermar | 221 | |
783 | palkovsky | 222 | atomic_dec(&CPU->nrdy); |
475 | jermar | 223 | atomic_dec(&nrdy); |
1 | jermar | 224 | r->n--; |
225 | |||
226 | /* |
||
227 | * Take the first thread from the queue. |
||
228 | */ |
||
229 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
2283 | hudecek | 230 | if (verbose) |
231 | printf("cpu%d removing, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link); |
||
1 | jermar | 232 | list_remove(&t->rq_link); |
2283 | hudecek | 233 | if (verbose) |
234 | printf("cpu%d removed, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link); |
||
1 | jermar | 235 | |
236 | spinlock_unlock(&r->lock); |
||
237 | |||
238 | spinlock_lock(&t->lock); |
||
15 | jermar | 239 | t->cpu = CPU; |
1 | jermar | 240 | |
2067 | jermar | 241 | t->ticks = us2ticks((i + 1) * 10000); |
898 | jermar | 242 | t->priority = i; /* correct rq index */ |
1 | jermar | 243 | |
244 | /* |
||
1854 | jermar | 245 | * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated |
246 | * when load balancing needs emerge. |
||
1 | jermar | 247 | */ |
1854 | jermar | 248 | t->flags &= ~THREAD_FLAG_STOLEN; |
1 | jermar | 249 | spinlock_unlock(&t->lock); |
250 | |||
251 | return t; |
||
252 | } |
||
253 | goto loop; |
||
254 | |||
255 | } |
||
256 | |||
107 | decky | 257 | /** Prevent rq starvation |
258 | * |
||
259 | * Prevent low priority threads from starving in rq's. |
||
260 | * |
||
261 | * When the function decides to relink rq's, it reconnects |
||
262 | * respective pointers so that in result threads with 'pri' |
||
1708 | jermar | 263 | * greater or equal start are moved to a higher-priority queue. |
107 | decky | 264 | * |
265 | * @param start Threshold priority. |
||
266 | * |
||
1 | jermar | 267 | */ |
452 | decky | 268 | static void relink_rq(int start) |
1 | jermar | 269 | { |
270 | link_t head; |
||
271 | runq_t *r; |
||
272 | int i, n; |
||
273 | |||
274 | list_initialize(&head); |
||
15 | jermar | 275 | spinlock_lock(&CPU->lock); |
276 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
2067 | jermar | 277 | for (i = start; i < RQ_COUNT - 1; i++) { |
1 | jermar | 278 | /* remember and empty rq[i + 1] */ |
15 | jermar | 279 | r = &CPU->rq[i + 1]; |
1 | jermar | 280 | spinlock_lock(&r->lock); |
281 | list_concat(&head, &r->rq_head); |
||
282 | n = r->n; |
||
283 | r->n = 0; |
||
284 | spinlock_unlock(&r->lock); |
||
285 | |||
286 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 287 | r = &CPU->rq[i]; |
1 | jermar | 288 | spinlock_lock(&r->lock); |
289 | list_concat(&r->rq_head, &head); |
||
290 | r->n += n; |
||
291 | spinlock_unlock(&r->lock); |
||
292 | } |
||
15 | jermar | 293 | CPU->needs_relink = 0; |
1 | jermar | 294 | } |
784 | palkovsky | 295 | spinlock_unlock(&CPU->lock); |
1 | jermar | 296 | |
297 | } |
||
298 | |||
898 | jermar | 299 | /** The scheduler |
300 | * |
||
301 | * The thread scheduling procedure. |
||
302 | * Passes control directly to |
||
303 | * scheduler_separated_stack(). |
||
304 | * |
||
305 | */ |
||
306 | void scheduler(void) |
||
307 | { |
||
308 | volatile ipl_t ipl; |
||
107 | decky | 309 | |
898 | jermar | 310 | ASSERT(CPU != NULL); |
311 | |||
312 | ipl = interrupts_disable(); |
||
313 | |||
314 | if (atomic_get(&haltstate)) |
||
315 | halt(); |
||
1007 | decky | 316 | |
898 | jermar | 317 | if (THREAD) { |
318 | spinlock_lock(&THREAD->lock); |
||
2030 | decky | 319 | |
320 | /* Update thread accounting */ |
||
321 | THREAD->cycles += get_cycle() - THREAD->last_cycle; |
||
322 | |||
906 | palkovsky | 323 | #ifndef CONFIG_FPU_LAZY |
324 | fpu_context_save(THREAD->saved_fpu_context); |
||
325 | #endif |
||
898 | jermar | 326 | if (!context_save(&THREAD->saved_context)) { |
327 | /* |
||
328 | * This is the place where threads leave scheduler(); |
||
329 | */ |
||
2030 | decky | 330 | |
331 | /* Save current CPU cycle */ |
||
332 | THREAD->last_cycle = get_cycle(); |
||
333 | |||
898 | jermar | 334 | spinlock_unlock(&THREAD->lock); |
335 | interrupts_restore(THREAD->saved_context.ipl); |
||
1007 | decky | 336 | |
898 | jermar | 337 | return; |
338 | } |
||
339 | |||
340 | /* |
||
2067 | jermar | 341 | * Interrupt priority level of preempted thread is recorded |
342 | * here to facilitate scheduler() invocations from |
||
343 | * interrupts_disable()'d code (e.g. waitq_sleep_timeout()). |
||
898 | jermar | 344 | */ |
345 | THREAD->saved_context.ipl = ipl; |
||
346 | } |
||
347 | |||
348 | /* |
||
349 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
350 | * and preemption counter. At this point THE could be coming either |
||
351 | * from THREAD's or CPU's stack. |
||
352 | */ |
||
353 | the_copy(THE, (the_t *) CPU->stack); |
||
354 | |||
355 | /* |
||
356 | * We may not keep the old stack. |
||
357 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
358 | * find_best_thread(), the old thread could get rescheduled by another |
||
359 | * CPU and overwrite the part of its own stack that was also used by |
||
360 | * the scheduler on this CPU. |
||
361 | * |
||
362 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
363 | * which is fooled by SP being set to the very top of the stack. |
||
364 | * Therefore the scheduler() function continues in |
||
365 | * scheduler_separated_stack(). |
||
366 | */ |
||
367 | context_save(&CPU->saved_context); |
||
1854 | jermar | 368 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), |
2087 | jermar | 369 | (uintptr_t) CPU->stack, CPU_STACK_SIZE); |
898 | jermar | 370 | context_restore(&CPU->saved_context); |
371 | /* not reached */ |
||
372 | } |
||
373 | |||
107 | decky | 374 | /** Scheduler stack switch wrapper |
375 | * |
||
376 | * Second part of the scheduler() function |
||
377 | * using new stack. Handling the actual context |
||
378 | * switch to a new thread. |
||
379 | * |
||
787 | palkovsky | 380 | * Assume THREAD->lock is held. |
107 | decky | 381 | */ |
898 | jermar | 382 | void scheduler_separated_stack(void) |
1 | jermar | 383 | { |
384 | int priority; |
||
1007 | decky | 385 | |
227 | jermar | 386 | ASSERT(CPU != NULL); |
1007 | decky | 387 | |
15 | jermar | 388 | if (THREAD) { |
898 | jermar | 389 | /* must be run after the switch to scheduler stack */ |
897 | jermar | 390 | after_thread_ran(); |
391 | |||
15 | jermar | 392 | switch (THREAD->state) { |
1888 | jermar | 393 | case Running: |
125 | jermar | 394 | spinlock_unlock(&THREAD->lock); |
395 | thread_ready(THREAD); |
||
396 | break; |
||
1 | jermar | 397 | |
1888 | jermar | 398 | case Exiting: |
1571 | jermar | 399 | repeat: |
2040 | decky | 400 | if (THREAD->detached) { |
1571 | jermar | 401 | thread_destroy(THREAD); |
402 | } else { |
||
403 | /* |
||
2067 | jermar | 404 | * The thread structure is kept allocated until |
405 | * somebody calls thread_detach() on it. |
||
1571 | jermar | 406 | */ |
407 | if (!spinlock_trylock(&THREAD->join_wq.lock)) { |
||
408 | /* |
||
409 | * Avoid deadlock. |
||
410 | */ |
||
411 | spinlock_unlock(&THREAD->lock); |
||
412 | delay(10); |
||
413 | spinlock_lock(&THREAD->lock); |
||
414 | goto repeat; |
||
415 | } |
||
416 | _waitq_wakeup_unsafe(&THREAD->join_wq, false); |
||
417 | spinlock_unlock(&THREAD->join_wq.lock); |
||
418 | |||
419 | THREAD->state = Undead; |
||
420 | spinlock_unlock(&THREAD->lock); |
||
421 | } |
||
125 | jermar | 422 | break; |
787 | palkovsky | 423 | |
1888 | jermar | 424 | case Sleeping: |
125 | jermar | 425 | /* |
426 | * Prefer the thread after it's woken up. |
||
427 | */ |
||
413 | jermar | 428 | THREAD->priority = -1; |
1 | jermar | 429 | |
125 | jermar | 430 | /* |
2067 | jermar | 431 | * We need to release wq->lock which we locked in |
432 | * waitq_sleep(). Address of wq->lock is kept in |
||
433 | * THREAD->sleep_queue. |
||
125 | jermar | 434 | */ |
435 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 436 | |
125 | jermar | 437 | /* |
2067 | jermar | 438 | * Check for possible requests for out-of-context |
439 | * invocation. |
||
125 | jermar | 440 | */ |
441 | if (THREAD->call_me) { |
||
442 | THREAD->call_me(THREAD->call_me_with); |
||
443 | THREAD->call_me = NULL; |
||
444 | THREAD->call_me_with = NULL; |
||
445 | } |
||
2283 | hudecek | 446 | if (verbose) |
447 | printf("cpu%d, Sleeping unlocking \n", CPU->id); |
||
125 | jermar | 448 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 449 | |
125 | jermar | 450 | break; |
451 | |||
1888 | jermar | 452 | default: |
125 | jermar | 453 | /* |
454 | * Entering state is unexpected. |
||
455 | */ |
||
2067 | jermar | 456 | panic("tid%d: unexpected state %s\n", THREAD->tid, |
457 | thread_states[THREAD->state]); |
||
125 | jermar | 458 | break; |
1 | jermar | 459 | } |
897 | jermar | 460 | |
15 | jermar | 461 | THREAD = NULL; |
1 | jermar | 462 | } |
2283 | hudecek | 463 | if (verbose) |
464 | printf("cpu%d looking for next thread\n", CPU->id); |
||
15 | jermar | 465 | THREAD = find_best_thread(); |
1 | jermar | 466 | |
2283 | hudecek | 467 | if (verbose) |
468 | printf("cpu%d t locking THREAD:%x \n", CPU->id, THREAD); |
||
15 | jermar | 469 | spinlock_lock(&THREAD->lock); |
413 | jermar | 470 | priority = THREAD->priority; |
15 | jermar | 471 | spinlock_unlock(&THREAD->lock); |
2283 | hudecek | 472 | if (verbose) |
473 | printf("cpu%d t unlocked after priority THREAD:%x \n", CPU->id, THREAD); |
||
192 | jermar | 474 | |
1 | jermar | 475 | relink_rq(priority); |
476 | |||
477 | /* |
||
2067 | jermar | 478 | * If both the old and the new task are the same, lots of work is |
479 | * avoided. |
||
1 | jermar | 480 | */ |
15 | jermar | 481 | if (TASK != THREAD->task) { |
703 | jermar | 482 | as_t *as1 = NULL; |
483 | as_t *as2; |
||
1 | jermar | 484 | |
15 | jermar | 485 | if (TASK) { |
486 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 487 | as1 = TASK->as; |
15 | jermar | 488 | spinlock_unlock(&TASK->lock); |
1 | jermar | 489 | } |
490 | |||
15 | jermar | 491 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 492 | as2 = THREAD->task->as; |
15 | jermar | 493 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 494 | |
495 | /* |
||
2067 | jermar | 496 | * Note that it is possible for two tasks to share one address |
497 | * space. |
||
1 | jermar | 498 | */ |
703 | jermar | 499 | if (as1 != as2) { |
1 | jermar | 500 | /* |
703 | jermar | 501 | * Both tasks and address spaces are different. |
1 | jermar | 502 | * Replace the old one with the new one. |
503 | */ |
||
823 | jermar | 504 | as_switch(as1, as2); |
1 | jermar | 505 | } |
906 | palkovsky | 506 | TASK = THREAD->task; |
1187 | jermar | 507 | before_task_runs(); |
1 | jermar | 508 | } |
509 | |||
1380 | jermar | 510 | spinlock_lock(&THREAD->lock); |
15 | jermar | 511 | THREAD->state = Running; |
1 | jermar | 512 | |
906 | palkovsky | 513 | #ifdef SCHEDULER_VERBOSE |
2067 | jermar | 514 | printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n", |
2087 | jermar | 515 | CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, |
516 | atomic_get(&CPU->nrdy)); |
||
906 | palkovsky | 517 | #endif |
1 | jermar | 518 | |
213 | jermar | 519 | /* |
897 | jermar | 520 | * Some architectures provide late kernel PA2KA(identity) |
521 | * mapping in a page fault handler. However, the page fault |
||
522 | * handler uses the kernel stack of the running thread and |
||
523 | * therefore cannot be used to map it. The kernel stack, if |
||
524 | * necessary, is to be mapped in before_thread_runs(). This |
||
525 | * function must be executed before the switch to the new stack. |
||
526 | */ |
||
527 | before_thread_runs(); |
||
528 | |||
529 | /* |
||
2067 | jermar | 530 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to |
531 | * thread's stack. |
||
213 | jermar | 532 | */ |
184 | jermar | 533 | the_copy(THE, (the_t *) THREAD->kstack); |
534 | |||
15 | jermar | 535 | context_restore(&THREAD->saved_context); |
1 | jermar | 536 | /* not reached */ |
537 | } |
||
538 | |||
458 | decky | 539 | #ifdef CONFIG_SMP |
107 | decky | 540 | /** Load balancing thread |
541 | * |
||
542 | * SMP load balancing thread, supervising thread supplies |
||
543 | * for the CPU it's wired to. |
||
544 | * |
||
545 | * @param arg Generic thread argument (unused). |
||
546 | * |
||
1 | jermar | 547 | */ |
548 | void kcpulb(void *arg) |
||
549 | { |
||
550 | thread_t *t; |
||
2118 | decky | 551 | int count, average, j, k = 0; |
552 | unsigned int i; |
||
413 | jermar | 553 | ipl_t ipl; |
1 | jermar | 554 | |
1576 | jermar | 555 | /* |
556 | * Detach kcpulb as nobody will call thread_join_timeout() on it. |
||
557 | */ |
||
558 | thread_detach(THREAD); |
||
559 | |||
1 | jermar | 560 | loop: |
561 | /* |
||
779 | jermar | 562 | * Work in 1s intervals. |
1 | jermar | 563 | */ |
779 | jermar | 564 | thread_sleep(1); |
1 | jermar | 565 | |
566 | not_satisfied: |
||
567 | /* |
||
568 | * Calculate the number of threads that will be migrated/stolen from |
||
569 | * other CPU's. Note that situation can have changed between two |
||
570 | * passes. Each time get the most up to date counts. |
||
571 | */ |
||
784 | palkovsky | 572 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
783 | palkovsky | 573 | count = average - atomic_get(&CPU->nrdy); |
1 | jermar | 574 | |
784 | palkovsky | 575 | if (count <= 0) |
1 | jermar | 576 | goto satisfied; |
577 | |||
578 | /* |
||
2067 | jermar | 579 | * Searching least priority queues on all CPU's first and most priority |
580 | * queues on all CPU's last. |
||
1 | jermar | 581 | */ |
2067 | jermar | 582 | for (j= RQ_COUNT - 1; j >= 0; j--) { |
583 | for (i = 0; i < config.cpu_active; i++) { |
||
1 | jermar | 584 | link_t *l; |
585 | runq_t *r; |
||
586 | cpu_t *cpu; |
||
587 | |||
588 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
589 | |||
590 | /* |
||
591 | * Not interested in ourselves. |
||
2067 | jermar | 592 | * Doesn't require interrupt disabling for kcpulb has |
593 | * THREAD_FLAG_WIRED. |
||
1 | jermar | 594 | */ |
15 | jermar | 595 | if (CPU == cpu) |
783 | palkovsky | 596 | continue; |
597 | if (atomic_get(&cpu->nrdy) <= average) |
||
598 | continue; |
||
1 | jermar | 599 | |
784 | palkovsky | 600 | ipl = interrupts_disable(); |
115 | jermar | 601 | r = &cpu->rq[j]; |
1 | jermar | 602 | spinlock_lock(&r->lock); |
603 | if (r->n == 0) { |
||
604 | spinlock_unlock(&r->lock); |
||
413 | jermar | 605 | interrupts_restore(ipl); |
1 | jermar | 606 | continue; |
607 | } |
||
608 | |||
609 | t = NULL; |
||
610 | l = r->rq_head.prev; /* search rq from the back */ |
||
611 | while (l != &r->rq_head) { |
||
612 | t = list_get_instance(l, thread_t, rq_link); |
||
613 | /* |
||
2067 | jermar | 614 | * We don't want to steal CPU-wired threads |
615 | * neither threads already stolen. The latter |
||
616 | * prevents threads from migrating between CPU's |
||
617 | * without ever being run. We don't want to |
||
618 | * steal threads whose FPU context is still in |
||
619 | * CPU. |
||
73 | vana | 620 | */ |
1 | jermar | 621 | spinlock_lock(&t->lock); |
2067 | jermar | 622 | if ((!(t->flags & (THREAD_FLAG_WIRED | |
623 | THREAD_FLAG_STOLEN))) && |
||
1854 | jermar | 624 | (!(t->fpu_context_engaged)) ) { |
1 | jermar | 625 | /* |
626 | * Remove t from r. |
||
627 | */ |
||
628 | spinlock_unlock(&t->lock); |
||
629 | |||
783 | palkovsky | 630 | atomic_dec(&cpu->nrdy); |
475 | jermar | 631 | atomic_dec(&nrdy); |
1 | jermar | 632 | |
125 | jermar | 633 | r->n--; |
1 | jermar | 634 | list_remove(&t->rq_link); |
635 | |||
636 | break; |
||
637 | } |
||
638 | spinlock_unlock(&t->lock); |
||
639 | l = l->prev; |
||
640 | t = NULL; |
||
641 | } |
||
642 | spinlock_unlock(&r->lock); |
||
643 | |||
644 | if (t) { |
||
645 | /* |
||
646 | * Ready t on local CPU |
||
647 | */ |
||
648 | spinlock_lock(&t->lock); |
||
906 | palkovsky | 649 | #ifdef KCPULB_VERBOSE |
2067 | jermar | 650 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, " |
2087 | jermar | 651 | "avg=%nd\n", CPU->id, t->tid, CPU->id, |
652 | atomic_get(&CPU->nrdy), |
||
653 | atomic_get(&nrdy) / config.cpu_active); |
||
906 | palkovsky | 654 | #endif |
1854 | jermar | 655 | t->flags |= THREAD_FLAG_STOLEN; |
1115 | jermar | 656 | t->state = Entering; |
1 | jermar | 657 | spinlock_unlock(&t->lock); |
658 | |||
659 | thread_ready(t); |
||
660 | |||
413 | jermar | 661 | interrupts_restore(ipl); |
1 | jermar | 662 | |
663 | if (--count == 0) |
||
664 | goto satisfied; |
||
665 | |||
666 | /* |
||
2067 | jermar | 667 | * We are not satisfied yet, focus on another |
668 | * CPU next time. |
||
1 | jermar | 669 | */ |
670 | k++; |
||
671 | |||
672 | continue; |
||
673 | } |
||
413 | jermar | 674 | interrupts_restore(ipl); |
1 | jermar | 675 | } |
676 | } |
||
677 | |||
783 | palkovsky | 678 | if (atomic_get(&CPU->nrdy)) { |
1 | jermar | 679 | /* |
680 | * Be a little bit light-weight and let migrated threads run. |
||
681 | */ |
||
682 | scheduler(); |
||
779 | jermar | 683 | } else { |
1 | jermar | 684 | /* |
685 | * We failed to migrate a single thread. |
||
779 | jermar | 686 | * Give up this turn. |
1 | jermar | 687 | */ |
779 | jermar | 688 | goto loop; |
1 | jermar | 689 | } |
690 | |||
691 | goto not_satisfied; |
||
125 | jermar | 692 | |
1 | jermar | 693 | satisfied: |
694 | goto loop; |
||
695 | } |
||
696 | |||
458 | decky | 697 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 698 | |
699 | |||
700 | /** Print information about threads & scheduler queues */ |
||
701 | void sched_print_list(void) |
||
702 | { |
||
703 | ipl_t ipl; |
||
2118 | decky | 704 | unsigned int cpu, i; |
775 | palkovsky | 705 | runq_t *r; |
706 | thread_t *t; |
||
707 | link_t *cur; |
||
708 | |||
709 | /* We are going to mess with scheduler structures, |
||
710 | * let's not be interrupted */ |
||
711 | ipl = interrupts_disable(); |
||
2118 | decky | 712 | for (cpu = 0; cpu < config.cpu_count; cpu++) { |
898 | jermar | 713 | |
775 | palkovsky | 714 | if (!cpus[cpu].active) |
715 | continue; |
||
898 | jermar | 716 | |
775 | palkovsky | 717 | spinlock_lock(&cpus[cpu].lock); |
1221 | decky | 718 | printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n", |
2087 | jermar | 719 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), |
720 | cpus[cpu].needs_relink); |
||
775 | palkovsky | 721 | |
2067 | jermar | 722 | for (i = 0; i < RQ_COUNT; i++) { |
775 | palkovsky | 723 | r = &cpus[cpu].rq[i]; |
724 | spinlock_lock(&r->lock); |
||
725 | if (!r->n) { |
||
726 | spinlock_unlock(&r->lock); |
||
727 | continue; |
||
728 | } |
||
898 | jermar | 729 | printf("\trq[%d]: ", i); |
2067 | jermar | 730 | for (cur = r->rq_head.next; cur != &r->rq_head; |
731 | cur = cur->next) { |
||
775 | palkovsky | 732 | t = list_get_instance(cur, thread_t, rq_link); |
733 | printf("%d(%s) ", t->tid, |
||
2087 | jermar | 734 | thread_states[t->state]); |
775 | palkovsky | 735 | } |
736 | printf("\n"); |
||
737 | spinlock_unlock(&r->lock); |
||
738 | } |
||
739 | spinlock_unlock(&cpus[cpu].lock); |
||
740 | } |
||
741 | |||
742 | interrupts_restore(ipl); |
||
743 | } |
||
1702 | cejka | 744 | |
1757 | jermar | 745 | /** @} |
1702 | cejka | 746 | */ |